内容简介

本书主要介绍了 Riemann 流形、Riemann 联络、Riemann 裁曲率、Ricci 曲率和数量曲率。详细研究了全测地、全脐点和极小子流形等重要的内容。此外，还应用变分和 Jacobi 场讨论了测地线、极小子流形的长度、体积的极小性。在证明了 Hodge 分解定理之后，论述了 Laplace-Beltrami 算子 Δ 的特征值以及谱理论。最后，证明了 Synge 定理，著名的拓扑球面定理和一些曲率与拓扑相关联的重要定理。本书可使读者具有良好的近代数学修养并能增强研究的能力。

本书可用作理科大学数学系和物理系高年级研究生和大学几何、拓扑专业的教科书以及相关教学、研究人员的参考书。
序言

微分几何的始祖是 C. F. Gauss (1777－1855)，他引进了曲面的第 1 基本形式，建立了曲面论。B. Riemann (1826－1866) 在 1854 年有名的演讲将这个理论推广到 n 维空间，Riemann 几何就此产生，局部微分几何开始了飞速的发展，产生了张量分析。同时，1970 年，F. Klein 发表了他的著名的埃尔兰纲领 (Erlanger program)，由群论的角度研究空间变换群的不变量，从而引进了各种不同的几何学。另外，复变函数的单元化理论促进了 Riemann 曲面的研究。这种种理论以及经典的曲面理论，构成了 20 世纪微分几何发展的基础。许多著名数学家，如 E. Beltrami，E. B. Christoffel，R. Lipschitz 等又发展了 Riemann 的新几何。

本世纪 30 年代 Einstein 提出的广义相对论，近三十年来 Yang-Mills 提出的规范场等等就是几何学与物理学相结合的最好例子。

微分几何的主要问题是整体的，即研究空间或流形的整体性质，尤其是局部性质与整体性质的关系，Gauss-Bonnet 公式以及许多曲率与拓扑相关的定理就是实例。

全书内容共分五章。第 1 章是预备知识，介绍了 Riemann 几何的主要内容，Riemann 度量 g，Livi-Civita (Riemann) 联络，Riemann 流形基本定理，Riemann 截曲率，Ricci 曲率、数量曲率，常截曲率流形，Laplace 算子 A 以及活动标志法。第 2 章是子流形几何，引进了全测地、极小和全凸子流形的概念，举出了 Euclid 空间和单位球面中大量极小曲面的例子，并讨论了单位球面上紧致极小子流形的刚性问题。第 3 章是应用变分和 Jacobi 场讨论了测地线和极小子流形。第 4 章研究了流形 (可定向和不可定向) 上的
Hodge 分解定理和 Laplace-Beltrami 算子 Δ 的特征值，并在习题中讨论了等距于等距之间关系的问题。第 5 章给出了曲率与拓扑相关联的 Syngé 定理，Rauch 比较定理和著名的拓扑球面定理。此外，还证明了具有相同常截曲率的空间形式是等距的 Riemann 流形。

本书是中国科学技术大学研究生系列教材之一，收集的内容很丰富，论述很严谨、详细，这是为了使读者可不必过多地查阅文献就能熟练地掌握近代微分几何的基本知识。

本书的特点是注重微分几何与微分方程相关联的问题、微分几何与拓扑相关联的问题，这是当代微分几何两大重要研究方向。在论证命题时（例如 Riemann 流形基本定理、F. Schur 定理）常采用或同时采用近代观点（映射观点）、古典观点（坐标观点）和活动标架法，这是本书的另一个特点。书中第 2 章 2.5、第 4 章 4.4 以及配备的大量习题是为读者在研究方向上开设的一些窗口，希望能帮助读者思考和研究更深入的问题，以致尽快进入微分几何研究的前沿。

少年班优秀大学研究生梅加强、倪轶龙、刘湘伟和数学系研究生夏青岚、王春苗和杨晓松、祁锋以及访问学者夏大峰副教授都仔细阅读了本书，并提出了许多宝贵的意见。作者在此对他们一并表示衷心的感谢。

由于水平有限，书中肯定有错误和不妥之处，请读者多提宝贵意见。

徐森林
薛春华
1996 年 7 月
目录

第 1 章 Levi-Civita 联络和 Riemann 截曲率 1
 1.1 向量丛上的线性联络 ... 1
 1.2 切丛上的线性联络、向量场的平移和测地线 15
 1.3 Levi-Civita 联络和 Riemann 流形基本定理 32
 1.4 Riemann 截曲率、Ricci 曲率、数量曲率和
 常截曲率流形 ... 55
 1.5 Laplace 算子 Δ ... 88
 1.6 C^∞ 浸入子流形的 Riemann 联络 109
 1.7 活动标架 ... 124

第 2 章 子流形几何 ... 150
 2.1 全测地、极小和全痉子流形 151
 2.2 Euclid 空间和 Euclid 球面中的极小子流形 172
 2.3 Kähler 流形 ... 185
 2.4 Kähler 流形的例子 .. 202
 2.5 单位球面上紧致极小子流形的刚性 221

第 3 章 Jacobi 场、变分和极小子流形 248
 3.1 测地线、指数映射和流形的完备性 249
 3.2 Jacobi 场、共轭点和割迹 268
 3.3 长度的第 1 和第 2 变分公式 287
 3.4 体积的第 1、第 2 变分公式和极小子流形 306
 3.5 Morse 指数定理 ... 330

第 4 章 Hodge 分解定理和 Laplace 算子 Δ 的特征值 342
 4.1 星算子 \ast、上微分算子 δ 和微分形式
 的 Laplace 算子 Δ 343
 4.2 Hodge 分解定理 ... 349
<table>
<thead>
<tr>
<th>章节</th>
<th>内容</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>不定向紧致 C^∞ Riemann 流形的 Hodge 分解定理</td>
<td>363</td>
</tr>
<tr>
<td>4.4</td>
<td>Laplace 算子 Δ 的特征值</td>
<td>372</td>
</tr>
<tr>
<td>5.1</td>
<td>覆叠空间和 Synge 定理</td>
<td>389</td>
</tr>
<tr>
<td>5.2</td>
<td>等距变换和空间形式</td>
<td>401</td>
</tr>
<tr>
<td>5.3</td>
<td>Rauch 比较定理和拓扑球面定理</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>参考文献</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>索引</td>
<td>441</td>
</tr>
</tbody>
</table>
第1章 Levi-Civita 联络和 Riemann 截曲率

本章引进了线性联络 ∇，向量场的平移和平测地线的概念，证明了 C^∞ 向量丛上 Riemann 度量的存在性和 Riemann 流形的基本定理（即 Levi-Civita 联络或 Riemann 联络的存在唯一性定理），介绍了 Riemann 截曲率、Ricci 曲率、数量曲率和常 Riemann 截曲率的流形。此外，对 C^∞ 函数的 Laplace 算子 Δ，证明了 Green 第 1、第 2 公式及散度定理和 Hopf-Bochner 定理。我们还推出了：如何由 Riemann 流形的 Riemann 联络导出正则子流形的 Riemann 联络。Riemann 正则子流形上的第 1、第 2 基本形式，Weingarten 映射，Gauss 曲率方程和 Codazzi-Mainardi 方程。对于 \mathbb{R}^{2n+1} 中的 C^∞ 超曲面，Gauss 曲率只与第 1 基本形式有关而与第 2 基本形式无关的 Gauss 绝妙定理是一个极其深刻的定理。最后，我们用活动标架研究了线性联络、Levi-Civita 联络，曲率和正则子流形的局部几何。继 Cartan 结构方程得到了 Bianchi 第 1、第 2 恒等式的外微分形式的表示。用活动标架还重新证明了 Riemann 流形的基本定理。

1.1 向量丛上的线性联络

本节主要介绍 C^∞ 向量丛 ξ 上的线性联络 ∇，向量的平行移动和平测地线等重要概念。

定义 1 设 E, M 为 C^∞ 流形，$\dim M = m, n$ 维 Euclid 空间 \mathbb{R}^n 自然是一个 n 维流形，一般线性群 $GL(n, \mathbb{R}) = \{A | A$ 为 $n \times n$ 非奇异矩阵 $\}$ 按矩阵的乘法为 C^∞ Lie 群，它 C^∞ 有效作用在 \mathbb{R}^n 上（其作用为矩阵乘法，即 $A: \mathbb{R}^n \to \mathbb{R}^n, a \to Aa$）。所谓有效作用，即对 $\forall a \in \mathbb{R}^n, Aa = a$ 蕴涵着 $A = I$（单位矩阵）。$\pi: E \to M$ 为 C^∞ 满映射，且是局部平
凡（局部是积空间）的，也就是存在 M 的开覆盖 $\{U_a | a \in \Gamma\}$ 和相应的 C^∞ 同胚族 $\{\varphi_a | a \in \Gamma\}$，使得对 $\forall a \in \Gamma$，图表

$$
E |_{U_a} = \pi^{-1}(U_a) \xrightarrow{\varphi_a} U_a \times \mathbb{R}^s
$$

是交换的，即 $\pi = \pi_{1a} \circ \varphi_a$，其中 $\pi_{1a}(p, a) = p$，而 $\varphi_a \circ \pi^{-1}(p) \to \{p\} \times \mathbb{R}^s$ 为 C^∞ 线性同构。如果 $U_a \cap U_\beta \neq \emptyset$，则 φ_a 和 φ_β 诱导出 C^∞ 同胚 $\varphi_a \circ \varphi_\beta^{-1}$，且图表

$$
(U_a \cap U_\beta) \times \mathbb{R}^s \xrightarrow{\varphi_a \circ \varphi_\beta^{-1}} (U_a \cap U_\beta) \times \mathbb{R}^s
$$

是可交换的，即 $\pi_{1a} = \pi_{1a} \circ \varphi_a \circ \varphi_\beta^{-1}$。令 $\varphi_a \circ \varphi_\beta^{-1}(p, a) = (p, g_{\beta a}(p))$，这里 $g_{\beta a}(p) : \mathbb{R}^s \to \mathbb{R}^s$ 为 C^∞ 线性同构，从 $(\pi^{-1}(U_a), \varphi_a)$ 到 $(\pi^{-1}(U_\beta), \varphi_\beta)$ 的转换映射 $g_{\beta a} : U_a \cap U_\beta \to GL(n, \mathbb{R})$ 为 C^∞ 映射。

由上述立即可知，$g_{\alpha a}(p) = I$ 和 $g_{\gamma a}(p) = g_{\gamma p}(p) \cdot g_{\beta a}(p)$。事实上，由 $(p, a) = I_{U_a \cap U_\beta}(p, a) = \varphi_a \circ \varphi_\beta^{-1}(p, a) = (p, g_{\alpha a}(p))$ 得到 $g_{\alpha a}(p)a = a(\forall a \in \mathbb{R}^s)$，再由 $GL(n, \mathbb{R})_{C^\infty}$ 有效作用于 \mathbb{R}^s，故 $g_{\alpha a}(p) = I$。由 $(p, g_{\gamma p}(p)) = \varphi_a \circ \varphi_\beta^{-1}(p, a) = \psi_\nu \circ \psi_a^{-1}(p, a) = \psi_\nu \circ \psi_\beta \circ \psi_a^{-1}(p, a)$，而 $\psi_a^{-1}(p, a) = (p, g_{\beta a}(p))$，故 $g_{\gamma a}(p)a = g_{\nu p}(p) \cdot g_{\beta a}(p)a$，对任意 $a \in \mathbb{R}^s$，$a = g_{\beta a}(p)a = g_{\gamma p}(p) \cdot g_{\beta a}(p)a = g_{\nu p}(p) \cdot g_{\gamma p}(p) \cdot g_{\beta a}(p) \cdot g_{\nu p}(p)a$，根据 $GL(n, \mathbb{R})_{C^\infty}$ 有效作用于 \mathbb{R}^s，有 $g_{\gamma p}(p) \cdot g_{\gamma p}(p) = I$ 及 $g_{\nu p}(p) \cdot g_{\gamma p}(p) \cdot g_{\beta a}(p) = I$。于是 $g_{\nu p}(p) \cdot g_{\beta a}(p) = g_{\gamma p}(p) \cdot g_{\nu p}(p) = g_{\gamma p}(p)$。

如果 $(\pi^{-1}(U), \varphi)$ 与每个 $(\pi^{-1}(U_a), \varphi_a)(a \in \Gamma)$ 满足上述 $(\pi^{-1}(U_\beta), \varphi_\beta)$ 与 $(\pi^{-1}(U_a), \varphi_a)$ 相应的条件，则称 $(\pi^{-1}(U), \varphi)$ 是 $\mathcal{E}^* = \{(\pi^{-1}(U_a), \varphi_a) | a \in \Gamma\}_{C^\infty}$ 相容的。类似 C^∞ 流形的定义，它唯一地确定了一个最大局部平凡之族 $\mathcal{E} = \{(\pi^{-1}(U), \varphi) | (\pi^{-1}(U), \varphi)$ 与 \mathcal{E} 是 C^∞ 相容的 $\}$（最大性：凡与 \mathcal{E} C^∞ 相容局部
平凡化系必属于 \mathcal{E}，而 \mathcal{E}' 称为生成 \mathcal{E} 的一个基。显然，如果 \mathcal{E}_1 和 \mathcal{E}_2 都是基，则 $\mathcal{E}_1 = \mathcal{E}_2$ \iff \mathcal{E}_1 和 \mathcal{E}_2 是 C^∞ 相容的。我们称双元组 $\xi = \{ E, M, \pi, GL(n, R), R^*, \mathcal{E} \}$ 为 M 上的秩为 n 的 C^∞ 向量丛。E 为丛（全）空间，M 为底空间，π 为从 E 到 M 的投影，$GL(n, R)$ 为构造群（或结构群），R^* 为标准纤维，$E_p = \pi^{-1}(p)$ 为 $p \in M$ 处的纤

维，\mathcal{E} 称为丛图册，$(\pi^{-1}(U), \psi) \in \mathcal{E}$ 称为丛图卡。有时也称 E 为 C^∞ 向量丛。

显然，$\dim E = \dim M + \dim R^* = m + n$，即 E 为 $(m + n)$ 维 C^∞ 流形。

如果 $U_\alpha \cap U_\beta \neq \emptyset$，记 $(U_\alpha, \varphi_\alpha), \{ x^i \}$ 和 $(U_\beta, \varphi_\beta), \{ y^i \}$ 为 M 上的局部坐标系，则有下面的变换图表和公式：

$$
\varphi_\beta(U_\alpha \cap U_\beta) \quad \xleftarrow{\psi_\beta} \quad \varphi_\alpha^{-1}(U_\alpha \cap U_\beta)
$$

$$(\varphi_\beta, \text{Id}_{\mathbb{R}^*}) \quad \downarrow \quad (\varphi_\alpha^{-1}, \text{Id}_{\mathbb{R}^*})$$

$$(\varphi_\beta \circ \varphi_\alpha^{-1}(x^1, \ldots, x^n), g_{\beta\alpha}(\varphi_\alpha^{-1}(x))) \rightarrow (\varphi_\alpha^{-1}(y^1, \ldots, y^n), a^1)$$

或简化为

$$(y, b) = (\varphi_\beta \circ \varphi_\alpha^{-1}(x), g_{\beta\alpha}(\varphi_\alpha^{-1}(x))a).$$

这就是局部平凡系之间的坐标变换公式。

例 1 设 $\xi = \{ E, M, \pi, GL(n, R), R^*, \mathcal{E} \}$ 为 C^∞ 向量丛，如果存在丛图卡 $(E, \psi) \in \mathcal{E}$，则称 ξ 为 C^∞ 平凡向量丛。此时，$\psi : E = \pi^{-1}(M) \rightarrow M \times R^*$ 为 C^∞ 同胚，$\psi_\sharp = \psi_\sharp : E \rightarrow \{ p \} \times R^*$ 为 C^∞ 线性同构。

定义 2 设 $\xi = \{ E, M, \pi, GL(n, R), R^*, \mathcal{E} \}$ 为 C^∞ 向量丛，如果对 $0 \leq k \leq \infty$ 存在 C^k 映射 $\sigma : M \rightarrow E$，使 $\sigma(p) \in E_p, \forall p \in M$，而 $\pi \circ \sigma = \text{Id}_M$，则称 σ 为 ξ 上的一个 C^k 切面或 C^k 向量场。
不难看出, \(\sigma \) 为 \(\xi \) 上的一个 \(C^t \) 切面 \(\Leftrightarrow \) 对任何 \((\pi^{-1}(U), \psi) \in \mathcal{E}, (U, \varphi), (x') \) 为 \(M \) 上的局部坐标系, \(\sigma(p) = \sum_{i=1}^{n} \sigma_i(p) \psi^{-1}(e_i) \) 和 \(\sigma': U \rightarrow \mathbb{R} \) 为 \(C^t \) 函数 (即 \(\sigma'(\varphi^{-1}(x', \cdots, x^n)) = x^1, \cdots, x^n \) 的 \(C^t \) 函数).

如果 \(\xi = \{ E, M, \pi, GL(n, \mathbb{R}), \mathbb{R}^n, \mathcal{E} \} \) 为秩 \(n \) 的 \(C^\infty \) 向量丛, 则它有一个特殊的 0 切面 \(\sigma_0: M \rightarrow E, \sigma_0(p) = 0, \psi \in E \). 于是, \(\sigma_0: M \rightarrow \sigma_0(M) = \{ O \mid p \in M, O \} \), 为 \(E \) 的零向量. 由此, 我们将 \(M \) 和 0 切面的象 \(\sigma_0(M) \) 视作相同.

记 \(C^t(\xi) = C^t(E) = \{ \sigma : \sigma: M \rightarrow E \} \) 为 \(C^t \) 切面, 对 \(\sigma, \eta \in C^t(\xi), \lambda \in \mathbb{R} \), 定义加法和数乘如下:

\[
(\sigma + \eta)(p) = \sigma(p) + \eta(p),
\]

\[
(\lambda \sigma)(p) = \lambda \cdot \sigma(p), \quad \forall \ p \in M.
\]

容易验证 \(C^t(\xi) \) 在上述加法和数乘下形成一个 \(\mathbb{R} \) 上的向量空间. 如果 \(m \geq 1 \), 设 \((U, \varphi), (x') \) 为 \(M \) 的局部坐标系, 使 \(C^\infty(1) = \{ x \in \mathbb{R}^n \mid |x'| \leq 1, i = 1, \cdots, m \} \subset \varphi(U), (\pi^{-1}(U), \psi) \) 为 \(E \) 的丛图卡. 再选 \(C^\infty \) 函数 \(f: \mathbb{R}^n \rightarrow \mathbb{R} \), 使得 \(f|_{C^\infty(1)} = 1, f|_{\mathbb{R}^n - C^\infty(1)} = 0 \). 显然, \(\{(x') f \circ \varphi(p) \psi^{-1}(e_i)| l = 0, 1, 2, \cdots\} \) (自然视作 \(\xi \) 上的整体 \(C^t \) 切面) 是线性无关的 (事实上, 对任意 \(l \), 选 \(u = x^1 \) 为 \(u_1, \cdots, u_{l+1} \) 满足

\[
\begin{vmatrix}
 1 & u_1 & u_1^2 & \cdots & u_1^l \\
 \vdots & \vdots & \vdots & \cdots & \vdots \\
 1 & u_{l+1} & u_{l+1}^2 & \cdots & u_{l+1}^l \\
\end{vmatrix} = \prod_{i < j} (u_j - u_i) \neq 0.
\]

因此上述向量空间是无限维的. 除上述加法外, 对 \(\lambda \in C^t(M, \mathbb{R}) \) (\(M \) 上 \(C^t \) 函数的全体), \(\sigma, \eta \in C^t(\xi) \). 我们定义: \((\lambda \sigma)(p) = \lambda(p) \cdot \sigma(p), \forall p \in M \). 于是, \(C^t(\xi) \) 成为 \(\mathbb{R} \) 值函数的代数上的一个模.

例 2 我们知道, \(M \) 上每一个点 \(p \) 处, 所有的切向量形成了一个 \(m \) 维的切空间 \(T_p M \). 自然从沿 \(M \) 的一族切空间得到一个秩为 \(m \) 的 \(C^\infty \) 向量丛, 称为切丛, 它是 \(2m \) 维 \(C^\infty \) 流形.

设 \((M, \mathcal{D}) \) 是 \(m \) 维 \(C^\infty \) 流形, \(M \) 的切丛 \(\xi = \{ TM, M, \pi, GL(m, M), \mathbb{R}^n, \mathcal{E} \} \) 定义如下:
\[TM = \bigcup_{r \in \mathcal{R}} T_r M, \]

\[\pi: TM \to M, \pi(T_r M) = \{ p \}, \text{即 } \pi(X_r) = p, X_r \in T_r M. \pi^{-1}(p) = T_r M \]

为 \(p \) 点处的纤维. 对任何 \((U, \varphi), \{ x^i \} \in \mathcal{D}, \) 定义局部平凡化为 \(\psi: \)

\[\pi^{-1}(U) = \bigcup_{r \in \nu} T_r M \to U \times \mathbb{R}^n, \psi(X_r) = \psi\left(\sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} \right) = (p, a^1, \ldots, a^n), \]

而 \(\psi_r = \psi |_{\pi^{-1}(p)} = T_r M \to \{ p \} \times \mathbb{R}^n \) 为线性同构. 由于 \(\psi \) 一一映射, 故从 \(U \times \mathbb{R}^n \) 的拓扑自然导出了 \(\pi^{-1}(U) \) 的拓扑, 使 \(\psi \) 为同胚. 显然, \(\tau^* = \{ \pi^{-1}(U) \text{ 中的开集} | (U, \varphi) \in \mathcal{D} \} \) 为 \(TM \) 的拓扑基, 它唯一地确定了 \(TM \) 的一个拓扑 \(\tau \). 显然地, \(TM \) 为 \(T_2 \) (Hausdorff) 空间, \(\pi^{-1}(U) \) 为其开子集, 且 \((\varphi, \text{Id}_{\mathbb{R}^n}) \circ \psi; \pi^{-1}(U) \to \varphi(U) \times \mathbb{R}^n, (\varphi, \text{Id}_{\mathbb{R}^n}) \circ \psi(X_r) = (\varphi(p), a^1, \ldots, a^n) = (x^1, \ldots, x^n, a^1, \ldots, a^n) \) 为同构, 因而 \(TM \) 为 \(2m \) 维拓扑流形.

令 \(\mathcal{D}' = \{ (\pi^{-1}(U), \psi) | (U, \varphi) \in \mathcal{D} \} \), 如果 \((U_\alpha, \varphi_\alpha), \{ x^i \} \in \mathcal{D}, (U_\beta, \varphi_\beta), \{ y^j \} \in \mathcal{D}, \) 则当 \(p \in U_\alpha \cap U_\beta \) 时, 有

\((p, b^1, \ldots, b^n) = (p, g_\beta(p) a) = \psi_\beta \circ \psi_\alpha^{-1}(p, a^1, \ldots, a^n) \)

\[= \psi_\beta\left(\sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} \right) = \psi_\beta\left(\sum_{j=1}^{n} \sum_{i=1}^{m} \frac{\partial y^j}{\partial x^i} a^i \frac{\partial}{\partial y^j} \right) \]

\[= (p, \sum_{i=1}^{n} \frac{\partial y^j}{\partial x^i} a^i, \ldots, \sum_{i=1}^{n} \frac{\partial y^m}{\partial x^i} a^i), \]

其中

\[g_{\beta\alpha}(p) = \begin{bmatrix} \frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^1}{\partial x^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y^m}{\partial x^1} & \cdots & \frac{\partial y^m}{\partial x^n} \end{bmatrix}_{\varphi_\beta(p)} \in GL(m, \mathbb{R}), \]

显然, \(g_{\beta\alpha}: U_\alpha \cap U_\beta \to GL(m, \mathbb{R}) \) 为 \(C^\infty \) 映射. 又因为

\((y^1, \ldots, y^m, b^1, \ldots, b^n) = ((\varphi_\beta, \text{Id}_{\mathbb{R}^n}) \circ \psi_\beta) \circ ((\varphi_\alpha, \text{Id}_{\mathbb{R}^n}) \circ \psi_\alpha^{-1})(x^1, \ldots, x^n, a^1, \ldots, a^n) \)
\[(\varphi, \ld_r^*) \circ (\psi, \ld_r^*)^{-1} = \Id_{\varphi(U) \times \mathbb{R}^n} \]

可知，\(\pi \) 和 \(\psi \) 分别为 \(C^\infty \) 映射和 \(C^\infty \) 同胚. 于是，由 \(\mathcal{E}^* \) 唯一地确定了 TM 的一个丛图例 \(\mathcal{E} \), 使 \(\xi \) 或 TM 成为 M 上的一个秩为 \(m \) 的 \(C^\infty \) 向量丛, 即切丛.

\(M \) 上 \(C^k(0 \leq k \leq +\infty) \) 截面 \(X : M \to TM(\pi X = \Id_M : M \to M) \) 或对 \(\forall \, \rho \in M \), 在映射 \(X \) 下对应于 \(X, \in T_\rho M \) 称为 \(M \) 上的 \(C^k \) 切向量场. 记 \(M \) 上的 \(C^k \) 切向量场的全体为 \(C^k(TM) \).

容易证明:

定理 1 设 \((M, \mathcal{D})\) 为 \(m \) 维 \(C^\infty \) 流形, 则

(1) \(X \) 为 \(M \) 上的 \(C^k(0 \leq k \leq +\infty) \) 切向量场 \(\iff \) 对任何 \((U, \varphi), \{x^i\} \in \mathcal{D}, X = \sum a^i(p) \frac{\partial}{\partial x^i}, p \in U \) 有 \(a^i \in C^k(U, \mathbb{R}) \);

(2) \(X \) 为 \(M \) 上的 \(C^\infty \) 切向量场 \(\iff \) 对任何 \(f \in C^\infty(M, \mathbb{R}) \) 有 \(Xf \in C^\infty(M, \mathbb{R}) \).

证明 (1) \(X : M \to TM \) 为 \(C^k \) 截面 \(\iff \) 对任何 \((U, \varphi), \{x^i\} \in \mathcal{D}, \)

\[(\varphi, \ld_r^*) \circ \psi \circ X \circ \varphi^{-1} : \varphi(U) \to \varphi(U) \times \mathbb{R}^n, \]

是 \(C^k \) 类的 \(\iff \) 对任何 \((U, \varphi), \{x^i\} \in \mathcal{D}, a^i \in C^k(U, \mathbb{R}) \).

(2) \((\Rightarrow) \) 对任何 \((U, \varphi), \{x^i\} \in \mathcal{D} \), 在 \(U \) 中

\[Xf = \left(\sum a^i \frac{\partial}{\partial x^i} \right)f = \sum a^i \frac{\partial (f \circ \varphi^{-1})}{\partial x^i}, \]
由 \(f \in C^\infty(M, \mathbb{R}) \), \(X \) 为 \(M \) 上的 \(C^\infty \) 切向量场和(1) 可知 \(a^i \frac{\partial}{\partial x^i}f \in C^\infty(U, \mathbb{R}) \), 故 \(Xf|_V \in C^\infty(U, \mathbb{R}) \), 从而 \(Xf \in C^\infty(M, \mathbb{R}) \).

\((\Leftarrow)\) 对 \(\forall \ p \in M \), 取 \(p \) 的局部坐标系 \((U, \varphi), \{x^i\} \in \mathcal{D} \), 使 \(p \in U \). 由于 \(X = \sum_{i=1}^n (Xx^i) \frac{\partial}{\partial x^i} \), 构造 \(f_i \in C^\infty(M, \mathbb{R}) \), 使 \(f_i|_V = x^i|_V \), 其中 \(V \subset U \) 为 \(p \) 的更小的开邻域. 于是,

\[
(Xx)|_V \equiv (Xf_i)|_V
\]

是 \(C^\infty \) 类的, 故 \(X|_V \), 从而 \(X \) 为 \(C^\infty \) 类的.

例 3 设 \((M, \mathcal{D})\) 为 \(m \) 维 \(C^\infty \) 流形, \(T^*_x M = \{ \theta|_\varphi; T^*_x M \to \mathbb{R} \} \) 为线性函数), 设 \(\theta, \eta \in T^*_x M \), 定义

\[
(\theta + \eta)(X) = \theta(X) + \eta(X),

(\lambda \theta)(X) = \lambda \cdot \theta(X),
\]

则 \(\theta + \eta, \lambda \theta \in T^*_x M \), 可以证明 \(T^*_x M \) 为 \(m \) 维向量空间, 它是切空间 \(T,M \) 的对偶空间, 称为 \(p \) 点处的余切空间, \(T^*_x M \) 中的元素称为余切向量. 类似于切丛的讨论, 可以定义余切丛 \(\xi^* = \bigotimes^{0,1} \xi = \{ T^*_x M, M, \pi, GL(m, \mathbb{R}), \mathbb{R}^n, \mathcal{D} \} \), 其中 \(T^*_x M = \bigcup_{\varphi \in \mathcal{D}} T^*_x M, \pi; T^*_x M \to M, \pi(T^*_x M) = \{ p \} \), 即 \(\pi^{-1}(p) = T^*_x M \).

容易看出, 在两个局部平凡化系中,

\[
(p, \tilde{\theta}_1, \cdots, \tilde{\theta}_m) = (p, g_{\varphi}(p) \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_m \end{bmatrix})
\]

\[
= \psi_\varphi \circ \psi_\varphi^{-1}(p, \theta_1, \cdots, \theta_m) = \psi_\varphi \left(\sum_{i=1}^m \theta_i dx^i \right)
\]

\[
= \psi_\varphi \left(\sum_{j=1}^m \left(\sum_{i=1}^m \frac{\partial x^i}{\partial y^j} \theta_i \right) dy^j \right)
\]

\[
= (p, \sum_{i=1}^m \frac{\partial x^i}{\partial y^j} \theta_j, \cdots, \sum_{i=1}^m \frac{\partial x^i}{\partial y^m} \theta_i),
\]

其中
\[
g_{\beta}(p) = \begin{pmatrix}
\frac{\partial x^1}{\partial y^1} & \cdots & \frac{\partial y^1}{\partial x^m} \\
\cdots & \cdots & \cdots \\
\frac{\partial x^1}{\partial y^m} & \cdots & \frac{\partial x^m}{\partial y^m}
\end{pmatrix}
\in GL(m, \mathbb{R}).
\]

显然，\(g_{\beta}: U_\alpha \cap U_\beta \to GL(m, \mathbb{R}) \) 为 \(C^\infty \) 映射。又因为

\[
(y^1, \cdots , y^m, \theta_1, \cdots , \theta_m)
= (\varphi_\beta, \text{Id}_{\mathbb{R}^m}) \circ \psi_\beta \circ ((\varphi_\alpha, \text{Id}_{\mathbb{R}^m}) \circ \psi_\alpha)^{-1}(x^1, \cdots , x^m, \theta_1, \cdots , \theta_m)
= (\varphi_\beta \circ \varphi_\alpha^{-1}(x^1, \cdots , x^m), \sum_{i=1}^m \frac{\partial x^i}{\partial y^1} \theta_i, \cdots , \sum_{i=1}^m \frac{\partial x^i}{\partial y^m} \theta_i),
\]

所以 \(T^*M \) 为 \(2m \) 维 \(C^\infty \) 流形，而

\[
\mathcal{E}' = \{ (\pi^{-1}(U), (\varphi, \text{Id}_{\mathbb{R}^m}) \circ \psi) | (U, \varphi) \in \mathcal{D} \}
\]

为其微分构造的基。由

\[
(x^1, \cdots , x^n) = \varphi \circ \pi \circ ((\varphi, \text{Id}_{\mathbb{R}^m}) \circ \psi)^{-1}(x^1, \cdots , x^m, \theta_1, \cdots , \theta_n)
\]

和

\[
(\varphi, \text{Id}_{\mathbb{R}^m}) \circ \psi \circ ((\varphi, \text{Id}_{\mathbb{R}^m}) \circ \psi)^{-1} = \text{Id}_{\varphi(U) \times \mathbb{R}^m}
\]

可知，\(\pi \) 和 \(\psi \) 分别为 \(C^\infty \) 映射和 \(C^\infty \) 同胚。于是 \(\mathcal{E}' \) 唯一地确定了 \(T^*M \) 的一个丛图册 \(\mathcal{E} \)，使 \(\xi^* \) 或 \(T^*M \) 成为 \(M \) 上的一个秩为 \(m \) 的 \(C^\infty \) 向量丛，即余切丛。类似 \(C^a \) 切向量场可定义 \(C^a \) 余切向量场。

例 4 设 \(\theta: T^*_r M \times \cdots \times T^*_s M \times T_rM \times \cdots \times T_sM \to R \) 为偏

线性函数，即对 \(\forall W_i, U_i \in T_r^* M, X_j, Y_j \in T_r M, \lambda, \mu \in \mathbb{R} \) 有

\[
\theta(W_1, \cdots , W_{r-1}, \lambda W_r + \mu U_i, W_{r+1}, \cdots , W_s, X_1, \cdots , X_s)
= \lambda \theta(W_1, \cdots , W_{r-1}, W_r, W_{r+1}, \cdots , W_s, X_1, \cdots , X_s)
+ \mu \theta(W_1, \cdots , W_{r-1}, U_i, W_{r+1}, \cdots , W_s, X_1, \cdots , X_s)
\]

\[
\theta(W_1, \cdots , W_r; X_1, \cdots , X_{r-1}, \lambda X_r + \mu Y_j, X_{r+1}, \cdots , X_s)
= \lambda \theta(W_1, \cdots , W_r; W_r; X_1, \cdots , X_{r-1}, X_r, X_{r+1}, \cdots , X_s)
+ \mu \theta(W_1, \cdots , W_r; U_i, X_1, \cdots , X_{r-1}, Y_j, X_{r+1}, \cdots , X_s),
\]

则称 \(\theta \) 为 \(TM \) 上的 \((r,s)\) 型张量，\(r \) 为逆变阶数，\(s \) 为协变阶数，
\((r,s)\)型张量的全体为 \(\otimes^{r,s} T_r M \)。\(\theta \) 在 \(M \) 的两个局部坐标系 \((U_\alpha, \theta)\)
\(\varphi, \{x^i\} \) 和 \((U, \varphi), \{y^i\}\) 中的表示分别为

\[
\theta = \sum_{j_1, \ldots, j_s = 1}^n \theta_{j_1 \cdots j_s}^{i_1 \cdots i_r} \frac{\partial}{\partial x^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_r}} \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_s},
\]

和

\[
\theta = \sum_{j_1, \ldots, j_s = 1}^n \vartheta_{j_1 \cdots j_s}^{i_1 \cdots i_r} \frac{\partial}{\partial y^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial y^{i_r}} \otimes dy^{j_1} \otimes \cdots \otimes dy^{j_s},
\]

其中

\[
\theta_{j_1 \cdots j_s}^{i_1 \cdots i_r} = \theta(dx^{i_1}, \ldots, dx^{i_r}; \frac{\partial}{\partial x^{i_1}}, \ldots, \frac{\partial}{\partial x^{i_r}}),
\]

\[
\vartheta_{j_1 \cdots j_s}^{i_1 \cdots i_r} = \theta(dy^{i_1}, \ldots, dy^{i_r}; \frac{\partial}{\partial y^{i_1}}, \ldots, \frac{\partial}{\partial y^{i_r}}),
\]

以及

\[
\vartheta_{j_1 \cdots j_s}^{i_1 \cdots i_r} = \sum_{j_1, \ldots, j_s = 1}^n \frac{\partial}{\partial y^{j_1}} \cdots \frac{\partial}{\partial y^{j_s}} \frac{\partial}{\partial x^{i_1}} \cdots \frac{\partial}{\partial x^{i_r}} \theta_{i_1 \cdots i_r}^{j_1 \cdots j_s}.
\]

由此公式并仿例 2 立即得到 \((r, s)\) 型的 \(C^k\) 张量丛，其中 \(\otimes^r \cdots TM = \bigcup_{r \in M} \otimes^r \cdots T_x M\)。同例 2 可定义 \((r, s)\) 型 \(C^k\) 张量场。

类似定理 1 有:

定理 2 设 \((M, \mathcal{D})\) 为 \(m\) 维 \(C^\infty\) 流形，则

（1）\(\theta \) 为 \(M\) 上的 \((r, s)\) 型 \(C^k(0 \leq k \leq +\infty)\) 张量场 \(\iff\) 对任何 \((U, \varphi), \{x^i\} \in \mathcal{D}, p \in U\),

\[
\theta_s = \sum_{j_1, \ldots, j_s = 1}^n \theta_{j_1 \cdots j_s}^{i_1 \cdots i_r}(p) \frac{\partial}{\partial x^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_r}} \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_s},
\]

有 \(\theta_{j_1 \cdots j_s}^{i_1 \cdots i_r} \in C^k(U, \mathbb{R})\)。

（2）\(\theta \) 为 \(M\) 上的 \((r, s)\) 型 \(C^\infty\) 张量场 \(\iff\) 对于任何 \(W_1, \ldots, W_r \in C^\infty(T^* M)\) 和任何 \(X_1, \ldots, X_s \in C^\infty(TM)\), \(\theta(W_1, \ldots, W_r, X_1, \ldots, X_s)\) 为 \(M\) 上的 \(C^\infty\) 函数。

证明 （1）\(\theta : M \rightarrow \otimes^r \cdots TM \) 为 \(C^k\) 映射 \(\iff\) 对任何 \((U, \varphi), \{x^i\} \in \bigcup_{r \in M} \otimes^r \cdots TM\)
\[\mathcal{D}, x \mapsto (x, \theta^{i_{1} \cdots i_{r}}_{j_{1} \cdots j_{s}} \circ \varphi^{-1}(x)) \text{ is } C^r \text{ of } \Leftrightarrow \text{ for any } (U, \varphi), \{x_i^j\} \in \mathcal{D}, \theta^{i_{1} \cdots i_{r}}_{j_{1} \cdots j_{s}} \in C^r(U, \mathbb{R}).\]

(2) \([\Rightarrow]\) For any \((U, \varphi), \{x_i^j\} \in \mathcal{D},\) in \(U\),

\[
\theta(W_1, \ldots, W_r, X_1, \ldots, X_s) = (\sum_{j_{1}, \ldots, j_{s}=1}^{m} \theta^{i_{1} \cdots i_{r}}_{j_{1} \cdots j_{s}} \frac{\partial}{\partial x_{i_1}^{j_1}} \otimes \cdots \otimes \frac{\partial}{\partial x_{i_r}^{j_r}} \otimes dx_{i_1} \otimes \cdots \otimes dx_{i_r}) \left(\sum_{k_{1}=1}^{m} c_{i_1} dx_{i_1} \right) \]

\[
\cdots, \sum_{k_{2}=1}^{m} c_{i_2} dx_{i_2}, \sum_{i_1=1}^{m} a_{i_1}^{j_1} \frac{\partial}{\partial x_{i_1}^{j_1}}, \ldots, \sum_{i_r=1}^{m} a_{i_r}^{j_r} \frac{\partial}{\partial x_{i_r}^{j_r}} \right) \]

\[
= \sum_{j_{1}, \ldots, j_{s}=1}^{m} \theta^{i_{1} \cdots i_{r}}_{j_{1} \cdots j_{s}} c_{i_1} \cdots c_{i_r} a_{i_1}^{j_1} \cdots a_{i_r}^{j_r}.
\]

By the hypothesis and (1), \(\theta^{i_{1} \cdots i_{r}}_{j_{1} \cdots j_{s}}, c_{i_1}, \ldots, c_{i_r}, a_{i_1}^{j_1}, \ldots, a_{i_r}^{j_r} \in C^\infty(U, \mathbb{R}),\) so \(\theta(W_1, \ldots, W_r, X_1, \ldots, X_s)\) is \(C^\infty\) on \(M\).

\([\Leftarrow]\) For any \(p \in M,\) take \((U, \varphi), \{x_i^j\} \in \mathcal{D},\) so \(p \in U,\) set

\[
\theta = \sum_{j_{1}, \ldots, j_{s}=1}^{m} \theta(dx_{i_1}^{j_1}, \ldots, dx_{i_r}^{j_r}, \frac{\partial}{\partial x_{i_1}^{j_1}}, \ldots, \frac{\partial}{\partial x_{i_r}^{j_r}}) \frac{\partial}{\partial x_{i_1}^{j_1}} \otimes \cdots \otimes \frac{\partial}{\partial x_{i_r}^{j_r}} \otimes dx_{i_1} \otimes \cdots \otimes dx_{i_r}.
\]

Using Property 1(2) of the Distributivity property of the method, construct \(W_1, \ldots, W_r, X_1, \ldots, X_r \in C^\infty(T^* M)\) and \(X_1, \ldots, X_s \in C^\infty(T M),\) so \(W_i|_V = dx_i, X_i|_V = \frac{\partial}{\partial x_i}, i = 1, \ldots, m,\) among \(V \subset U\) is an open set. Then, in \(V,\)

\[
\theta^{i_{1} \cdots i_{r}}_{j_{1} \cdots j_{s}} = \theta(dx_{i_1}^{j_1}, \ldots, dx_{i_r}^{j_r}, \frac{\partial}{\partial x_{i_1}^{j_1}}, \ldots, \frac{\partial}{\partial x_{i_r}^{j_r}})
\]

\[
= \theta(W_i, \ldots, W_i, X_j, \ldots, X_j).
\]

Thus, \(\theta\) is \(C^\infty\) class, by (1) it is known that \(\theta\) is an \(r, s\)-type \(C^\infty\) connection.

Example 5 Set \(\omega \in \otimes^0 T^s M,\) if \(\forall X_i \in T_p M (i = 1, \ldots, s)\) and \((1, \ldots, s)\) for any置换 \(\pi\) satisfies

10
\[\omega(X_{\pi(1)}, \ldots, X_{\pi(n)}) = (-1)^{\pi} \omega(X_1, \ldots, X_n), \]

其中

\[(-1)^{\pi} = \begin{cases} 1, & \pi \text{ 为偶置换} \\ -1, & \pi \text{ 为奇置换} \end{cases} \]

则称 \(\omega \) 为 \(s \) 阶反称协变张量或 \(s \) 阶外形式。\(s \) 阶反称协变张量的全体为 \(\Lambda^s T^*M \)，显然它是 \(\otimes^s T^*M \) 的一个子向量空间。而 \(\omega \) 是反称的 \(\Leftrightarrow \) 对任一局部坐标系 \(\{x^i\} \) 和 \(\{1, \ldots, s\} \) 的任一置换 \(\pi \)，有

\[\omega_{\pi(1) \cdots \pi(s)} = (-1)^{\pi} \omega_{i_1 \cdots i_s}, \]

其中 \(\omega_{i_1 \cdots i_s} = \left(\frac{\partial}{\partial x^{i_1}}, \ldots, \frac{\partial}{\partial x^{i_s}} \right) \)。\(s \) 阶外形式 \(\omega \) 在 \(M \) 的两个局部坐标系 \(\{U_a, \varphi_a\}, \{x^i\} \in \mathcal{D} \) 和 \(\{V_b, \varphi_b\}, \{y^j\} \in \mathcal{D} \) 中的表示分别为

\[\omega = \sum_{1 \leq i_1 < \cdots < i_s \leq n} \omega_{i_1 \cdots i_s} dx^{i_1} \wedge \cdots \wedge dx^{i_s} \]

和

\[\omega = \sum_{1 \leq i_1 < \cdots < i_s \leq n} \bar{\omega}_{i_1 \cdots i_s} dy^{i_1} \wedge \cdots \wedge dy^{i_s}, \]

且

\[\bar{\omega}_{i_1 \cdots i_s} = \sum_{1 \leq i_1 < \cdots < i_s \leq n} \frac{\partial(x^1 \cdots x^s)}{\partial(y^1 \cdots y^s)} \omega_{i_1 \cdots i_s}. \]

由此公式并仿例 2 立即得到 \(s \) 阶 \(C^r \) 外形式丛

\[\Lambda^s \mathfrak{X}^* = \{ \Lambda^s T^*M, M, \pi, GL(C^*_r, \mathbb{R}), \mathcal{D}, \mathfrak{s} \}. \]

同例 2 可定义 \(s \) 阶 \(C^r \) 外（微分）形式。

介绍了 \(C^\infty \) 向量丛和 \(C^r \) 向量场后，就可以引进 \(\xi \) 上的线性联络。

定义 3 \(C^\infty \) 向量丛 \(\xi = \{ E, M, \pi, GL(\pi, \mathbb{R}), \mathcal{D}, \mathfrak{s} \} \) 或 \(E \) 上的线性联络是截面空间 \(C^\infty(\xi) = C^\infty(E) \) 上的一个映射

\[\nabla : C^\infty(TM) \times C^\infty(E) \rightarrow C^\infty(E), \]

\[(X, \omega) \rightarrow \nabla(X, \omega) = \nabla_X \omega, \]

满足:

(1) \(\nabla_{f_1 x_1 + f_2 x_2} \omega = f_1 \nabla x_1 \omega + f_2 \nabla x_2 \omega, f_1, f_2 \in C^\infty(M, \mathbb{R}), X_1, \)
\(X_2 \in C^\infty(TM), \omega \in C^\infty(E)\);

(2) \(\nabla_x(\lambda_1 \omega_1 + \lambda_2 \omega_2) = \lambda_1 \nabla_x \omega_1 + \lambda_2 \nabla_x \omega_2, \lambda_1, \lambda_2 \in \mathbb{R}, X \in C^\infty(TM), \omega_1, \omega_2 \in C^\infty(E)\); ((1),(2)为线性性)

(3) \(\nabla_x(f \omega) = (\nabla_x f) \omega + f \nabla_x \omega\) (导性)，\(f \in C^\infty(M, \mathbb{R}), X \in C^\infty(TM), \omega \in C^\infty(E)\)，其中 \(\nabla_x f = df(X) = Xf\) 为 \(f\) 沿 \(X\) 方向的方向导数。称 \(\nabla_x \omega\) 为 \(\omega\) 关于 \(X\) 的协变导数。

定义 4 线性联络 \(\nabla\) 的曲率张量 (\(C^\infty(E)\) 值) 是

\[R; C^\infty(TM) \times C^\infty(TM) \times C^\infty(E) \rightarrow C^\infty(E),\]

\[R(X,Y)\omega = \nabla_X \nabla_Y \omega - \nabla_Y \nabla_X \omega - \nabla_{[X,Y]} \omega\]

即 \(R(X,Y) = - R(Y,X)\).

引理 1 \(R\) 关于 \(X,Y,\omega\) 都是 \(C^\infty(M, \mathbb{R})\) 线性的。

证明 对 \(\forall \ f \in C^\infty(M, \mathbb{R}), X,Y \in C^\infty(TM), \omega \in C^\infty(E)\)，只须证明：

\[R(fX,Y)\omega = \nabla_X \nabla_Y (f \omega) - \nabla_Y \nabla_X (f \omega) - \nabla_{[X,Y]} (f \omega)\]

\[= f \nabla_X \nabla_Y \omega - \nabla_Y f \nabla_X \omega - \nabla_{Y,fX+f[X,Y]} \omega\]

\[= f \nabla_X \nabla_Y \omega - \nabla_Y \nabla_X \omega - \nabla_{[X,Y]} \omega - (Yf) \nabla_X \omega + (Yf) \nabla_Y \omega\]

\[= fR(X,Y)\omega,
R(X,Y)(f \omega) = \nabla_X \nabla_Y (f \omega) - \nabla_Y \nabla_X (f \omega) - \nabla_{[X,Y]} (f \omega)\]

\[= \nabla_X ((Yf) \omega + f(\nabla_Y \omega) - \nabla_Y ((Xf) \omega + f \nabla_X \omega)\]

\[= (\nabla_X (Yf) \omega - f \nabla_{[X,Y]} \omega - (Xf) \nabla_Y \omega + (Yf) \nabla_X \omega\]

\[= fR(X,Y)\omega,\]

下面将考虑联络 \(\nabla\) 与局部的联络 \(\nabla^u\) 之间的关系。为此，先证一个引理。

引理 2 设 \(\nabla\) 为 \(C^\infty\) 向量丛 \(\xi = \{E, M, \pi, GL(n, \mathbb{R}), \mathbb{R}, \mathcal{G}\}\) 上的线性联络，\(M\) 为 \(m\) 维 \(C^\infty\) 流形，\(U \subset M\) 为开子流形，\(X \in\)
\(C^\infty(TM), \omega \in C^\infty(E) \). 如果 \(X|_U \equiv 0 \) 或 \(\omega|_U \equiv 0 \), 则 \(\nabla_X \omega|_U \equiv 0 \).

证明（1）设 \(X|_U \equiv 0 \), \(p \in U \), 构造 \(f \in C^\infty(M, \mathbb{R}) \), 使得 \(f(p) = 0, f|_{M - U} \equiv 1 \), 则 \(fX = X \), 且

\[
(\nabla_X \omega)_\gamma = (\nabla_{fX} \omega)_\gamma = (f \nabla_X \omega)_\gamma = f(p) (\nabla_X \omega)_\gamma = 0.
\]

（2）\(\omega|_U \equiv 0 \), 同理, 由 \(f\omega = \omega \) 得到

\[
(\nabla_X \omega)_\gamma = (\nabla_X (f\omega))_\gamma = ((Xf)\omega + f \nabla_X \omega)_\gamma = (Xf)_\gamma \omega + f(p) (\nabla_X \omega)_\gamma = 0 + 0 = 0.
\]

定理 3 设 \(M \) 为 \(m \) 维 \(C^\infty \) 流形, \(\xi = \{E, M, \pi, GL(n, \mathbb{R}), \mathbb{R}^*, \mathcal{E}\} \) 为 \(M \) 上的 \(C^\infty \) 向量丛.

(1) 如果 \(\nabla \) 为 \(\xi \) 上的线性联络, \(\xi_U = \{E_U, U, \pi_U, GL(n, \mathbb{R}), \mathbb{R}^*, \mathcal{E}_U\} \) 为 \(\xi \) 在 \(U \) 上的限制（它是 \(U \) 上的 \(C^\infty \) 向量丛）, 其中 \(E_U = E|_U \). 令

\[
\nabla^U : C^\infty(TU) \times C^\infty(E_U) \to C^\infty(E_U),
\]

\[
(\bar{X}, \bar{\omega}) \to \nabla^U_{\bar{X}} \bar{\omega},
\]

使得 \((\nabla^U_{\bar{X}} \bar{\omega})_\gamma = (\nabla_X \omega)_\gamma \), 其中 \(\bar{p} \in U, \bar{X} \in C^\infty(TM), \bar{\omega} \in C^\infty(E) \), 且存在 \(\bar{p} \) 的开邻域 \(V \subset U, X|_V = \bar{X}|_V, \omega|_V = \bar{\omega}|_V \), 则 \(\nabla^U \) 为 \(\xi_U \) 上的线性联络.

（2）反之, 如果存在 \(M \) 上的开覆盖 \(\{U_s | s \in \Gamma\} \) 和对每个 \(U_s \), 有 \(\xi_{U_s} \) 上的一个线性联络 \(\nabla^{U_s} \), 且 \(\nabla^{U_s}|_{U_s \cap U_s} = \nabla^{U_s}|_{U_s \cap U_s} \). 令

\[
\nabla : C^\infty(TM) \times C^\infty(E) \to C^\infty(E),
\]

\[
(X, \omega) \to \nabla_X \omega,
\]

使得 \((\nabla_X \omega)_\gamma = (\nabla^{U_s}_{X} \bar{\omega})_\gamma \), 其中 \(\bar{p} \in U_s, \bar{X}, \bar{\omega} \) 分别为 \(X, \omega \) 在 \(U_s \) 上的限制. 则 \(\nabla \) 为 \(\xi \) 上的线性联络, 它在每个 \(U_s \) 上如（1）诱导出的线性联络恰为 \(\nabla^{U_s} \).

证明（1）由引理 2, \(\nabla^U \) 与 \(X, \omega \) 的选取无关, 因此, 定义是确切的. 下面只证线性联络条件 (3), 其他证明类似. 设 \(f \in C^\infty(U, \mathbb{R}), \bar{X} \in C^\infty(TU), \bar{\omega} \in C^\infty(E_U), \bar{p} \in U \). 选 \(p \) 的开邻域 \(V \subset U \) 和 \(f \in C^\infty(M, \mathbb{R}), X \in C^\infty(TM), \omega \in C^\infty(E) \), 使得 \(f|_V = \bar{f}|_V, X|_V = \bar{X}|_V, \omega|_V = \bar{\omega}|_V \). 于是,
\[
(\nabla^\nu_{\bar{x}}(f\bar{\omega})), = (\nabla x(f\omega)), = ((Xf)\omega + f\nabla x\omega),
\]
\[
= (Xf)\omega, + f(p)(\nabla x\omega), = (\bar{X}\bar{f})\bar{\omega}, + \bar{f}(p)(\nabla^\nu_{\bar{x}}\bar{\omega}),
\]
(2) 由题设，\n 与 \(U_0 \) 的选取无关。从 \(\nabla^\nu_0 \) 为线性联络立即推出 \(\nabla \) 为 \(\xi \) 上的线性联络。

进一步，我们有引理 2 的更一般的结果。

引理 3 设 \(\xi = \{ E, M, \pi, GL(n, R), R^*, \mathcal{E} \} \) 为 \(m \) 维 \(C^\infty \) 流形 \(M \) 上的 \(C^\infty \) 向量丛，\n 为 \(\xi \) 上的线性联络。\(X \in C^\infty(TM), \omega \in C^\infty(E), p \in M, x, = 0 \) 则 \((\nabla x\omega), = 0 \)。

证明 设 \((U, \varphi), \{ x' \} \) 为 \(p \) 的局部坐标系，令 \(X = \sum_{i=1}^m f_i \frac{\partial}{\partial x_i}, f \in C^\infty(U, R), f(p) = 0(1 \leq i \leq m) \)。选取 \(X_i \in C^\infty(TM), g_i \in C^\infty(M, R) \)，使得 \(X_i|_V = \frac{\partial}{\partial x_i}|_V, g_i|_V = f|_V \) ，其中 \(V \) 为 \(p \) 的开邻域，则由引理 2 得到

\[
(\nabla x\omega), = \left(\nabla \sum_{i=1}^m x_i\omega, = \sum_{i=1}^m g_i(p)(\nabla x_i\omega),
\right)
\]
\[
= \sum_{i=1}^m f_i(p)(\nabla x_i\omega), = \sum_{i=1}^m 0 \cdot (\nabla x_i\omega), = 0.
\]

引理 4 设 \(\xi = \{ E, M, \pi, GL(n, R), R^*, \mathcal{E} \} \) 为 \(m \) 维 \(C^\infty \) 流形 \(M \) 上的 \(C^\infty \) 向量丛，\n 为 \(\xi \) 上的线性联络。\(X \in C^\infty(TM), \omega \in C^\infty(E), p \in M, \gamma : [a, b] \to M \) 为 \(C^\infty \) 曲线，\(\gamma(a) = p, \gamma'(a) = X, \) 则 \((\nabla x\omega), \) 由 \(X, \) 和 \(\omega(\gamma(t)) \) 完全确定，且它与 \(X, \) 的 \(\gamma \) 选取无关。

证明 取 \(p \) 的局部坐标系 \((U, \varphi), \{ x' \} \) ，相应于 \(\xi \) 的丛图卡为 \((\pi^{-1}(U), \psi) \)。设

\[
X = \sum_{i=1}^m a_i \frac{\partial}{\partial x_i}, \omega = \sum_{i=1}^m b_i \eta_i,
\]
其中 \(\eta_i = \psi^{-1}(q, e_j) \)，则

\[
(\nabla x\omega), = \left(\nabla \sum_{i=1}^m a_i \frac{\partial}{\partial x_i} \sum_{i=1}^m b_i \eta_i, \right),
\]

14
\[
\sum_{j=1}^{n} \left\{ (X_j b^i) \eta_{j} + b^i(p) \sum_{i=1}^{m} a^i(p) \left(\nabla \frac{\partial}{\partial z} \eta_{j} \right) \right\} \\
\sum_{j=1}^{n} \left(\frac{db^i(y(t))}{dt} \right) |_{t=0} + b^i(p) \sum_{i=1}^{m} a^i(p) \left(\nabla \frac{\partial}{\partial z} \eta_{j} \right),
\]

由 \(X_\omega \) 完全确定，且与切于 \(X_\omega \) 的 \(y \) 的选取无关 (\(X_\omega \) 与切于 \(X_\omega \) 的 \(y \) 无关)。

定义 5 设 \(\xi = \{E, M, \pi, GL(n, R), R, S\} \) 为 \(m \) 维 \(C^\infty \) 流形 \(M \) 上的 \(C^\infty \) 向量丛，\(\nabla \) 为 \(\xi \) 的线性联络。\(y \) 为 \(M \) 中的 \(C^\infty \) 曲线，\(\omega(t) \in E_{y(t)} \)，且 \(\omega(t) \) 关于 \(t \) 是 \(C^\infty \) 的。在局部坐标系 \((U, \varphi), \{x^i\} \) 和丛图卡 \((\pi^{-1}(U), \psi) \) 中，设 \(\gamma' \) \((t) = \sum_{i=1}^{m} a^i(t) (\frac{\partial}{\partial x^i})_{y(t)} \) ，\(\omega(t) = \sum_{j=1}^{n} b^j(t) \eta_{j(y(t))} \)，则定义

\[
(\nabla_{\gamma'(t)} \omega)(t) = \sum_{j=1}^{n} \left(\frac{db^j(t)}{dt} \eta_{j(y(t))} + b^j(t) \sum_{i=1}^{m} a^i(t) \left(\nabla \frac{\partial}{\partial z} \eta_{j} \right) \right),
\]

容易验证它与局部坐标系的选取无关，注意其中 \(\eta_{j} = \psi^{-1}(q, e_j) \)。

如果 \(\nabla_{\gamma'(t)} \omega = 0 \)，则称 \(\omega(t) \) 是沿 \(y \) 平行的。

1.2 切丛上的线性联络

向量场的平移和测地线

现在给出线性联络的一个最重要的例子。

设 \(\nabla \) 为 \(m \) 维 \(C^\infty \) 流形 \(M \) 的切丛 \(TM \) 上的线性联络，即 \(\nabla: C^\infty(TM) \times C^\infty(TM) \rightarrow C^\infty(TM), (X, Y) \rightarrow \nabla XY \) 满足：

1. \(\nabla_{f_1 x_1 + f_2 x_2} Y = f_1 \nabla_{x_1} Y + f_2 \nabla_{x_2} Y, f, f_2 \in C^\infty(M, R), X_1, X_2, Y \in C^\infty(TM) \);

2. \(\nabla_x (\lambda_1 Y + \lambda_2 Y) = \lambda_1 \nabla_x Y_1 + \lambda_2 \nabla_x Y_2, \lambda_1, \lambda_2 \in R, X, Y_1, Y_2 \in C^\infty(TM) \); (（1）、(2)为线性性)

3. \(\nabla_x (fY) = (\nabla_x f)Y + f \nabla_x Y \) (导性)，\(f \in C^\infty(M, R), X, Y \in C^\infty(TM) \)。

曲率张量 \(R: C^\infty(TM) \times C^\infty(TM) \times C^\infty(TM) \rightarrow C^\infty(TM) \) 为
\[R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z = - R(Y,X)Z. \]
再定义 \(\nabla \) 的挠张量 \(T: C^\infty(TM) \times C^\infty(TM) \to C^\infty(TM) \) 为
\[T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y] = - T(Y,X). \]
有时为了计算，需要 \(\nabla, R, T \) 的局部表示。

引理 1 设 \(p \in M, U \) 为 \(p \) 的开邻域，\(X_1, \ldots, X_m \) 为 \(TU \) 上的 \(C^\infty \) 基向量场，在 \(U \) 上由公式

\[\nabla_{X_i} X_j = \sum_{k=1}^m \Gamma^k_{ij} X_k, \]

\[T(X_i, X_j) = \sum_{k=1}^m T^k_{ij} X_k, \]

\[R(X_i, X_j) X_k = \sum_{k=1}^m R^k_{ij} X_k, \]

定义了 \(\Gamma^k_{ij} \) (称为联络系数)，\(T^k_{ij}, R^k_{ij} \in C^\infty(U, \mathbb{R}) \)。如果令
\[[X_i, X_j] = \sum_{i=1}^m c^k_{ij} X_k, \quad c^k_{ij} \in C^\infty(U, \mathbb{R}), \]
则有

1. \(T^k_{ij} = - T^k_{ji}, \quad R^k_{ij} = - R^k_{ji} \);
2. \(T^k_{ij} = \Gamma^k_{ij} - \Gamma^k_{ji} - c^k_{ij} \);
3. \(R^k_{ij} = \sum_{i=1}^m (\Gamma^k_{ij} \Gamma^k_{is} - \Gamma^k_{js} \Gamma^k_{is}) + X_i \Gamma^k_{js} - X_j \Gamma^k_{is} - \sum_{s=1}^m c^k_{ij} \Gamma^k_{is}. \)

特别地，如果 \(U \) 为局部坐标邻域，\(x_i = \frac{\partial}{\partial x^i}, i = 1, \ldots, m \) 为坐标基向量场，则 \([\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}] = 0, c^k_{ij} = 0 \)，且上述公式就成为

\[T^k_{ij} = \Gamma^k_{ij} - \Gamma^k_{ji}, \]

\[R^k_{ij} = \sum_{i=1}^m (\Gamma^k_{ij} \Gamma^k_{is} - \Gamma^k_{is} \Gamma^k_{ij}) + \frac{\partial}{\partial x^i} \Gamma^k_{js} - \frac{\partial}{\partial x^j} \Gamma^k_{is}. \]

证明 (1) 由 \(\sum_{i=1}^m T^k_{ij} X_i = T(X_i, X_j) = - T(X_j, X_i) = - \sum_{i=1}^m T^k_{ji} X_i \)。
\[
\sum_{k=1}^{m} R_{i,j}^k X_k = R(X_i, X_j) X_l \\
= - R(X_j, X_i) X_l = - \sum_{k=1}^{m} R_{j,i}^k X_k
\]

推得 \(T_{i,j}^{\ast} = - T_{j,i}^{\ast} \) 和 \(R_{i,j}^{\ast} = - R_{j,i}^{\ast} \).

(2) 由

\[
\sum_{k=1}^{m} T_{i,j}^{k} X_k = T(X_i, X_j) = \nabla_x X_j - \nabla_X X_i - [X_i, X_j]
\]

\[
= \sum_{k=1}^{m} (\Gamma_{i,j}^{k} - \Gamma_{j,i}^{k} - c_{i,j}^{k}) X_k
\]

推得 \(T_{i,j}^{k} = \Gamma_{i,j}^{k} - \Gamma_{j,i}^{k} - c_{i,j}^{k} \).

(3) 由

\[
\sum_{k=1}^{m} R_{i,j}^{k} X_k = R(X_i, X_j) X_l \\
= \nabla_x \nabla_x X_l - \nabla_X \nabla_X X_l - \nabla_{[X_i, X_j]} X_l
\]

\[
= \nabla_x \left(\sum_{s=1}^{m} \Gamma_{i,j}^{s} X_s \right) - \nabla_X \left(\sum_{s=1}^{m} \Gamma_{j,i}^{s} X_s \right) - \nabla_{\sum_{s=1}^{m} c_{i,j}^{s} X_s} X_l
\]

\[
= \sum_{s=1}^{m} \Gamma_{i,j}^{s} \sum_{k=1}^{m} \Gamma_{j,i}^{k} X_k + \sum_{s=1}^{m} (X_i \Gamma_{j,i}^{s}) X_s - \sum_{s=1}^{m} \Gamma_{j,i}^{s} \sum_{k=1}^{m} \Gamma_{j,i}^{k} X_k
\]

\[
- \sum_{s=1}^{m} (X_j \Gamma_{j,i}^{s}) X_s - \sum_{s=1}^{m} c_{i,j}^{s} \sum_{k=1}^{m} \Gamma_{j,i}^{k} X_k
\]

\[
= \sum_{s=1}^{m} \left\{ \sum_{s=1}^{m} (\Gamma_{i,j}^{s} \Gamma_{j,i}^{s} - \Gamma_{j,i}^{s} \Gamma_{j,i}^{s}) + X_i \Gamma_{j,i}^{s} \right\}
\]

\[
- X_j \Gamma_{j,i}^{s} - \sum_{s=1}^{m} c_{i,j}^{s} \Gamma_{j,i}^{s} X_k
\]

推出所要的公式.

定理 1 (Cartan 结构方程) 设 \(X_1, \cdots, X_m \) 为 \(p \in M \) 的开邻域 \(U \) 上的 \(C^\infty \) 基向量场, \(\omega^i, \omega_j \) (\(1 \leq i, j \leq m \)) 为 \(U \) 上的 \(C^\infty \) 1 形式, 它们由
\[\omega^i(X_j) = \delta^i_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}, \omega^i_j = \sum_{k=1}^{m} \Gamma^i_{jk} \omega^k \text{定义} (\omega^i_j) \text{由U上的} \Gamma^i_{jk} \text{因而由联络} \nabla \text{确定}) \]

进一步, \(\omega^i_j \) 由曲率张量表示: Cartan 结构方程

(1) \[d\omega^i = \sum_{s=1}^{m} \omega^s \wedge \omega^i + \frac{1}{2} \sum_{j,k=1}^{m} T^i_{jk} \omega^j \wedge \omega^k \]

(2) \[d\omega^i = \sum_{s=1}^{m} \omega^s \wedge \omega^i + \frac{1}{2} \sum_{j,k=1}^{m} R^i_{jk} \omega^j \wedge \omega^k \]

证明 (1) 由

\[
\left(\sum_{s=1}^{m} \omega^s \wedge \omega^i + \frac{1}{2} \sum_{j,k=1}^{m} T^i_{jk} \omega^j \wedge \omega^k \right)(X_t, X_s)
\]

\[= \sum_{s=1}^{m} \left\{ \omega^s(X_t) \omega^i(X_s) - \omega^s(X_s) \omega^i(X_t) \right\}
\]

\[+ \frac{1}{2} \sum_{j,k=1}^{m} T^i_{jk} \left\{ \omega^j(X_t) \omega^k(X_s) - \omega^j(X_s) \omega^k(X_t) \right\}
\]

\[= \sum_{s,t,k=1}^{m} \left(\Gamma^i_{ks} \delta^k_t - \Gamma^i_{ts} \delta^k_s \right) + \frac{1}{2} \sum_{j,k=1}^{m} \left(\delta^i_j \delta^s_k - \delta^i_k \delta^s_j \right)
\]

\[= \Gamma^i_k - \Gamma^i_t + \frac{1}{2} (T^i_k - T^i_t)
\]

\[= \Gamma^i_k - \Gamma^i_t + \Gamma^i_s - \Gamma^i_k - c^s_k
\]

\[= - c^s_k
\]

\[= X_t(\omega^i(X_s)) - X_s(\omega^i(X_t)) - \omega^i([X_t, X_s])
\]

\[= d\omega^i(X_t, X_s)
\]

推出.

(2) 由

\[
\left(\sum_{s=1}^{m} \omega^s \wedge \omega^i + \frac{1}{2} \sum_{j,k=1}^{m} R^i_{jk} \omega^j \wedge \omega^k \right)(X_s, X_s)
\]

\[= \sum_{s=1}^{m} \left\{ \omega^s(X_s) \omega^i(X_s) - \omega^s(X_s) \omega^i(X_s) \right\}
\]

\[+ \frac{1}{2} \sum_{j,k=1}^{m} R^i_{jk} \left\{ \omega^j(X_s) \omega^k(X_s) - \omega^j(X_s) \omega^k(X_s) \right\}
\]
\[
\begin{align*}
&= \sum_{j=1}^{m} \{ \sum_{k=1}^{m} \Gamma_{jk} \delta_{k}^{*} \sum_{i=1}^{m} \Gamma_{ik} \delta_{i} \} - \sum_{k=1}^{m} \Gamma_{kk} \delta_{k}^{*} \sum_{i=1}^{m} \Gamma_{ik} \delta_{i} \} + \frac{1}{2} (R_{ih} - R_{hh}) \\
&= \sum_{j=1}^{m} \Gamma_{ji} \delta_{i}^{*} - \sum_{k=1}^{m} \Gamma_{ki} \delta_{k} + R_{ih} \\
&= x_{a} \Gamma_{hl} - x_{a} \Gamma_{il} - \sum_{i=1}^{m} c_{h} \delta_{i} \\
&= x_{a} \Gamma_{hl} - x_{a} \Gamma_{il} - \sum_{i=1}^{m} \Gamma_{hi} c_{i} \delta_{i} \\
&= x_{a} (\sum_{i=1}^{m} \Gamma_{hi} \delta_{i}^{*}) - x_{a} (\sum_{i=1}^{m} \Gamma_{hi} \delta_{i}) - (\sum_{i=1}^{m} \Gamma_{hi} \omega_{i}) (\sum_{i=1}^{m} c_{h} \Delta_{i}) \\
&= x_{a} (\omega_{h}(X_{a})) - x_{a} (\omega_{h}(X_{a})) - \omega_{h}([X_{a}, X_{a}]) \\
&= 0
\end{align*}
\]

推出。

设 ∇ 为 m 维 C^{∞} 流形 M 上的线性联络 $(U, \varphi, \{x^{i}\})$ 和 $(V, \psi, \{y^{i}\})$ 为 M 的局部坐标系，则

\[
\nabla_{x^{i}} \frac{\partial}{\partial x^{j}} = \sum_{i=1}^{m} \Gamma_{ij} \frac{\partial}{\partial x^{i}} \quad (\star)
\]

定义了 U 上的联络系数 (Christoffel 函数) Γ_{ij}^{a}，而

\[
\nabla_{y^{j}} \frac{\partial}{\partial y^{i}} = \sum_{j=1}^{m} \bar{\Gamma}_{ij}^{b} \frac{\partial}{\partial y^{j}}
\]

定义了 V 上的联络系数 $\bar{\Gamma}_{ij}^{b}$。应用联络的三个条件，当 $U \cap V = \emptyset$ 时，从 (∇' 和 ∇ 简记为 ∇)

\[
\sum_{j=1}^{m} \bar{\Gamma}_{ij}^{b} \frac{\partial}{\partial y^{j}} = \nabla_{x^{i}} \frac{\partial}{\partial y^{j}} = \nabla_{x^{i}} \frac{\partial}{\partial y^{j}} \sum_{j=1}^{m} \frac{\partial x^{j}}{\partial y^{j}} \frac{\partial}{\partial x^{j}}
\]

\[
= \sum_{i,j=1}^{m} \frac{\partial x^{j}}{\partial y^{j}} \left[\sum_{j=1}^{m} \frac{\partial x^{i}}{\partial y^{j}} \frac{\partial y^{j}}{\partial x^{i}} + \frac{\partial x^{j}}{\partial y^{j}} \nabla_{x^{i}} \frac{\partial}{\partial x^{i}} \right]
\]

\[
= \sum_{i,j=1}^{m} \frac{\partial x^{j}}{\partial y^{j}} \left[\sum_{j=1}^{m} \frac{\partial x^{i}}{\partial y^{j}} \frac{\partial y^{j}}{\partial x^{i}} + \frac{\partial x^{j}}{\partial y^{j}} \frac{\partial x^{i}}{\partial x^{j}} \frac{\partial x^{i}}{\partial x^{j}} \bar{\Gamma}_{ij}^{b} \frac{\partial y^{j}}{\partial y^{j}} \right] \frac{\partial}{\partial y^{j}}
\]

得到
\[\hat{\nabla}_{ab} = \sum_{i,j,k=1}^{m} \frac{\partial x^i}{\partial y^a} \frac{\partial x^j}{\partial y^b} \hat{\nabla}_{ij} + \sum_{j=1}^{m} \frac{\partial x^i}{\partial y^a} \frac{\partial x^j}{\partial y^b} \hat{\nabla}_{ji} \quad (**) \]

另一方面，如果已知 \(M \) 的一个局部坐标邻域的开覆盖和在每个这样的局部坐标邻域 \(U \) 中的一组函数 \(\nabla_i \)，使得在任何两个相交的局部坐标邻域的交中，公式 (**) 成立，则由 (**) 可定义 \(\nabla_x \frac{\partial}{\partial x^i} \)，因而在 \(U \) 中得到一个线性联络 \(\nabla^v \)。再由 (**)，在 \(U \cap V \) 中，\(\nabla^v = \nabla^v \)，所以它们唯一地确定了 \(TM \) 上的一个线性联络。

本节开始的线性联络的定义是用了不变观点或算子观点，也就是近代观点的方法；而用局部坐标邻域的开覆盖，公式 (**) 和 (**) 定义线性联络是用了坐标观点，也就是古典观点的方法。

现在将切丛 \(TM \) 上的线性联络 \(\nabla \) 扩张到余切丛 \(T^*M \) 和张量丛 \(\bigotimes^r \cdot \bigotimes^s TM \) 上。为方便，将该联络仍记为 \(\nabla \)。令

\[\nabla : C^\infty(TM) \times C^\infty(\bigotimes^{r,s} TM) \to C^\infty(\bigotimes^{r,s} TM), \]

\[(X, \theta) \to \nabla (X, \theta) = \nabla_x \theta. \]

(1) \(\nabla_x f = Xf = df(X), f \in C^\infty(M, \mathbb{R}) = C^\infty(\bigotimes^{0,0} TM); \)

(2) \(\nabla_x Y \) 由 \(TM \) 上的线性联络 \(\nabla \) 给出，\(Y \in C^\infty(TM) = C^\infty(\bigotimes^{1,0} TM); \)

(3) \((\nabla_x \theta)(Y) = Y(\theta(Y)) - \theta(\nabla_x Y), \theta \in C^\infty(T^*M) = C^\infty(\bigotimes^{0,1} TM), Y \in C^\infty(TM); \)

(4) \((\nabla_x \theta)(W_1, \ldots, W_r, Y_1, \ldots, Y_s) = \nabla_x (\theta(W_1, \ldots, W_r, Y_1, \ldots, Y_s)) - \sum_{i=1}^r \theta(W_1, \ldots, W_{i-1}, \nabla_x W_i, W_{i+1}, \ldots, W_r, Y_1, \ldots, Y_s) - \sum_{j=1}^s \theta(W_1, \ldots, W_r, Y_1, \ldots, Y_{j-1}, \nabla_x Y_j, Y_{j+1}, \ldots, Y_s), \theta \in C^\infty(\bigotimes^{r,s} TM), W_i \in C^\infty(T^*M) = C^\infty(\bigotimes^{0,1} TM), Y_j \in C^\infty(TM) = C^\infty(\bigotimes^{1,0} TM). \)

下面的引理 2 中的 (1)，(2) 论证了 \(\nabla \) 是张量丛 \(\bigotimes^{r,s} TM \) 上的线性联络。

为得到 \(\nabla \) 的性质，先定义收缩映射。

定义 1 设 \(\{e_i\} \) 为 \(m \) 维实向量空间 \(V \) 的基，\(\{e^i\} \) 为其对偶基，
V^* 为 V 的对偶空间。映射

$$C_j: \bigotimes^{r,s} V \rightarrow \bigotimes^{r-1,s-1} V$$

对 $\forall W, \in V^*, i = 1, \ldots, r - 1, \forall Y, \in V, j = 1, \ldots, s - 1$，有

$$(C_j\theta)(W_1, \ldots, W_{r-1}, Y_1, \ldots, Y_{s-1})$$

$$= \sum_{k=1}^{m} \theta(W_1, \ldots, W_{i-1}, e^k, W_i, \ldots, W_{r-1}, Y_1, \ldots,$$

$$Y_{j-1}, e_t, Y_j, \ldots, Y_{s-1})$$

称之为收缩映射。

引理 2 C_j 与 $\{e_t\}, \{e^k\}$ 的选取无关。

证明 设 $\{e_t\}, \{e^k\}$ 为另一组对偶基，且 $\bar{e}_t = \sum_{t=1}^{m} \lambda^k e_t, \bar{e}^k =$ $\sum_{t=1}^{m} \lambda^k e_t$，则

$$\sum_{k=1}^{m} \theta(W_1, \ldots, W_{i-1}, \bar{e}^k, W_i, \ldots, W_{r-1}, Y_1, \ldots, Y_{j-1}, \bar{e}^k, Y_j, \ldots, Y_{s-1})$$

$$= \sum_{k=1}^{m} \theta(W_1, \ldots, W_{i-1}, \sum_{k=1}^{m} \lambda^k e_t, W_i, \ldots, W_{r-1},$$

$$Y_1, \ldots, Y_{j-1}, \sum_{t=1}^{m} \lambda^k e_t, Y_j, \ldots, Y_{s-1})$$

$$= \sum_{k,t=1}^{m} \sum_{k=1}^{m} \lambda^k \mu^t \theta(W_1, \ldots, W_{i-1}, e^k, W_i, \ldots,$$

$$W_{r-1}, Y_1, \ldots, Y_{j-1}, e_t, Y_j, \ldots, Y_{s-1})$$

$$= \sum_{k,t=1}^{m} \theta(W_1, \ldots, W_{i-1}, e^k, W_i, \ldots, W_{r-1}, Y_1, \ldots, Y_{j-1}, e_t, Y_j, \ldots, Y_{s-1})$$

$$= \sum_{k=1}^{m} \theta(W_1, \ldots, W_{i-1}, e^k, W_i, \ldots, W_{r-1}, Y_1, \ldots, Y_{j-1}, e_t, Y_j, \ldots, Y_{s-1})$$

注 1 可以证明

$$C_j(X_1 \otimes \cdots \otimes X, \otimes W_1 \otimes \cdots \otimes W_s)$$

$$= W_j(X_t) X_1 \otimes \cdots \otimes \hat{X}, \otimes \cdots \otimes X_t, \otimes W_1 \otimes \cdots$$

21
该公式也可当作收缩映射 C_1 的定义。

此外，关于 C_i^p 的分量有

\[
(C_i^p)_{\eta_1, \cdots, \eta_{i-1}} = (C_i^p)(e^1, \cdots, e^{i-1}, e_1, \cdots, e_{i-1})
\]

\[
= \sum_{k=1}^m \theta(e^1, \cdots, e^{i-1}, e^k, e^i, \cdots, e_1, \cdots, e_{i-1} - e_1, e_2, \cdots, e_{i-1})
\]

引理 3 (1) $\nabla_x f \in C^\infty(M, \mathbb{R}) = C^\infty(\otimes^{0,0} TM)$, $\nabla_x Y \in C^\infty(TM) = C^\infty(\otimes^{1,0} TM)$, $\nabla_x \theta \in C^\infty(\otimes^{r,s} TM)$, 其中 $f \in C^\infty(M, \mathbb{R})$, $X, Y \in C^\infty(TM)$, $\theta \in C^\infty(\otimes^{r,s} TM)$;

(2) ∇ 为 $\otimes^{r,s} TM$ 上的线性联络；

(3) $\nabla_x : C^\infty(\wedge^r T^* M) \rightarrow C^\infty(\wedge^r T^* M)$, 其中 $C^\infty(\wedge^r T^* M)$ 为 TM 上的 r 阶 C^∞ 外形式的全体；

(4) $\nabla_x (\theta \otimes \eta) = (\nabla_x \theta) \otimes \eta + \theta \otimes \nabla_x \eta, \theta \in C^\infty(\otimes^{r,s} TM)$, $\eta \in C^\infty(\otimes^{k,t} TM)$（导性）；

(5) $\nabla_x (\alpha \wedge \beta) = (\nabla_x \alpha) \wedge \beta + \alpha \wedge (\nabla_x \beta), \alpha \in C^\infty(\wedge^r T^* M), \beta \in C^\infty(\wedge^s T^* M)$；

(6) $\nabla_x \circ C^p_j = C^p_j \circ \nabla_x$.

证明 (1) $\nabla_x f = Xf \in C^\infty(M, \mathbb{R}) = C^\infty(\otimes^{0,0} TM)$, $\nabla_x Y \in C^\infty(TM) = C^\infty(\otimes^{1,0} TM)$ 是显然的。

因为对 $\forall f \in C^\infty(M, \mathbb{R}), \theta \in C^\infty(T^* M) = C^\infty(\otimes^{0,1} TM)$, 有

\[
(\nabla_x \theta)(fY) = X(\theta(fY) - \theta(\nabla_x (fY)))
\]

\[
= X(f(\theta(Y)) - \theta((Xf)Y + f\nabla_x Y)
\]

\[
= (Xf)\theta(Y) + fX(\theta(Y)) - (Xf)\theta(Y) - f\theta(\theta_x Y)
\]

\[
= f(\nabla_x \theta)(Y),
\]
\[(\nabla_x \theta)(W_1, \cdots, W_{i-1}, fW_i, W_{i+1}, \cdots, W_r, Y_1, \cdots, Y_s)\]
\[= \nabla_x (\theta(W_1, \cdots, W_{i-1}, fW_i, W_{i+1}, \cdots, W_r, Y_1, \cdots, Y_s))\]
\[\quad - \sum_{i=1}^{r} \theta(W_1, \cdots, W_{i-1}, \nabla_x fW_i, W_{i+1}, \cdots, W_r, Y_1, \cdots, Y_s)\]
\[\quad - \theta(W_1, \cdots, W_{i-1}, \nabla_x (fW_i), W_{i+1}, \cdots, W_r, Y_1, \cdots, Y_s)\]
\[\quad - \sum_{j=1}^{s} \theta(W_1, \cdots, W_{i-1}, fW_i, W_{i+1}, \cdots, W_r, Y_1, \cdots, Y_{j-1}, Y_j, Y_{j+1}, \cdots, Y_s)\]
\[\quad - \sum_{j=1}^{s} \theta(W_1, \cdots, W_{i-1}, fW_i, W_{i+1}, \cdots, W_r, Y_1, \cdots, Y_{j-1}, Y_j, Y_{j+1}, \cdots, Y_s)\]
\[= f(\nabla_x \theta)(W_1, \cdots, W_r, Y_1, \cdots, Y_s)\]
\[+ (Xf)\theta(W_1, \cdots, W_r, Y_1, \cdots, Y_s) - (Xf)\theta(W_1, \cdots, W_r, Y_1, \cdots, Y_s)\]
\[= f(\nabla_x \theta)(W_1, \cdots, W_r, Y_1, \cdots, Y_s).\]

类似可得
\[(\nabla_x \theta)(W_1, \cdots, W_r, Y_1, \cdots, Y_{j-1}, fY_j, Y_{j+1}, \cdots, Y_s)\]
\[= f(\nabla_x \theta)(W_1, \cdots, W_r, Y_1, \cdots, Y_s).\]

关于加法的线性性是显然的，因此 \(\nabla_x \theta \in C^\infty(\otimes^r TM)\).

(2) 当 \(r = s = 0\) 时，\(\nabla : C^\infty(TM) \times C^\infty(\otimes^0 TM) \to C^\infty(\otimes^0 TM)\) 显然为线性联络。

当 \(r = 1, s = 0\)，\(C^\infty(\otimes^{1,0} TM) = C^\infty(TM), \nabla : C^\infty(TM) \times C^\infty(TM) \to C^\infty(TM)\) 是已给定的线性联络。

对其他情形，从定义，显然 \(\nabla_x \theta\) 关于 \(X\) 是 \(C^\infty(M, \mathbb{R})\) 线性的。

此外，对 \(\forall f \in C^\infty(M, \mathbb{R})\)，有
\[\nabla_x (f\theta)(W_1, \cdots, W_r, Y_1, \cdots, Y_s)\]
\[= \nabla_x (f\theta)(W_1, \cdots, W_r, Y_1, \cdots, Y_s)\]
\[\quad - \sum_{i=1}^{r} f\theta(W_1, \cdots, W_{i-1}, \nabla_x W_i, W_{i+1}, \cdots, W_r, Y_1, \cdots, Y_s)\]

23
\[
- \sum_{j=1}^{r} f(\theta(W_1, \cdots, W_r, Y_1, \cdots, Y_{j-1}, \nabla_x Y_j, Y_{j+1}, \cdots, Y_s))
= ((Xf)\theta + f\nabla_x \theta)(W_1, \cdots, W_r, Y_1, \cdots, Y_s),
\]
即 \(\nabla_x (f\theta) = (Xf)\theta + f\nabla_x \theta\).
因此
\[
\nabla : C^\infty(TM) \times C^\infty(\otimes^r TM) \to C^\infty(\otimes^r TM)
(X, \theta) \mapsto \nabla_x \theta
\]
为线性联络。

(3) 由 \(\theta \in C^\infty(\wedge^r T^* M)\) 的反称性和 \(\nabla_x \theta\) 的定义立即有
\(\nabla_x \theta \in C^\infty(\wedge^r T^* M)\).

(4) 当 \(r = 0, s = 0\) 或 \(h = 0\) 和 \(t = 0\) 时, 公式显然成立。对于其他情形, 有
\[
(\nabla_x (\theta \otimes \eta))(W_1, \cdots, W_r, \bar{W}_1, \cdots, \bar{W}_h, Y_1, \cdots, Y_s, \bar{Y}_1, \cdots, \bar{Y}_t)
= \nabla_x (\theta(W_1, \cdots, W_r, Y_1, \cdots, Y_s) \cdot \eta(\bar{W}_1, \cdots, \bar{W}_h, \bar{Y}_1, \cdots, \bar{Y}_t))
- \sum_{i=1}^{r} \theta(W_1, \cdots, W_{i-1}, \nabla_x W_i, W_{i+1}, \cdots, W_r, Y_1, \cdots, Y_s)\]
\cdot \eta(\bar{W}_1, \cdots, \bar{W}_h, \bar{Y}_1, \cdots, \bar{Y}_t)
- \sum_{j=1}^{s} \theta(W_1, \cdots, W_r, Y_1, \cdots, Y_{j-1}, \nabla_x Y_j, Y_{j+1}, \cdots, Y_s)\]
\cdot \eta(\bar{W}_1, \cdots, \bar{W}_h, \bar{Y}_1, \cdots, \bar{Y}_t)
- \sum_{i=1}^{h} \theta(W_1, \cdots, W_r, Y_1, \cdots, Y_s)\]
\cdot \eta(\bar{W}_1, \cdots, \bar{W}_h, \bar{Y}_1, \cdots, \bar{Y}_i)
- \sum_{i=1}^{t} \theta(W_1, \cdots, W_r, Y_1, \cdots, Y_s)\]
\cdot \eta(\bar{W}_1, \cdots, \bar{W}_h, \bar{Y}_1, \cdots, \bar{Y}_i)
= (\nabla_x \theta \otimes \eta + \theta \otimes \nabla_x \eta)(W_1, \cdots, W_r, \bar{W}_1, \cdots, \bar{W}_h, Y_1, \cdots, Y_s, \bar{Y}_1, \cdots, \bar{Y}_t),
\]
即 \(\nabla_x (\theta \otimes \eta) = (\nabla_x \theta) \otimes \eta + \theta \otimes \nabla_x \eta\).

(5)
\[\nabla_x (\alpha \land \beta) = \nabla_x \left(\frac{(r + s)!}{r! s!} A(\alpha \otimes \beta) \right) \]

\[= \nabla_x \left(\frac{1}{r! s!} \sum_{\pi} (-1)^x (\alpha \otimes \beta)^* \right) \]

\[= \frac{1}{r! s!} \sum_{\pi} (-1)^x \nabla_x (\alpha \otimes \beta)^* \]

\[= \frac{1}{r! s!} \sum_{\pi} (-1)^x (\nabla_x (\alpha \otimes \beta))^* \]

\[= \frac{1}{r! s!} \sum_{\pi} (-1)^x ((\nabla_x \alpha) \otimes \beta + \alpha \otimes \nabla_x \beta)^* \]

\[= \frac{1}{r! s!} \sum_{\pi} (-1)^x ((\nabla_x \alpha) \otimes \beta)^* \]

\[+ \frac{1}{r! s!} \sum_{\pi} (-1)^x (\alpha \otimes \nabla_x \beta)^* \]

\[= (\nabla_x \alpha) \land \beta + \alpha \land (\nabla_x \beta). \]

（6）设 \(\{e_i\} \) 为 TM 的局部 \(C^\infty \) 基向量场，\(\{e^i\} \) 为其对偶基向量场。因为

\[(\nabla_x e^i)(e_i) = Xe^i(e_i) - e^i(\nabla_x e_i) \]

\[= X\delta^i_i - e^i(\nabla \sum_{s,t=1}^m a^* s^t e_i) \]

\[= - e^i(\sum_{n=1}^m a^* \nabla_n e_i) = - e^i(\sum_{s,t=1}^m a^* I^s_n e_i) \]

\[= - \sum_{s,t=1}^m a^* I^s_n \delta^i_t = - \sum_{s=1}^m a^* I^s_n, \]

\[\nabla_x e^i = - \sum_{s,t=1}^m a^* I^s_n e^i. \]

又因 \(\nabla_x e_i = \nabla \sum_{s=1}^m s^* e_i = \sum_{s,t=1}^m a^* I^s_n e_i \)，故

\[\sum_{i=1}^n \theta(W_1, \ldots, W_{i-1}, \nabla_x e^i, W_i, \ldots, W_r), \]

25
\[Y_1, \ldots, Y_{j-1}, e_k, Y_j, \ldots, Y_{s-1} \]
\[= \sum_{k=1}^{m} a^{i} \Gamma_{ik}^{\alpha} \theta(W_1, \ldots, W_{i-1}, e^i, W_i, \ldots, W_{r-1}, Y_1, \ldots, Y_{j-1}, e_k, Y_j, \ldots, Y_{s-1}) \]
\[\sum_{k=1}^{m} \theta(W_1, \ldots, W_{i-1}, e^i, W_i, \ldots, W_{r-1}, Y_1, \ldots, Y_{j-1}, \nabla x e_k, Y_j, \ldots, Y_s) \]
\[= \sum_{k=1}^{m} a^{i} \Gamma_{ik}^{\alpha} \theta(W_1, \ldots, W_{i-1}, e^i, W_i, \ldots, W_{r-1}, Y_1, \ldots, Y_{j-1}, e_k, Y_j, \ldots, Y_{s-1}) \]
\[\sum_{k=1}^{m} [\theta(W_1, \ldots, W_{i-1}, \nabla x e^i, W_i, \ldots, W_{r-1}, Y_1, \ldots, Y_{j-1})] \]
\[+ \theta(W_1, \ldots, W_{i-1}, e^i, W_i, \ldots, W_{r-1}, Y_1, \ldots, Y_{j-1}, \nabla x e_k, Y_j, \ldots, Y_{s-1}) \]
\[= 0. \]

于是
\[(C_j^i \ast \nabla x \theta)(W_1, \ldots, W_{r-1}, Y_1, \ldots, Y_{s-1}) \]
\[= \sum_{k=1}^{m} \left(\nabla x \theta(W_1, \ldots, W_{i-1}, e^i, W_i, \ldots, W_{r-1}, Y_1, \ldots, Y_{j-1}, e_k, Y_j, \ldots, Y_{s-1}) \right) \]
\[= \left(\nabla x \circ C^i_j \theta \right)(W_1, \ldots, W_{r-1}, Y_1, \ldots, Y_{s-1}) \]
\[- \sum_{k=1}^{m} [\theta(W_1, \ldots, W_{i-1}, \nabla x e^i, W_i, \ldots, W_{r-1}, Y_1, \ldots, Y_{j-1}, e_k, Y_j, \ldots, Y_{s-1})] \]
\[- \theta(W_1, \ldots, W_{i-1}, e^i, W_i, \ldots, W_{r-1}, Y_1, \ldots, Y_{j-1}, \nabla x e_k, Y_j, \ldots, Y_{s-1}) \]
\[= \left(\nabla x \circ C^i_j \theta \right)(W_1, \ldots, W_{r-1}, Y_1, \ldots, Y_{s-1}) - 0 \]
\[(\nabla \circ C) \theta (W_1, \cdots, W_{r-1}, Y_1, \cdots, Y_{s-1}), \]
\[C_j \circ \nabla_x = \nabla_x \circ C_j. \]

定义 2 设 \(\xi = \{ TM, M, \pi, GL(m, \mathbb{R}), \mathbb{R}^n, \theta \} \) 为 \(M \) 的 \(C^\infty \) 切丛。\(\gamma : [a, b] \rightarrow M \) 为 \(C^\infty \) 曲线，如果 \(\nabla_{\gamma'} = 0 \)，则称 \(\gamma \) 为测地线。如果一条测地线不是任何测地线的真限制，则称它为最大的测地线。

定理 2 设 \(\nabla \) 为 \(m \) 维 \(C^\infty \) 流形 \(M \) 的切丛 \(TM \) 上的线性联络，\(\gamma : [a, b] \rightarrow M \) 为 \(C^\infty \) 曲线，则对任何 \(Y \in T_{\gamma(a)}M \)，存在 \(Y \) 上的唯一的 \(Y(t) \in T_{\gamma(t)}M \)，使得 \(Y(a) = Y, Y(t) \) 关于 \(t \) 是 \(C^\infty \) 的且 \(Y(t) \) 沿 \(\gamma \) 是平行的。

证明 在 \(\gamma(a) \) 的局部坐标系 \((U, \varphi), \{x^i\} \) 中，设
\[\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j} = \sum_{i=1}^m \Gamma^j_{ij} \frac{\partial}{\partial x^i}, \quad x^i(t) = x^j(\gamma(t)), \]
\[y^i(t) = \left. \frac{dx^i}{dt} \frac{\partial}{\partial x^i} \right|_{\gamma(t)}, \quad Y(t) = \sum_{i=1}^m Y_i(t) \left. \frac{\partial}{\partial x^i} \right|_{\gamma(t)}. \]
则
\[Y(t) \text{沿} \gamma \text{平行} \iff \]
\[0 = \nabla_{\gamma'(t)} Y(t) = \sum_{i=1}^m \left(\frac{dY_i}{dt} \frac{\partial}{\partial x^i} \right)_{\gamma(t)} + Y_j \sum_{i=1}^m \frac{dx^i}{dt} \left(\nabla x^i \frac{\partial}{\partial x^j} \right)_{\gamma(t)} \]
\[= \sum_{i=1}^m \left(\frac{dY_i}{dt} \right)_{\gamma(t)} + \sum_{i,j=1}^m \Gamma^j_{ij} \frac{dx^i}{dt} \left. \frac{\partial}{\partial x^j} \right|_{\gamma(t)} \]
\[\iff \frac{dY_i}{dt} + \sum_{i,j=1}^m \Gamma^j_{ij} \frac{dx^i}{dt} Y_j = 0, \quad k = 1, \cdots, m \text{ (向量的平移方程)} \]

因为初始条件 \(Y(a) = Y \) 确定了 \(m \) 个初始值 \(Y'(a) \)，由线性微分方程组解的存在性和唯一性定理，以及利用延拓的方法可以得到沿 \(\gamma \) 平行的唯一的 \(C^\infty \) 向量场 \(Y(t) \)。

推论 1 在局部坐标系 \((U, \varphi), \{x^i\} \) 中，\(\gamma \) 为测地线
\[\iff 0 = \nabla_{\gamma'(t)} y^i(t) = \sum_{i=1}^m \left(\frac{d^2x^i}{dt^2} + \sum_{i,j=1}^m \Gamma^j_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt} \right) \frac{\partial}{\partial x^i} \bigg|_{\gamma(t)} \]
\[\iff \frac{d^2x^i}{dt^2} + \sum_{i,j=1}^m \Gamma^j_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt} = 0, k = 1, \cdots, m. \text{ (测地线方程)} \]

推论 2 设 \(\gamma(t) \) 关于 \(t \) 为测地线，\(\gamma'(t) \neq 0, t = t(u) \) 为 \(C^\infty \) 函数。
数且对 $\forall u, t'(u) \neq 0$, 则 $y(t(u))$ 关于 u 为测地线 $\iff u = \alpha t + \beta, \alpha \neq 0$ 和 β 为常数。

证明 因为 $y(t)$ 关于 t 为测地线，且 $\frac{dt}{du} \neq 0, y'(t) \neq 0$（即 $\frac{du}{dt} \neq 0, \frac{dx}{du}$ 不全为 0），且

$$0 = \frac{d^2x^k}{dt^2} + \sum_{i,j=1}^{m} I_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}$$

$$= \left[\frac{d^2x^k}{du^2} + \sum_{i,j=1}^{m} I_{ij} \frac{dx^i}{du} \frac{dx^j}{du} \right] \left(\frac{du}{dt} \right)^2 + \frac{dx}{du} \frac{d^2u}{dt^2}$$

所以

$$\frac{d^2x^k}{du^2} + \sum_{i,j=1}^{m} I_{ij} \frac{dx^i}{du} \frac{dx^j}{du} = 0 \iff \frac{d^2u}{dt^2} = 0 \iff u = \alpha t + \beta, \alpha \neq 0 \text{ 和 } \beta \text{ 为常数}.$$

定理 3 设 ∇ 为 m 维 C^∞ 流形 M 的切丛 TM 上的线性联络，$p \in M, X \in T_p M$, 则在 M 中存在唯一的一条最大测地线 $y(t)$, 使得 $y(0) = p, y'(0) = X$.

证明 设 $(U, \varphi), \{x^i\}$ 为 p 的局部坐标系，使得 $\varphi(U) = \{(x^1, \ldots, x^n) | x^i | \leq c\}$ 和 $\varphi(p) = 0$, 则 X 可表示为

$$X = \sum_{i=1}^{m} a^i \left. \frac{\partial}{\partial x^i} \right|, \quad a^i \in \mathbb{R}.$$

考察常微分方程组:

$$\begin{align*}
\frac{dx^i}{dt} &= z^i \quad (1 \leq i \leq m) \\
\frac{dz^i}{dt} &= -\sum_{i,j=1}^{m} I_{ij}(x^1, \ldots, x^n) z^i z^j \quad (1 \leq k \leq m) \\
(x^1, \ldots, x^n, z^1, \ldots, z^n)_{t=0} &= (0, \ldots, 0, a^1, \ldots, a^n).
\end{align*}$$

设 c_1, K 满足 $0 < c_1 < c, 0 < K < +\infty$, 使得上述方程组的右边在 $(x^1, \ldots, x^n, z^1, \ldots, z^n) \mid x^i | < c_1, | z^i | < K, i = 1, \ldots, m$ 中满足 Lipchitz 条件。由常微分方程组解的存在唯一性定理得到，存在常数 $b_1 > 0$ 及 C^∞ 函数 $x^i(t), z^i(t), 1 \leq i \leq m, |t| < b_1$ 使得

28
(1) \[\frac{dx^i(t)}{dt} = z'(t) \quad (1 \leqslant i \leqslant m, |t| < b_1); \]

\[\frac{d^2x^i}{dt^2} = - \sum_{i,j=1}^n F_{ij}(x^1(t), \cdots, x^n(t)) z'(t) z'(t) \]

\[(1 \leqslant k \leqslant m, |t| < b_1); \]

(2) \[(x^1(0), \cdots, x^n(0), z'(0), \cdots, z'(0)) = (0, \cdots, 0, a^1, \cdots, a^n); \]

(3) \[|x'(t)| < c_1, |z'(t)| < K \quad (1 \leqslant i \leqslant m, t < b_1); \]

(4) \[x'(t), z'(t) (1 \leqslant i \leqslant m) \] 为满足条件(1)、(2)和(3)的唯一的函数组.

这就证明了存在一条满足条件 \(\gamma(0) = p, \gamma'(0) = X \) 的 \(M \) 中的测地线 \(\gamma(t) \). 此外, 任何两条这样的测地线在 \(t = 0 \) 的某个区间内是重合的. 从(4)可以得到, 如果两条测地线 \(\gamma_1(t) (t \in I_1) \) 和 \(\gamma_2(t) (t \in I_2) \) 在某个开区间上重合, 则它们在 \(I_1 \cap I_2 \) 上也重合. 于是, 立即得到本定理的结论.

定理 4 设 \(\nabla \) 为 \(m \) 维 \(C^\infty \) 流形 \(M \) 的切丛 \(TM \) 上的线性联络, 则

\[\nabla = \nabla + C \quad (\text{即 } \nabla_X Y = \nabla_X Y + C(X,Y)) \]

为 \(TM \) 上的线性联络 \(\iff C = \nabla - \nabla \) 为 \(M \) 上的 \(C^\infty \) 的 2 阶协变异值张量场(称为 \(\nabla \) 和 \(\nabla \) 的差张量).

证明 \((\Rightarrow)\) 因为 \(\nabla \) 和 \(\nabla \) 为 \(TM \) 上的线性联络, 所以 \(C(X, fY) = \nabla X (fY) - \nabla X (fY) = (Xf)Y + f \nabla X Y - (Xf)Y - f \nabla X Y = f(\nabla X Y - \nabla X Y) = fC(X, Y) \), 因此 \(C \) 关于 \(Y \) 是 \(C^\infty(M, R) \) 线性的. \(C \) 关于 \(X \) 为 \(C^\infty(M, R) \) 线性是显然的.

\((\Leftarrow)\) 因为 \(\nabla \) 为 \(TM \) 上的线性联络, \(C \) 为 \(M \) 上的 \(C^\infty \) 的 2 阶协变异值张量场, 故

\[\nabla X (fY) = \nabla X (fY) + C(X, fY) \]

\[= (Xf)Y + f \nabla X Y + fC(X, Y) \]

\[= (Xf)Y + f \nabla X Y. \]
即 ∇ 满足线性联络的条件 (3)，而条件 (1)、(2) 是显然满足的。这就证明了 ∇ 也是 TM 的线性联络。

定理 5 设 ∇ 和 ∇ 为 M 维 C^∞ 流形的切丛 TM 上的线性联络，$C = \nabla - \nabla$ 为差张量。令

$$S(X,Y) = \frac{1}{2} [C(X,Y) + C(Y,X)] \quad (对称),$$

$$A(X,Y) = \frac{1}{2} [C(X,Y) - C(Y,X)] \quad (反对称).$$

则

(1) $2A(X,Y) = \bar{T}(X,Y) - T(X,Y)$，其中 \bar{T} 和 T 分别是 ∇ 和 ∇ 的挠张量；

(2) (a)联络 ∇ 和 ∇ 有相同的测地线 (参数相同)

\iff (b) 对所有的 $X, C(X,X) = 0$；

\iff (c) $S = 0$；

\iff (d) $C = A$；

(3) $\nabla = \nabla \iff \bar{T} = T$ 且它们有相同的测地线。

证明

(1) $\bar{T}(X,Y) - T(X,Y) = \nabla_x Y - \nabla_y X - [X,Y] - \nabla_x Y + \nabla_x X + [X,Y] = (\nabla_x Y - \nabla_x Y) - (\nabla_y X - \nabla_y X) = C(X,Y) - C(Y,X) = 2A(X,Y)$.

(2) ((a) \Rightarrow (b)) 设 γ 为切于 X 的测地线，$\gamma(0) = X, X \in C^\infty(TM)$，且 $X\big|_t = \gamma_t$，则

$$C(X,X) = C(\gamma'(0), \gamma'(0)) = C(X,X)\big|_t = (\nabla_x X - \nabla_x X),$$

$$= (\nabla_y \gamma' - \nabla_y \gamma')\big|_{t=0} = 0 - 0 = 0.$$

((a) \iff (b)) 因为对所有 $X, C(X,X) = 0$，故

$$\nabla_y \gamma' - \nabla_y \gamma' = C(\gamma', \gamma') = 0,$$

$$\nabla_y \gamma' = \nabla_y \gamma',$$

$$\nabla_y \gamma' = 0 \iff \nabla_y \gamma' = 0,$$

即 ∇ 和 ∇ 有相同的测地线。

((b) \iff (c)) 因为

$$S(X,X) = \frac{1}{2} [C(X,X) + C(X,X)] = C(X,X),$$

30
\[
\frac{1}{2} [S(X + Y, X + Y) - S(X, X) - S(Y, Y)] = S(X, Y).
\]

所以

\[
C(X, X) = 0, \forall X \Leftrightarrow S(X, X) = 0, \forall X \\
\Leftrightarrow S(X, Y) = 0, \forall X, Y.
\]

((c) \Leftrightarrow (d)) 因为 \(S(X, Y) = \frac{1}{2} [C(X, Y) + C(Y, X)]\)，所以 \(S = 0 \Leftrightarrow S(X, Y) = 0 \Leftrightarrow C(X, Y) = -C(Y, X) \Leftrightarrow C(X, Y) = \frac{1}{2} [C(X, Y) - C(Y, X)] = A(X, Y)\)，即 \(C = A\)。

(3) \(\Rightarrow\) 显然。

\(\Leftrightarrow\) 从

\[
\overline{T} = T \Leftrightarrow \overline{x} Y - \overline{y} X - [X, Y] = \overline{x} Y - \overline{y} X - [X, Y] \Leftrightarrow C(X, Y) = \overline{x} Y - \overline{y} X = \overline{x} Y - \overline{y} X = C(Y, X),
\]

和 \(\overline{x} Y - \overline{y} X = C(Y, X)\)，立知 \(\overline{T} = T\) 且有相同的测地线 \(\Leftrightarrow S = 0 \Leftrightarrow C(X, Y) = -C(Y, X)\)，即 \(\overline{T} = T\) 有相同的测地线 \(\Leftrightarrow C\) 既是对称的又是反称的 \(\Leftrightarrow C = \overline{x} Y - \overline{y} X = 0 \Leftrightarrow \overline{x} Y = \overline{y} Y = \overline{y} X\)，即 \(\overline{\nabla} = \nabla\)。

定理 6 设 \(\nabla\) 为 \(C^\infty\) 流形 \(M\) 的切丛 \(TM\) 上的线性联络，则存在唯一的线性联络 \(\overline{\nabla}(\overline{x} Y = \overline{x} Y - \frac{1}{2} T(X, Y))\) 与 \(\nabla\) 有相同的测地线（参数相同），且挠张量 \(\overline{T} = 0\)。

证明 因为 \(\nabla\) 是 \(TM\) 上的线性联络，\(-\frac{1}{2} T(X, Y)\) 是 \(M\) 上的 \(C^\infty\) 的 2 阶协变向量值张量场，根据定理 4，\(\overline{\nabla} = \nabla - \frac{1}{2} T\) 也是 \(TM\) 上的线性联络。由 \(C(X, X) = -\frac{1}{2} T(X, X) = 0\) 知 \(\overline{\nabla}\) 和 \(\nabla\) 有相同的测地线（参数相同）。此外

\[
\overline{T}(X, Y) = \overline{x} Y - \overline{y} X - [X, Y] = \nabla x Y - \frac{1}{2} T(X, Y) - \nabla Y X + \overline{y} X + \frac{1}{2} T(Y, X) = \overline{x} Y - \nabla Y X - [X, Y] - T(X, Y) = T(X, Y) - T(X, Y) = 0, \text{ 即 } \overline{T} = T = 0.
\]

由定理 5(3)，如果 \(TM\) 上有两个线性联络 \(\overline{\nabla}_1\) 和 \(\overline{\nabla}_2\)，都与 \(\nabla\) 有相同的测地线（参数相同），且挠张量 \(\overline{T}_1 = \overline{T}_2 = 0\)，则 \(\overline{\nabla}_1 = \overline{\nabla}_2\)。唯一性得证。
注 2 定理 4.5.6 给出了从已知线性联络 ∇ 构造所需的新联络，但是必须指出，∇ 不是 2 阶协变向量值张量场。如选 $f \in C^\infty(M, \mathbb{R}), X, Y \in C^\infty(TM)$，使 $(Xf)Y \neq 0$，则 $\nabla_x(fY) = (Xf)Y + f \nabla_x Y \neq f \nabla_x Y$.

1.3 Levi-Civita 联络和 Riemann

流形基本定理

本节将证明 C^∞ 向量丛上必存在 Riemann 度量以及 Riemann 流形的基本定理。

定义 1 设 $\xi = \{E, M, \pi, GL(n, \mathbb{R}), \mathbb{R}^n, \mathcal{E}\}$ 为 C^∞ 向量丛，M 为 m 维 C^∞ 流形。类似 1.1 例 4，$\otimes^{0,2} \xi = \{\otimes^{0,2} E, M, \pi_0, GL(n^2, \mathbb{R}), \mathbb{R}^{n^2}, \mathcal{E}_0\}$ 为 ξ 的 $(0,2)$ 型 C^∞ 张量丛。所谓 C^∞ 向量丛 ξ 上的一个 C^∞Riemann 度量 (或内积) 就是在每个纤维上正定和对称的 C^∞ 截面 $g = \langle \cdot, \cdot \rangle_M: M \to \otimes^{0,2} E$。即对 $\forall p \in M$，$(0,2)$ 型张量 (双线性函数) $g_p = \langle \cdot, \cdot \rangle_p: E_p \times E_p \to \mathbb{R}, (X, Y) \mapsto g_p(X, Y) = \langle X, Y \rangle_p$，满足：

(1) 对任意 $X \in E_p, g_p(X, X) \geq 0$，且 $g_p(X, X) = 0 \Leftrightarrow X = 0$ (正定性)；

(2) 对任意 $X, Y \in E_p, g_p(X, Y) = g_p(Y, X)$ (对称性)；

(3) g 是 C^∞ 张量场 (C^∞ 性)。

设 $(\pi^{-1}(U_o), \psi_o) \in \mathcal{E}$ 为 ξ 的局部平凡化，$X_i(p) = \psi_o^{-1}(p, e_i), i = 1, \cdots, n$ 为 $\pi^{-1}(p)$ 的基。$g_{ij} = g(X_i(p), X_j(p))$ 为 g 关于 $(\pi^{-1}(U_o), \psi_o)$ 的分量。由定义，显然 g_{ij} 和它的逆矩阵 (g^{ij}) 都为正定矩阵。如果 $X = \sum_{i=1}^n a_iX_i, Y = \sum_{j=1}^n b_jX_j$，则

$$g(X, Y) = g(\sum_{i=1}^n a_iX_i, \sum_{j=1}^n b_jX_j) = \sum_{i,j=1}^n g_{ij}a_ib_j.$$

如果 $(\pi^{-1}(U_o), \psi_o) \in \mathcal{E}$ 为 ξ 的另一局部平凡化，$\tilde{X}_i = \psi_o^{-1}(p, e_i), i = 1, \cdots, n$ 为 $\pi^{-1}(p)$ 的另一基。$\tilde{g}_{ij} = g(\tilde{X}_i(p), \tilde{X}_j(p))$ 为 g 关于
\[(\pi^{-1}(U_{\alpha}), \psi_{\beta})\) 的分量，则
\[\tilde{g}_{ij} = g(\overline{X}_i(p), \overline{X}_j(p))\]
\[= g\left(\sum_{k=1}^{s} c_i^k X_k, \sum_{l=1}^{s} c_j^l X_l\right) = \sum_{k,l=1}^{s} g_{ik} c_i^k c_j^l .\]
\[
\begin{pmatrix}
g_{11} & \cdots & \tilde{g}_{1s} \\
\vdots & \ddots & \vdots \\
\tilde{g}_{s1} & \cdots & \tilde{g}_{ss}
\end{pmatrix}
= \begin{pmatrix}
c_1 & \cdots & c_s \\
\vdots & \ddots & \vdots \\
c_1 & \cdots & c_s
\end{pmatrix}
\begin{pmatrix}
g_{11} & \cdots & g_{1s} \\
\vdots & \ddots & \vdots \\
\tilde{g}_{s1} & \cdots & \tilde{g}_{ss}
\end{pmatrix}
= \begin{pmatrix}
c_1 & \cdots & c_s \\
\vdots & \ddots & \vdots \\
c_1 & \cdots & c_s
\end{pmatrix}
\begin{pmatrix}
d_1 & \cdots & d_s \\
\vdots & \ddots & \vdots \\
d_1 & \cdots & d_s
\end{pmatrix}
\end{pmatrix} .
\]
其中 \((d_i^j)\) 为 \((c_i^j)\) 的转置矩阵 \((c_i^j)^T\) 的逆矩阵。

\(C^\infty\) 向量丛 \(\xi\) 上给定一个 Riemann 度量 \(g = \langle \cdot, \cdot \rangle\)，直观上就是将每点的纤维赋以内积而 Euclidian 化，同时要求从一点到另一点变化时保证 \(C^\infty\) 性。因此，它就是 Euclidian 空间的推广。

例 1 设 \((\tilde{\mathcal{M}}, \tilde{g})\) 是 \(\tilde{\mathcal{M}}\) 维 \(C^\infty\) Riemann 流形，\(M\) 是 \(m\) 维 \(C^\infty\) 流形，\(f: M \to \tilde{\mathcal{M}}\) 为 \(C^\infty\) 浸入，即 \(f\) 为 \(C^\infty\) 映射，且 \(\text{rank}_x f = m\) (\(\forall x \in M\))。易证 \(f^* \tilde{g}\) 为 2 阶 \(C^\infty\) 协变对称张量场。又因为
\[f^* \tilde{g}(X, X) = \tilde{g}(f_* X, f_* X) \geq 0,\]
\[f^* \tilde{g}(X, X) = \tilde{g}(f_* X, f_* X) \geq 0 \iff f_* X = 0 \iff X = 0 (f\ 为 浸入);\]
\[f^* \tilde{g}(X, Y) = \tilde{g}(f_* X, f_* Y) = \tilde{g}(f_* Y, f_* X) = f^* \tilde{g}(Y, X),\]
所以，\(f^* \tilde{g}\) 为 \(M\) 上的 \(C^\infty\) Riemann 度量。

特别当 \(M \subset \tilde{\mathcal{M}}, f\) 为包含映射且为嵌入，就将 \(f^* \tilde{g}(X, Y) = \tilde{g}(f_* X, f_* Y)\) 简单记为 \(\tilde{g}(X, Y)\)。

定理 1（Riemann 度量的存在性） 设 \(M\) 为 \(m\) 维 \(C^\infty\) 流形（注意 \(M\) 具有可数拓扑基），则 \(C^\infty\) 向量丛 \(\xi = \{E, M, \pi, GL(n, \mathbb{R}), \mathbb{R}^n, \mathcal{E}\}\) 上存在 Riemann 度量。

证明 取 \(M\) 的坐标邻域的局部有限开覆盖 \(\{U_\alpha | \alpha \in \mathcal{I}\}\) 以及从属于它的 \(C^\infty\) 单位分解 \(\{\rho_\alpha | \alpha \in \mathcal{I}\}\)。在 \((\pi^{-1}(\alpha), \psi_\alpha)\) 中，\(X_\alpha(p) = \psi_\alpha^{-1}(p, e), \text{令} \langle X_\alpha(p), X_\beta(p) \rangle_\alpha = \delta_{\alpha \beta}\)。
在 M 上是 C^∞ 的。为方便，记它为 $\rho_o(\cdot, \cdot)$. 于是，容易验证 $g = \langle \cdot, \cdot \rangle = \sum_{o \in I} \rho_o(\cdot, \cdot)$ 为 ξ 或 E 上的一个 C^∞ Riemann 度量。

推论 1 m 维 C^∞ 流形 M 上秩为 n 的实向量丛 ξ 或 E 的构造群总可简化为 $O(n)(n$ 阶正交群)；它可简化到 $SO(n) = \{ A \in O(n) | \det A = 1 \} \leftrightarrow C^\infty$ 向量丛 ξ 或 E 是可定向的。证明 由定理 1，设 $\{ U_o \}$ 为 M 的一个局部有限的坐标邻域的开覆盖，它平凡化 ξ 或 E. $\{ \rho_o \}$ 为从属于 $\{ U_o \}$ 的 C^∞ 单位分解，$X_i(p) = \psi_o^{-1}(p, e_i).$ 根据下面的引理 3 中的 Gram-Schmidt 正交化过程，可由 $\{ X_i(p) \}$ 构造关于整体 Riemann 度量 $\langle \cdot, \cdot \rangle$ 的规范正交基 $\{ \bar{X}_i(p) \}$. 令平凡化映射 $\bar{\psi}_o : \pi^{-1}(U_o) \to U_o \times \mathbb{R}^n, \bar{\psi}_o(\bar{X}_i(p)) = (p, e_i),$ 则转换函数 $\bar{g}_{\rho_o}(p)$（注意这不同于定义 1 中的 $\bar{g}_o!$）将规范正交基变为规范正交基，因而它取值在正交群 $O(n)$ 中。

因为 $\det \bar{g}_{\rho_o}(p) > 0 \iff \bar{g}_{\rho_o}(p) \in SO(n)$，故构造群可简化到 $SO(n) \iff C^\infty$ 向量丛 ξ 或 E 是可定向（见下面定义 3）的。

定义 2 设 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 为 m 维 C^∞ Riemann 流形，$\xi = \{ TM, M, \pi, GL(m, \mathbb{R}), \mathbb{R}^m, \mathcal{O} \}$ 为 M 的切丛，$X_i = \frac{\partial}{\partial x^i}$，$\bar{X}_i = \frac{\partial}{\partial y^i}, i = 1, \cdots, m$。则

$$
\bar{g}_{ij} = g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}) = g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial \bar{x}^j}) = g_{ji}
$$

$$
g(X, Y) = g(\sum_{i=1}^{m} a^i \frac{\partial}{\partial x^i}, \sum_{j=1}^{m} b^j \frac{\partial}{\partial \bar{x}^j})
= \sum_{i,j=1}^{m} g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial \bar{x}^j}) a^i b^j = \sum_{i,j=1}^{m} g_{ij} a^i b^j.
$$

$$
\bar{g}_{ij} = g(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j}) = g(\sum_{i=1}^{m} \frac{\partial}{\partial y^i} \frac{\partial}{\partial x^i}, \sum_{j=1}^{m} \frac{\partial}{\partial y^j} \frac{\partial}{\partial \bar{x}^j})
$$

34
\[
= \sum_{i,j=1}^{n} g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}, \frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j} \right)
= \sum_{i,j=1}^{n} g_{ij} \frac{\partial x^i}{\partial y^j} \frac{\partial x^j}{\partial y^i},
\]

对 \(X, Y \in T_p M \)，称 \(\| X \| = \sqrt{\langle X, X \rangle} \) 为 \(X \) 的模. 如果 \(X \neq 0, Y \neq 0 \) ，根据 Schwartz 不等式 \(|\langle X, Y \rangle| \leq \| X \| \| Y \| \) 可以定义 \(X \) 和 \(Y \) 之间的夹角 \(\theta (0 \leq \theta \leq \pi) \) 为

\[
\cos \theta = \frac{\langle X, Y \rangle}{\| X \| \| Y \|}.
\]

设 \(y : [a, b] \rightarrow M \) 为 \(C^\infty \) 曲线，\(y'(t) = y_\# \left(\frac{d}{dt} \right) \) 为沿 \(y \) 的切向量场（\(y_\# \) 为 \(y \) 的切映射或微分），我们定义从 \(a \) 到 \(b \) 的 \(y \) 的长度为（\(a \leq b \)）

\[
L(y|_{a}^{b}) = \int_{a}^{b} \sqrt{\langle y'(t), y'(t) \rangle} dt = \int_{a}^{b} \| y'(t) \| dt
\]

（因被积函数连续，故积分存在有限）.

一般地，一条分段 \(C^\infty \) 曲线 \(y \)（即 \(y : [a, b] \rightarrow M \) 连续，且 \(y \) 在 \([t_i, t_{i+1}] \) 上为 \(C^\infty \) 曲线, \(i = 0, 1, \cdots, h \), 其中 \(a = t_0 < t_1 < \cdots < t_h < t_{h+1} = b \)）的长度定义为

\[
L(y|_{a}^{b}) = \sum_{i=0}^{h} L(y|_{t_i}^{t_{i+1}}).
\]

引理 1 \(L(y|_{a}^{b}) \) 的定义不依赖于 \(y([a, b]) \) 的参数的选取.

证明 不失一般性，只考虑 \(\varphi : [c, d] \rightarrow [a, b] \) 为 \(C^\infty \) 函数，\(t = \varphi(u), a = \varphi(c), b = \varphi(d), \varphi'(u) > 0 \)。则 \((y \circ \varphi)'(u) = \varphi'(u)\varphi'(\varphi(u)) \)，于是

35
\[
\int_a^b \sqrt{\langle \gamma'(t), \gamma'(t) \rangle} dt = \int_c^d \sqrt{\langle \phi'(u), \phi'(u) \rangle} \phi'(u) du
\]

\[
= \int_c^d \sqrt{\langle (\gamma \circ \phi)'(u), (\gamma \circ \phi)'(u) \rangle} du.
\]

引理2 设 \(\gamma(t) \) 为 \(C^\infty \) 曲线，则 \(s = at + \beta, \alpha \neq 0, \beta \) 为常数，\(s \) 为弧长 \(\Leftrightarrow \| \gamma'(t) \| = \alpha \) (常数) \(\neq 0 \).

证明 设 \(s(t) = \int_a^t \sqrt{\langle \gamma'(t), \gamma'(t) \rangle} dt + s(a) \)，则 \(s'(t) = \| \gamma'(t) \|, s = at + \beta, \alpha \neq 0, \beta \) 为常数 \(\Leftrightarrow \| \gamma'(t) \| = \alpha \) (常数) \(\neq 0 \).

引理3 设 \((M, g) = (M, \langle, \rangle) \) 为 \(m \) 维 \(C^\infty \) Riemann 流形，则在任意局部坐标系 \((U, \varphi), \{x\} \) 中，必存在 \(C^\infty \) 规范正交基。

证明 根据 Gram-Schmidt 正交化过程，设

\[
\begin{align*}
Y_1 &= \frac{\partial}{\partial x^1} \\
Y_2 &= \lambda_{21} \frac{\partial}{\partial x^1} + \frac{\partial}{\partial x^2} \\
Y_3 &= \lambda_{31} \frac{\partial}{\partial x^1} + \lambda_{32} \frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^3} \\
& \vdots \\
Y_n &= \lambda_{m1} \frac{\partial}{\partial x^1} + \lambda_{m2} \frac{\partial}{\partial x^2} + \cdots + \lambda_{m,n-1} \frac{\partial}{\partial x^{n-1}} + \frac{\partial}{\partial x^n}.
\end{align*}
\]

由 \(\langle Y_i, Y_j \rangle = 0 (i \neq j) \) 可推出 \(\langle \frac{\partial}{\partial x^i}, Y_j \rangle = 0 (i < j) \)，即 \(\lambda_{ij} \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle + \lambda_{i,j-1} \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^{j-1}} \rangle + \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle = 0, i = 1, \cdots, j - 1. \) 于是，可推出 \(\lambda_j (j = 2, 3, \cdots, m, i < j) \) 为 \(\langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle \) 的有理函数，因而 \(Y_i \) 在 \(U \) 上是 \(C^\infty \) 的。令 \(e_i = \frac{Y_i}{\| Y_i \|} = \frac{Y_i}{\sqrt{\langle Y_i, Y_i \rangle}} \)，则 \(\{e_i | i = 1, \cdots, m\} \) 就是 \(U \) 上的 \(C^\infty \) 规范正交基。

引理4 设 \((M, g) = \langle, \rangle \) 为 \(m \) 维 \(C^\infty \) Riemann 流形，\(\{e_i | i = 1, \cdots, m\} \) 及 \(\{e'_i | i = 1, \cdots, m\} \) 都为 \(T,M \) 的规范正交基，而 \(\{e'_i | i = 1, \cdots, m\} \)
\(m \) 个和 \(\{ \vec{e}^i \mid i = 1, \ldots, m \} \) 分别为它们的对偶基。如果 \(\vec{e}_1, \ldots, \vec{e}_m = [\vec{e}_1, \ldots, \vec{e}_m] \) (定向相同)，则
\[
e^1 \wedge \cdots \wedge e^m = \bar{\vec{e}}^1 \wedge \cdots \wedge \bar{\vec{e}}^m.
\]
此外，如果 \(p \) 的局部坐标系 \((U, \varphi), \{x^i\} \) 与 \([\vec{e}_1, \ldots, \vec{e}_m] \) 一致，即
\[
[\vec{e}_1, \ldots, \vec{e}_m] = [\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^m}],
\]
则
\[
e^1 \wedge \cdots \wedge e^m = \sqrt{\det(g_{ij})} dx^1 \wedge \cdots \wedge dx^m,
\]
其中 \(g_{ij} = \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle \).

证明 令
\[
\begin{bmatrix}
\bar{\vec{e}}_1 \\
\vdots \\
\bar{\vec{e}}_m
\end{bmatrix} =
\begin{bmatrix}
c^1 & & c^m \\
\cdots & & \cdots \\
c^1_m & & c^m_m
\end{bmatrix}
\begin{bmatrix}
e_1 \\
\vdots \\
e_m
\end{bmatrix}
\]
其中 \((C^i_j) \) 为正交矩阵且 \(\det(C^i_j) = 1 \). 如果
\[
\begin{bmatrix}
\bar{\vec{e}}^1 \\
\vdots \\
\bar{\vec{e}}^m
\end{bmatrix} =
\begin{bmatrix}
d^1_1 & & d^1_m \\
\cdots & & \cdots \\
d^m_1 & & d^m_m
\end{bmatrix}
\begin{bmatrix}
e^1 \\
\vdots \\
e^m
\end{bmatrix}
\]
则 \((d_i) \) 是 \((c^i_j)^\top (c^i_j) \) 的转置矩阵) 的逆矩阵，于是 \((d_i) \) 也是正交矩阵，且 \(\det(d_i) = 1 \)，这就证明了
\[
\bar{\vec{e}}^1 \wedge \cdots \wedge \bar{\vec{e}}^m = \left(\sum_{i_1=1}^m d^1_{i_1} e^{i_1} \right) \wedge \cdots \wedge \left(\sum_{i_m=1}^m d^m_{i_m} e^{i_m} \right)
\]
\[
= \det(d) e^1 \wedge \cdots \wedge e^m = e^1 \wedge \cdots \wedge e^m.
\]
设 \(\frac{\partial}{\partial x^i} = \sum_{j=1}^m a_{ij} e_j \)，则
\[
g_{ij} = \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle = \langle \sum_{l=1}^m a_{il} e_l, \sum_{s=1}^m a_{js} e_s \rangle = \sum_{l=1}^m a_{il} a_{js},
\]
即 \((g_{ij}) = (a_a)(a_d)^\top \)，所以
\[
\det(a_a) = \sqrt{\det(g_{ij})} > 0.
\]
由于 \(e^i = \sum_{j=1}^{m} a_{ji} dx^j \) 故

\[
e^1 \wedge \cdots \wedge e^n = \left(\sum_{j_1=1}^{m} a_{j_1} dx^{i_1} \right) \wedge \cdots \wedge \left(\sum_{j_n=1}^{m} a_{j_n} dx^{i_n} \right) = \det(a_{ij}) dx^1 \wedge \cdots \wedge dx^n
\]

定义 3 设 \((M, \mathcal{D})\) 为 \(m\) 维 \(C^\infty\) 流形, 如果存在 \(\mathcal{D}'_1 \subset \mathcal{D}\), 使得

(1) 且 \((U, \varphi) \in \mathcal{D}'_1\) 覆盖 \(M\);
(2) 对 \(\forall (U_a, \varphi_a), \{x^i\} \in \mathcal{D}'_1, (U_\beta, \varphi_\beta), \{y^\beta\} \in \mathcal{D}'_1\), 有

\[
\frac{\partial (y^\beta \cdots y^n)}{\partial (x^i \cdots x^n)} = \det \begin{vmatrix}
\frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^1}{\partial x^n} \\
\vdots & \ddots & \vdots \\
\frac{\partial y^n}{\partial x^1} & \cdots & \frac{\partial y^n}{\partial x^n}
\end{vmatrix} > 0,
\]

即

\[
\begin{bmatrix}
\frac{\partial}{\partial y^1} \\
\vdots \\
\frac{\partial}{\partial y^n}
\end{bmatrix} = \begin{bmatrix}
\frac{dx^1}{\partial y^1} & \cdots & \frac{dx^n}{\partial y^1} \\
\vdots & \ddots & \vdots \\
\frac{dx^n}{\partial y^1} & \cdots & \frac{dx^n}{\partial y^n}
\end{bmatrix} \begin{bmatrix}
\frac{\partial}{\partial x^1} \\
\vdots \\
\frac{\partial}{\partial x^n}
\end{bmatrix},
\]

\[
\begin{bmatrix}
\frac{\partial}{\partial y^1}, \cdots, \frac{\partial}{\partial y^n}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}
\end{bmatrix}.
\]

则称 \((M, \mathcal{D})\) 是可定向的.

如果存在 \(\mathcal{D}'_1 \subset \mathcal{D}\), 满足(1)、(2) 和(3) 最大性: 如果 \((U, \varphi) \in \mathcal{D}\) 与任何 \((U_\alpha, \varphi_\alpha) \in \mathcal{D}'_1\), 满足(2), 则 \((U, \varphi) \in \mathcal{D}_1\). 换句话说, \((U, \varphi) \in \mathcal{D}_1\), 则至少存在一个 \((U_\alpha, \varphi_\alpha) \in \mathcal{D}'_1\), 它与 \((U, \varphi)\) 不满足(2), 则称 \(\mathcal{D}_1\) 为 \((M, \mathcal{D})\) 的一个定向.

一个定向流形指的是三元组 \((M, \mathcal{D}, \mathcal{D}_1)\), 其中 \(\mathcal{D}_1\) 为 \((M, \mathcal{D})\) 的一个定向.
如果 \((M, \mathcal{D})\) 不是可定向的，则称之为不可定向的。

显然，如果 \(\mathcal{D}_0\) 满足(1)、(2)，则 \(\mathcal{D}_1 = \{(U, \varphi) | (U, \varphi) \in \mathcal{D}\}\) 且与 \(\mathcal{D}_0\) 中的元素满足(2) 为 \((M, \mathcal{D})\) 的一个定向。

此外，如果 \(\mathcal{D}_1\) 为 \((M, \mathcal{D})\) 的一个定向，则 \(\mathcal{D}_1^- = \{(U, \rho_\varphi \circ \varphi) | (U, \varphi) \in \mathcal{D}_1\}\) 为 \((M, \mathcal{D})\) 的另一个定向，其中 \(\rho_\varphi : \mathbb{R}^n \to \mathbb{R}^n\),
\[
\rho_\varphi(x^1, \ldots, x^{n-1}, x^n) = (x^1, \ldots, x^{n-1}, -x^n).
\]

定理 2 \(m\) 维 \(C^\infty\) 可定向连通流形 \((M, \mathcal{D})\) 恰有两个定向。

证明 因为 \((M, \mathcal{D})\) 是可定向的，设 \(\mathcal{D}_1 = \{(U_\alpha, \varphi_\alpha) | \alpha \in \mu\}\) 为其一个定向。由上述知 \(\mathcal{D}_1^- = \{(U_\alpha, \rho_\varphi \circ \varphi_\alpha) | (U_\alpha, \varphi_\alpha) \in \mathcal{D}_1\}\) 为其另一个定向，所以 \((M, \mathcal{D})\) 至少有两个定向。下面证明 \((M, \mathcal{D})\) 至多有两个定向。

对 \((M, \mathcal{D})\) 的任一定向 \(\mathcal{D}_2, \forall p \in M, \) 记 \(\mu_\alpha = \left[\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}\right]\) 其中 \((U, \varphi), \{x^i\} \in \mathcal{D}_2, p \in U\) 由于定义 3 中条件(2)，\(\mu_\alpha\) 与局部坐标系的选择无关。 同理分别对应于 \(\mathcal{D}_1\) 和 \(\mathcal{D}_1^-\) 有 \(v_\alpha\) 和 \(v_\alpha^-\)。

记 \(S = \{p \in M | \mu_\alpha = v_\alpha\}\)。 对 \(\forall p \in S\)，因为 \(\mu_\alpha = v_\alpha\)，取 \((U, \varphi), \{x^i\} \in \mathcal{D}_2, \{y^i\} \in \mathcal{D}_1\)，使 \(p \in U \cap V\) 有
\[
\frac{\partial(y^1, \ldots, y^n)}{\partial(x^1, \ldots, x^n)} \bigg|_{U \cap V} > 0.
\]
易见 \(\mu_\alpha = v_\alpha, q \in U \cap V\) 故开集 \(U \cap V \subset S\)，即 \(S\) 为 \(M\) 中的开集。

由于 \(M - S = \{p \in M | \mu_\alpha \neq v_\alpha\} = \{p \in M | \mu_\alpha = -v_\alpha\}\) 和 \(v^-\) 是 \((M, \mathcal{D})\) 的一个定向，即知 \(M - S\) 也是 \(M\) 中的开集。 由 \(M\) 连通知 \(S = \emptyset (\mu = -v)\)，即 \(\mathcal{D}_2 = \mathcal{D}_1^-\)；或者 \(M - S = \emptyset (\mu = v)\)，即 \(\mathcal{D}_2 = \mathcal{D}_1\)。

利用 \(m\) 次 \(C^\infty\) 微分形式可以给出 \(C^\infty\) 流形可定向的充分必要条件。

定理 3 \(m\) 维 \(C^\infty\) 流形 \((M, \mathcal{D})\) 可定向 \(\iff\) \(M\) 上存在处处非 0 的 \(m\) 次 \(C^\infty\) 微分形式 \(\omega\)。

证明 (\(\Leftarrow\)) 设 \((U, \varphi), \{x^i\} \in \mathcal{D}\), 且 \(U\) 连通, 因而有 \(C^\infty\) 函数
$f_\varphi: U \to \mathbb{R}$ 使得 $\omega = f_\varphi dx^1 \wedge \cdots \wedge dx^n$. 因为 ω 处处非零, 故 f_φ 在 U 上也处处非零. 根据连续函数的零值定理, $f_\varphi|_U > 0$ 或 $f_\varphi|_U < 0$. 令

$$\mathcal{D}_1 = \{(U, \varphi) \in \mathcal{D} | f_\varphi > 0\}$$

(其中 U 不必连通), 则 \mathcal{D}_1 为 M 上的一个定向.

对 $\forall \ p \in M$, 如果在 p 的连通的局部坐标系中, $f_\varphi|_U < 0$, 则在 p 的新坐标系 $(U, \rho \circ \varphi)$ 中, $f_{\rho \circ \varphi} > 0$. 于是, \mathcal{D}_1 满足定义 3 中的 (1).

如果 $(U, \varphi), \{x'\} \in \mathcal{D}_1, (V, \psi), \{y'\} \in \mathcal{D}_1$, 且 $U \cap V \neq \emptyset$, 则在 $U \cap V$ 上有

$$\frac{\partial(x^1 \cdots x^n)}{\partial(y^1 \cdots y^n)} dy^1 \wedge \cdots \wedge dy^n = dx^1 \wedge \cdots \wedge dx^n$$

$$= \frac{f_\varphi}{f_{\psi}} dy^1 \wedge \cdots \wedge dy^n,$$

故

$$\frac{\partial(x^1 \cdots x^n)}{\partial(y^1 \cdots y^n)} = \frac{f_\varphi}{f_{\psi}} > 0.$$

于是, \mathcal{D}_1 满足定义 3 中的 (2).

如果 $(V, \psi), \{y'\} \in \mathcal{D}$, 且与任何 $(U, \varphi), \{x'\} \in \mathcal{D}_1$ 满足定义 3 中的 (2), 则

$$\frac{f_\psi}{f_\varphi} = \frac{\partial(x^1 \cdots x^n)}{\partial(y^1 \cdots y^n)} > 0.$$

又因 $f_\varphi > 0$, 故 $f_\psi > 0$ 且 $(V, \psi) \in \mathcal{D}_1$, 这就证明了 \mathcal{D}_1 满足定义 1 中的 (3).

(\Rightarrow) 设 \mathcal{D}_1 为 (M, \mathcal{D}) 的一个定向, 则 $\{U | (U, \varphi) \in \mathcal{D}_1\}$ 为 M 的一个开覆盖. 因为 C^∞ 流形 M 具有可数拓扑基, 所以 M 是紧致的, 从而有局部有限的开精致 $(U_\alpha | (U_\alpha, \varphi_\alpha) \in \mathcal{D}_1, \alpha \in \Gamma), \{\rho_\alpha | \alpha \in \Gamma\}$ 为紧属于它的 C^∞ 单位分解. 设 $\{x_\alpha\}$ 为 $(U_\alpha, \varphi_\alpha)$ 的局部坐标, 定义

$$\omega = \sum_{\alpha \in \Gamma} \rho_\alpha dx^1_\alpha \wedge \cdots \wedge dx^n_\alpha,$$
显然 ω 为 M 上的 m 次 C^∞ 微分形式，只须证明 ω 处处非 0.

对于 $\forall \ p \in M$，取 p 的局部坐标系 $(U, \varphi), \{y^i\} \in \mathcal{D}_1$，于是若 $p \in U \cap U_\alpha$ 时，则在 $U \cap U_\alpha$ 上有
\[dx^1 \wedge \cdots \wedge dx^m = f_\alpha \, dy^1 \wedge \cdots \wedge dy^m. \]
因为 $(U, \varphi), (U_\alpha, \varphi_\alpha) \in \mathcal{D}_1$，故 $f_\alpha|_{U \cap U_\alpha} > 0, f_\alpha(p) > 0, f_\alpha(p) \rho_\alpha(p) \geq 0$. 再由 $\sum_{\alpha \in \Gamma} f_\alpha \rho_\alpha(p) = 1$，必存在 $\rho_\alpha(p) > 0$，且有 $f_\alpha(p) \rho_\alpha(p) > 0$，
\[\sum_{\alpha \in \Gamma} f_\alpha(p) \rho_\alpha(p) > 0 \quad \text{和} \quad \omega_\alpha = \sum_{\alpha \in \Gamma} \rho_\alpha(p) \, dx^1 \wedge \cdots \wedge dx^m \]
\[= (\sum_{\alpha \in \Gamma} f_\alpha(p) \rho_\alpha(p)) \, dy^1 \wedge \cdots \wedge dy^m \neq 0. \]

易证(参阅[徐], 256—263 页，[徐薛], 183—191 页):

定理 4 \mathbb{R}^{n+1} 中的 m 维 C^∞ 正则子流形(超曲面) (M, \mathcal{D}) 可定向 $\iff M$ 上存在处处非 0 的连续法向量场 $\iff M$ 上存在连续的单位法向量场．

此外还容易证明 Euclid 空间 \mathbb{R}^n 中的开集，球面 S^n，圆柱面 $S^{m-1} \times \mathbb{R}$，奇数维实射影空间 $P^{2k-1}(\mathbb{R})$ 和 m 维复解析流形与 $2m$ 维实解析流形等，都是可定向的；偶数维实射影空间 $P^{2k}(\mathbb{R})$ 和 Mobius 带都是不可定向的．

定义 4 设 (M, g) 为 m 维 C^∞ 可定向的 Riemann 流形，其定向为 \mathcal{D}_1，由引理 3 和 4，在 M 上确定了一个处处非 0 的 $C^\infty m$ 形式；它在每个局部坐标系 $(U, \varphi), \{x^i\} \in \mathcal{D}_1$ 可表示为
\[e^1 \wedge \cdots \wedge e^m = \sqrt{\det(g_{ij})} \, dx^1 \wedge \cdots \wedge dx^m, \]
称它为 (M, g) 上由定向 \mathcal{D}_1 确定的体积元，记作 dV (dV 是闭形式，但下面的例 4 表明它不必为恰当微分形式)．当 $m = 1$ 时，称为弧长元，记作 ds；当 $m = 2$ 时，称为面积元，记作 dA.

设 $\{U_\alpha, (U_\alpha, \varphi_\alpha), \{x_\alpha\} \in \mathcal{D}_2 \subset \mathcal{D}_1, \alpha \in \mu\}$ 为 M 的局部开覆盖，$\{\rho_\alpha | \alpha \in \mu\}$ 为从 M 中的 C^∞ 单位分解，$f \in C^\infty(M, \mathbb{R})$, $\omega \in C^\infty(\mathbb{R}^n)$

41
\(T^* M \), 定义积分分为

\[\int_{\mathcal{M}} \omega = \sum_{\alpha \in \mathcal{M}} \int_{\varphi_{\alpha} \cap \mathcal{M}} (f \cdot \varphi_{\alpha}^{-1}) \cdot (\rho_{\alpha} \cdot \varphi_{\alpha}^{-1}) \sqrt{\det(g_{ij})} dx_{\alpha} \wedge \cdots \wedge dx_{\alpha}^{n}, \]

其中 \(\rho_{\alpha} \omega = \rho_{\alpha} \cdot a_{\alpha} dx_{\alpha} \wedge \cdots \wedge dx_{\alpha}^{n} \). 易证上述积分与 \(M \) 上的局部有限的局部坐标系 \(\{(U_{\alpha}, \varphi_{\alpha}), (x_{\alpha}^{i} | \alpha \in \mu) \} \) 以及从属于它们的 \(C^{\infty} \) 单位分解 \(\{\rho_{\alpha} | \alpha \in \mu \} \) 的选取无关.

例 2 令 \(\xi = \{ T\tilde{M}, \tilde{M}, \tilde{\pi}, GL(\tilde{\pi}, R), \tilde{\pi}, \mathcal{E} \} \) 为 \(m \) 维 \(C^{\infty} \) 流形 \(\tilde{M} \) 的切丛, \(\tilde{g} \) 为其 \(C^{\infty} \) Riemann 度量. \(M \subset \tilde{M} \) 为 \(m \) 维 \(C^{\infty} \) 正则子流形. 显然, \(M \) 的切丛 \(\xi_{M} = \{ TM, M, \pi, GL(m, R), \mathcal{R}, \mathcal{E}_{M} \} \) 为 \(M \) 上秩为 \(m \) 的 \(C^{\infty} \) 向量丛.则

\[TM_{\perp} = \bigcup_{r \in M} T_{r}M_{\perp} = \bigcup_{r \in M} \{ u, \in T_{r}\tilde{M} | u, \perp TM \} \]

是秩为 \(\tilde{m} - m \) 的 \(C^{\infty} \) 向量丛, 称它为 \(M \) 上关于 \(\tilde{M} \) 的法丛. 用自然的方法, \(\tilde{g} \) 视作 \(TM \) 和 \(TM_{\perp} \) 上的 Riemann 度量. 事实上, 设 \((\tilde{\pi}^{-1}(U), \psi) \in \mathcal{E}, \) 则 \(U = \tilde{U} \cap \tilde{M} \) 为 \(M \) 中的开集. 如果 \(\{ e_{i} | i = 1, \cdots, \tilde{m} \} \) 为 \(R_{\tilde{m}} \)

的标准基向量场, \(p \in U \), 则 \(X_{i}(p) = \psi^{-1}(\tilde{\pi}, e_{i}), i = 1, \cdots, \tilde{m} \) 为 \(T\tilde{U}_{|U} \)

于的 \(C^{\infty} \) 截面, 对固定的 \(p \in U \), \(\{ X_{i}(p) | i = 1, \cdots, \tilde{m} \} \) 为 \(\tilde{\pi}^{-1}(p) \) 的基. 借助于 Gram-Schmidt 正交化过程得到 \(T\tilde{U}_{|U} \) 的 \(C^{\infty} \) 截面 \(\tilde{X}, i = 1, \cdots, \tilde{m} \), 使得对 \(\forall p \in \tilde{U}, \{ \tilde{X}_{i}(p) | i = 1, \cdots, \tilde{m} \} \) 为 \(T_{p}\tilde{M} \) 的规范正交基, 而 \(\{ \tilde{X}_{i}(p) | i = 1, \cdots, m \} \) 形成了 \(T_{\tilde{M}}, \{ \tilde{X}_{i}(p) | i = m + 1, \cdots, \tilde{m} \} \) 形成了 \(T_{\tilde{M}}_{\perp} \). 因此,

\[\tilde{\psi}: \tilde{\pi}^{-1}(U) = T\tilde{U}_{|U} \rightarrow U \times R_{\tilde{m}} \]

定义了 \(T\tilde{M}_{|\tilde{M}} \) 上的丛图卡 \((\tilde{\pi}^{-1}(U), \tilde{\psi})\). 而用自然的方法:

\[\sum_{i=1}^{m} \lambda^{i} \tilde{X}_{i}(p) \rightarrow (p, \lambda^{1}, \cdots, \lambda^{n}) \]

和

\[\sum_{i=m+1}^{\tilde{m}} \lambda^{i} \tilde{X}_{i}(p) \rightarrow (p, \lambda^{m+1}, \cdots, \lambda^{\tilde{m}}) \]
分别得到 TM 和 TM^\perp 的从图卡。

例 3 设 $(\tilde{M}, \tilde{\gamma}) = (\bar{M}, \langle, \rangle)$ 为 \tilde{m} 维 C^∞Riemann 流形，$\gamma: [a, b] \to \tilde{M}$ 为 C^∞ 曲线，则在 \tilde{M} 的局部坐标系 $\{x^i\}$ 中，曲线弧长为

$$s = \int_a^b \sqrt{g(\gamma'(t), \gamma'(t))} dt$$

$$= \int_a^b \sqrt{\tilde{g} \left(\sum_{i=1}^{\tilde{m}} \frac{dx^i}{dt} \frac{\partial}{\partial x^i}, \sum_{j=1}^{\tilde{m}} \frac{dx^j}{dt} \frac{\partial}{\partial x^j} \right)} dt$$

$$= \int_a^b \sqrt{\tilde{g} \left(\sum_{i,j=1}^{\tilde{m}} \tilde{g}_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt} \right)} dt$$

$$= \int_a^b \sqrt{\left(\frac{dx^1}{dt}, \cdots, \frac{dx^{\tilde{m}}}{dt} \right) \left[\begin{array}{ccc} \tilde{g}_{11} & \cdots & \tilde{g}_{1m} \\ \vdots & \ddots & \vdots \\ \tilde{g}_{m1} & \cdots & \tilde{g}_{mm} \end{array} \right] \left(\frac{dx^1}{dt}, \cdots, \frac{dx^{\tilde{m}}}{dt} \right) \frac{dt}{dt} \right)$$

于是，弧长元

$$ds = \sqrt{\sum_{i,j=1}^{\tilde{m}} \tilde{g}_{ij} \left(\frac{dx^i}{dt} \right) \left(\frac{dx^j}{dt} \right)} dt, ds^2 = \sum_{i,j=1}^{\tilde{m}} \tilde{g}_{ij} dx^i dx^j.$$
例 4 设 \(\{ x^i \} \) 为 \(\mathbb{R}^n \) 的通常的整体坐标系，在 \(\mathbb{R}^n \) 上定义 \(C^\infty \) Riemann 度量为

\[
\left\langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right\rangle = \delta_{ij},
\]

\[
\left\langle X, Y \right\rangle = \left\langle \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i}, \sum_{j=1}^{n} b^j \frac{\partial}{\partial x^j} \right\rangle = \sum_{i,j=1}^{n} a^i b^j.
\]

显然，\(\{ \frac{\partial}{\partial x^i} \} \) 为整体的规范正交的 \(C^\infty \) 坐标基向量场，而 \(\{ dx^i \} \) 为其对偶基，\(dv^i_0 = dx^1 \wedge \cdots \wedge dx^n \) 为体积元。

设 \(M \) 为 \(\mathbb{R}^n \) 中的 \(n-1 \) 维 \(C^\infty \) 定向正则子流形（超曲面），\(M \) 上的局部坐标系 \(\{ u^1, \cdots, u^{n-1} \} \) 与 \(M \) 的定向一致，\(M \) 的上述 Riemann 度量诱导出 \(M \) 上的一个 Riemann 度量。设 \(\sum_{i=1}^{n} h^i \frac{\partial}{\partial x^i} \) 为 \(M \) 上的与 \(M \) 的定向一致的 \(C^\infty \) 单位法向量场，则

\[
\sum_{i=1}^{n} (-1)^{i-1} h^i dx^1 \wedge \cdots \wedge dx^i \wedge \cdots \wedge dx^n
\]

\[
= \sum_{i=1}^{n} (-1)^{i-1} h^i \frac{\partial (x^1 \cdots x^i \cdots x^n)}{\partial (u^1 \cdots u^{n-1})} du^1 \wedge \cdots \wedge du^{n-1}
\]

\[
= \det \begin{pmatrix}
 h^1 & \cdots & h^n \\
 \frac{\partial x^1}{\partial u^1} & \cdots & \frac{\partial x^n}{\partial u^1} \\
 \cdots & \cdots & \cdots \\
 \frac{\partial x^1}{\partial u^{n-1}} & \cdots & \frac{\partial x^n}{\partial u^{n-1}}
\end{pmatrix} du^1 \wedge \cdots \wedge du^{n-1}
\]
\[
\begin{vmatrix}
 h^1 & \cdots & h^s \\
 \frac{\partial x^1}{\partial u^1} & \cdots & \frac{\partial x^s}{\partial u^1} \\
 \cdots & \cdots & \cdots \\
 \frac{\partial x^1}{\partial u^{s-1}} & \cdots & \frac{\partial x^s}{\partial u^{s-1}}
\end{vmatrix}
\begin{vmatrix}
 h^1 & \frac{\partial x^1}{\partial u^1} & \cdots & \frac{\partial x^1}{\partial u^{s-1}} \\
 \frac{\partial x^1}{\partial u^1} & \frac{\partial x^1}{\partial u^1} & \cdots & \frac{\partial x^1}{\partial u^{s-1}} \\
 \cdots & \cdots & \cdots & \cdots \\
 h^s & \frac{\partial x^1}{\partial u^1} & \cdots & \frac{\partial x^1}{\partial u^{s-1}}
\end{vmatrix}
\, du^1 \wedge \cdots \wedge du^{s-1}
\]

\[
\begin{vmatrix}
 1 & 0 & \cdots & 0 \\
 0 & \frac{\partial x}{\partial u^1} & \cdots & \frac{\partial x}{\partial u^{s-1}} \\
 \cdots & \cdots & \cdots & \cdots \\
 0 & \frac{\partial x}{\partial u^{s-1}} & \cdots & \frac{\partial x}{\partial u^{s-1}}
\end{vmatrix}
\begin{vmatrix}
 \frac{\partial x}{\partial u^1} & \cdots & \frac{\partial x}{\partial u^{s-1}} \\
 \frac{\partial x}{\partial u^1} & \cdots & \frac{\partial x}{\partial u^{s-1}} \\
 \cdots & \cdots & \cdots \\
 \frac{\partial x}{\partial u^{s-1}} & \cdots & \frac{\partial x}{\partial u^{s-1}}
\end{vmatrix}
\, du^1 \wedge \cdots \wedge du^{s-1}
\]

\[
\begin{vmatrix}
 g_{11} & \cdots & g_{1s-1} \\
 \cdots & \cdots & \cdots \\
 g_{s-11} & \cdots & g_{s-1s-1}
\end{vmatrix}
\begin{vmatrix}
 \frac{\partial x}{\partial u^1} & \cdots & \frac{\partial x}{\partial u^{s-1}} \\
 \frac{\partial x}{\partial u^1} & \cdots & \frac{\partial x}{\partial u^{s-1}} \\
 \cdots & \cdots & \cdots \\
 \frac{\partial x}{\partial u^{s-1}} & \cdots & \frac{\partial x}{\partial u^{s-1}}
\end{vmatrix}
\, du^1 \wedge \cdots \wedge du^{s-1}
\]

\[= dV , \]

其中 \(g_{ij} = \langle \frac{\partial x}{\partial u^i}, \frac{\partial x}{\partial u^j} \rangle \).

显然，\(\omega = \sum_{i=1}^s (-1)^{i-1} \frac{x^i}{r^s} dx^1 \wedge \cdots \wedge dx^i \wedge \cdots \wedge dx^s \) 为 \(\mathbb{R}^s - \{0\} \) 上的 \(C^\infty \) 的 \(n - 1 \) 形式 (\(r = \sqrt{\sum_{i=1}^s (x^i)^2} \)), 且

\[d\omega = \sum_{i=1}^s (-1)^{i-1} \left(\frac{1}{r^s} - \frac{nx^i}{r^{s+1}} \right) dx^i \wedge dx^1 \wedge \cdots \wedge dx^i \wedge \cdots \wedge dx^s \]

= 0 ,

故 \(\omega \) 为 \(\mathbb{R}^s - \{0\} \) 上的 \(n - 1 \) 闭形式. 因为 \(M \) 为 \(n - 1 \) 维 \(C^\infty \) 流形，所以 \(\omega |_{\nu} \) 为 \(n - 1 \) 闭形式是显然的.

由于对 \(r_0 > 0 \),

45
\[S^{n-1}(r_0) = \{ (x^1, \cdots, x^n) \in \mathbb{R}^n \mid \sum_{i=1}^n (x^i)^2 = r_0^2 \} \]

上的 \(C^\infty \) 单位法向量场为 \(\sum_{i=1}^n \frac{x^i}{r_0} \frac{\partial}{\partial x^i} \)，故

\[
\frac{dV}{r_0^{n-1}} = \frac{1}{r_0^{n-1}} \sum_{i=1}^n (-1)^{i-1} \frac{x^i}{r_0} dx^1 \wedge \cdots \wedge \frac{dx^i}{r_0} \wedge \cdots \wedge dx^n
\]

\[
= \omega \big|_{S^{n-1}(r_0)}.
\]

如果 \(\omega \big|_{S^{n-1}(r_0)} \) 或 \(dV \) 为 \(S^{n-1}(r_0) \) 上的恰当微分形式，则存在 \(S^{n-1}(r_0) \) 上的 \(C^\infty n-2 \) 形式 \(\eta \)，使 \(\omega \big|_{S^{n-1}(r_0)} = d\eta \)。由 Stokes 定理得到

\[
\int_{S^{n-1}(r_0)} \omega = \int_{S^{n-1}(r_0)} d\eta = \int_{\partial S^{n-1}(r_0)} \eta = \int_{\partial} \eta = 0,
\]

这与

\[
\int_{S^{n-1}(r_0)} \omega = \int_{S^{n-1}(r_0)} \frac{dV}{r_0^{n-1}} = \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}
\]

相矛盾（其中 \(\frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} \) 为数学分析中得到的 \(n-1 \) 维单位球面 \(S^{n-1}(1) \) 的体积）。

此外，如果 \(\omega \) 为 \(\mathbb{R}^n - \{0\} \) 上的恰当微分形式，则存在 \(\mathbb{R}^n - \{0\} \) 上的 \(C^\infty n-2 \) 形式 \(\eta \)，使得 \(\omega = d\eta \)。设 \(I: S^{n-1}(r_0) \rightarrow \mathbb{R}^n - \{0\} \) 为包含映射。于是

\[
\omega \big|_{S^{n-1}(r_0)} = I^* \omega = I^* d\eta = d(I^* \eta)
\]

为 \(S^{n-1}(r_0) \) 上的恰当微分形式，这与上面已证的结果相矛盾。

至此，就证明了 \(\omega \) 和 \(dV \) 都不是 \(\mathbb{R}^n - \{0\} \) 上的恰当微分形式。

现在考虑特殊情形。设 \(\mathbb{R}^3 \) 的通常整体坐标系为 \((x, y, z)\)，\(M \) 为 \(\mathbb{R}^3 \) 中的 2 维 \(C^\infty \) 定向正则子流形。\(M \) 上的局部坐标系 \((u, v)\) 与 \(M \) 的定向一致。由 \(\mathbb{R}^3 \) 的通常的 Riemann 度量诱导出 \(M \) 上的 Riemann 度量，则在此局部坐标系中与 \(M \) 的定向一致的 \(C^\infty \) 单位法向量场为
\[
\frac{\partial}{\partial u} \times \frac{\partial}{\partial v} = h^1 \frac{\partial}{\partial x} + h^2 \frac{\partial}{\partial y} + h^3 \frac{\partial}{\partial z},
\]

于是，\(M \) 的面积元为

\[
dA = h^1 dy \wedge dz - h^2 dx \wedge dz + h^3 dx \wedge dy
\]

\[
= h^1 dy \wedge dz + h^2 dz \wedge dx + h^3 dx \wedge dy
\]

\[
= \left(h^1 \frac{\partial (y z)}{\partial (u v)} + h^2 \frac{\partial (z x)}{\partial (u v)} + h^3 \frac{\partial (x y)}{\partial (u v)} \right) du \wedge dv
\]

\[
= \det \begin{bmatrix}
 h^1 & h^2 & h^3 \\
 \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\
 \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}
\end{bmatrix} du \wedge dv
\]

\[
= \left(h^1 \frac{\partial}{\partial x} + h^2 \frac{\partial}{\partial y} + h^3 \frac{\partial}{\partial z} \right) \cdot \left(\frac{\partial}{\partial u} \times \frac{\partial}{\partial v} \right) du \wedge dv
\]

\[
= \left| \frac{\partial}{\partial u} \times \frac{\partial}{\partial v} \right| du \wedge dv
\]

\[
= \det \begin{bmatrix}
 \frac{\partial}{\partial u} & \frac{\partial}{\partial v} \\
 \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
 \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v}
\end{bmatrix} du \wedge dv
\]

\[
= \det \begin{bmatrix}
 1 & 0 & 0 \\
 0 & E & F \\
 0 & F & G
\end{bmatrix} du \wedge dv
\]

\[
= \sqrt{EG - F^2} du \wedge dv,
\]

其中 \(E = \langle \frac{\partial}{\partial u} , \frac{\partial}{\partial u} \rangle = \langle \frac{\partial x}{\partial u} , \frac{\partial x}{\partial u} \rangle, F = \langle \frac{\partial}{\partial u} , \frac{\partial}{\partial v} \rangle = \langle \frac{\partial x}{\partial u} , \frac{\partial x}{\partial v} \rangle, G = \langle \frac{\partial}{\partial v} , \frac{\partial}{\partial v} \rangle \)
在 C^∞ 流形 M 上引进 Riemann 度量 $g = \langle , \rangle$ 后，自然要问，能否在 (M, g) 上引进一个特殊的与 $g = \langle , \rangle$ 有密切关系的线性联络? 这种线性联络是否是唯一的? Riemann 流形基本定理回答了这些问题。

定义 5 设 $(M, g) = (M, \langle , \rangle)$ 为 m 维 C^∞ Riemann 流形，如果 TM 上的线性联络 ∇ 还满足：

（1）挠张量 $T = 0$，即对 $\forall \ X, Y \in C^\infty(TM), T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y] = 0$；

（2）对任意 $X, Y, Z \in C^\infty(TM)$，

\[Z\langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle. \]

则称 ∇ 为 $(M, g) = (M, \langle , \rangle)$ 上的 Riemann 联络或 Levi-Civita 联络。

满足（1）和（2）的线性联络是 1917 年第一次被 Levi-Civita 发现的（严格地说，在 Levi-Civita 发现时（5）由一个等价的几何性质（平行移动的性质）所代替），后来在 1918 年被 Weyl 澄清并叙述成与上面所列差不多的形式。现在它被称为 Riemann 度量 g 的 Levi-Civita 联络。不幸在文献中它也被称为 g 的 Riemann 联络。事实上 Riemann 本人连做梦也未想到过它（Riemann 早在 1866 年去世了）。

引理 5 （1）m 维 C^∞ 流形 M 的切丛 TM 上的线性联络 ∇ 满足 $T = 0 \iff$ 对任何局部坐标系 $\{x^i\}$，有 $\Gamma^i_{jk} = \Gamma^i_{kj}$（对称联络）；

（2）（a）∇ 满足

\[Z\langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle, \forall \ X, Y, Z \in C^\infty(TM) \]

\iff (b) $\nabla g = 0$ 或 $\nabla_Z g = 0, \forall \ Z \in C^\infty(TM)$

\iff (c) 对任何局部坐标系 $\{x^i\}$，有

\[\frac{\partial g_{ij}}{\partial x^k} = \sum_{l=1}^m g_{lj} \Gamma^l_{ik} + \sum_{l=1}^m g_{il} \Gamma^l_{jk}, \quad i, j, k = 1, \ldots, m \]

\iff (d) 平行移动下保持内积不变。
证明 （1） 对 $\forall X, Y \in C^\infty(TM)$，

$$T(X,Y) = \nabla_x Y - \nabla_y X - [X,Y] = 0$$

\Leftrightarrow 对任何局部坐标系 $\{x^i\}$，

$$\nabla_{\omega^i} \frac{\partial}{\partial x^i} - \nabla_{\omega^j} \frac{\partial}{\partial x^j} - \left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right] = \sum_{i=1}^{m} (\Gamma^i_{ij} - \Gamma^i_{ji}) \frac{\partial}{\partial x^i} = 0$$

$\Leftrightarrow \Gamma^i_{ij} = \Gamma^i_{ji}, i, j, k = 1, \cdots, m$.

(2) ($\Leftrightarrow (b)$)

$$Z\langle X,Y \rangle = \langle \nabla_z X,Y \rangle + \langle X, \nabla_z Y \rangle, \forall X, Y, Z \in C^\infty(TM)$$

$\Rightarrow (\nabla_z g)(X,Y) = \nabla_z (g(X,Y)) - g(\nabla_z X,Y) - g(X,\nabla_z Y) = 0$,

$\forall X, Y, Z \in C^\infty(TM)$，即 $\nabla_z g = 0, \forall Z \in C^\infty(TM)$ 或 $\nabla g = 0$.

((a)$\Leftrightarrow (c)$)

$$Z\langle X,Y \rangle = \langle \nabla_z X,Y \rangle + \langle X, \nabla_z Y \rangle, \forall X, Y, Z \in C^\infty(TM)$$

\Rightarrow 对任何局部坐标系 $\{x^i\}$，

有

$$\frac{\partial}{\partial x^i} \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle = \langle \nabla_{\omega^i} \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle + \langle \frac{\partial}{\partial x^i}, \nabla_{\omega^i} \frac{\partial}{\partial x^j} \rangle$$

$\Leftrightarrow \frac{\partial g_{ij}}{\partial x^k} = \sum_{i=1}^{m} g_{ij} \Gamma^i_{kh} + \sum_{i=1}^{m} g_{jk} \Gamma^i_{ih}, i, j, k = 1, \cdots, m$.

((d)$\Leftrightarrow (c)$)

设 $X(t) = \sum_{i=1}^{m} a^i(t) \frac{\partial}{\partial x^i}, Y(t) = \sum_{i=1}^{m} b^i(t) \frac{\partial}{\partial x^i}$ 为沿 C^∞ 曲线 $\gamma(t)$ 的

关于 t 的 C^∞ 切向量场，$\gamma'(t) = \sum_{i=1}^{m} \frac{dx^i}{dt} \frac{\partial}{\partial x^i}$，其中 $x^i(t)$ 为 $\gamma(t)$ 的坐标.

如果 $X(t)$ 和 $Y(t)$ 沿 $\gamma(t)$ 平行，则

$$\frac{da^i}{dt} + \sum_{j,k=1}^{m} \Gamma^i_{kj} \frac{dx^j}{dt} = 0,$$

$$\frac{db^i}{dt} + \sum_{j,k=1}^{m} \Gamma^i_{kj} \frac{dx^j}{dt} = 0.$$
\[
= \sum_{i,j=1}^{m} \frac{dg_{ij}}{dt} a^i b^j + \sum_{i,j=1}^{m} g_{ij} \frac{da^i}{dt} b^j + \sum_{i,j=1}^{m} g_{ij} a^i \frac{db^j}{dt}
\]
\[
= \sum_{i,j=1}^{m} \frac{dg_{ij}}{dt} a^i b^j - \sum_{i,j=1}^{m} g_{ij} \left(\sum_{k,l=1}^{m} \Gamma_{ki} \frac{dx^k}{dt} a^i \right) b^j - \sum_{i,j=1}^{m} g_{ij} a^i \left(\sum_{k,l=1}^{m} \Gamma_{li} \frac{dx^l}{dt} b^j \right)
\]
\[
= \sum_{i,j,k,l=1}^{m} \left(\frac{dg_{ij}}{dx^k} - \sum_{i,j=1}^{m} g_{ij} \Gamma_{ki} - \sum_{i,j=1}^{m} g_{ij} \Gamma_{li} \right) \frac{dx^k}{dt} a^i b^j \quad (\ast)
\]
\[
\Rightarrow \frac{dg_{ij}}{dx^k} = \sum_{i,j=1}^{m} g_{ij} \Gamma_{ki} + \sum_{i,j=1}^{m} g_{ij} \Gamma_{li}, i, j, k = 1, \ldots, m.
\]

在该等价性中（\(\Leftarrow\)）是显然的，下面证（\(\Rightarrow\)）。

对任何固定的 \(p \in M\)，选 \(γ\) 使 \(γ(0) = p\)，\(γ'(0) = \left(\frac{dx^1}{dt}, \ldots, \frac{dx^m}{dt}\right)\) 有

\[
\left. \frac{dx^i}{dt} \right|_{t=0} = (0, \ldots, 0, 1, 0, \ldots, 0), \quad a(0) = (0, \ldots, 0, 1, 0, \ldots, 0), \quad b(0) = (0, \ldots, 0, 0, \ldots, 0),
\]

并代入（\(\ast\)）得到

\[
\frac{dg_{ij}}{dx^k} = \sum_{i,j=1}^{m} g_{ij} \Gamma_{ki} + \sum_{i,j=1}^{m} g_{ij} \Gamma_{li}, \quad i, j, k = 1, \ldots, m.
\]

引理 6 设 \(\langle V, \langle \cdot, \cdot \rangle \rangle\) 为内积空间，\(X \in V\)，如果对 \(\forall Y \in V\)，有

\[
\langle X, Y \rangle = 0,
\]

则 \(X = 0\)。

证明 令 \(Y = X\)，则 \(\langle X, X \rangle = 0\)。根据内积的正定性就得 \(X = 0\)。

定理 5 (Riemann 流形基本定理) \(m\) 维 \(C^∞\) Riemann 流形 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 上存在唯一的 Riemann 联络。

证明 1 (不变观点)

（唯一性）设 \(\nabla\) 及 \(\nabla\) 都是 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 的 Riemann 联络，则

\[
X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle + \langle \nabla_Y Z, X \rangle
\]

\[+ \langle Z, \nabla_Y X \rangle - \langle \nabla_Z X, Y \rangle - \langle X, \nabla_Z Y \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, [X, Z] \rangle + \langle [Y, Z], X \rangle
\]

\[+ \langle Z, \nabla_X Y \rangle + \langle Z, [Y, X] \rangle,
\]

\[50\]
\[
2\langle \nabla_x Y, Z \rangle
= X\langle Y, Z \rangle + Y\langle Z, X \rangle - Z\langle X, Y \rangle
- \langle Y, [X, Z] \rangle - \langle X, [Y, Z] \rangle - \langle Z, [Y, X] \rangle. (\ast \ast)
\]
同理
\[
2\langle \overline{\nabla}_x Y, Z \rangle
= X\langle Y, Z \rangle + Y\langle Z, X \rangle - Z\langle X, Y \rangle
- \langle Y, [X, Z] \rangle - \langle X, [Y, Z] \rangle - \langle Z, [Y, X] \rangle.
\]
于是
\[
\langle \nabla_x Y, Z \rangle = \langle \overline{\nabla}_x Y, Z \rangle,
\]
\[
\langle \nabla_x Y - \overline{\nabla}_x Y, Z \rangle = 0.
\]
根据引理 6, \(\nabla_x Y - \overline{\nabla}_x Y = 0, \nabla_x Y = \overline{\nabla}_x Y, \forall X, Y \in C^\infty(TM) \), 即
\(\nabla = \overline{\nabla} \), 唯一性得证.

（存在性）从（\ast \ast）出发定义 \(\nabla_x Y \),
\[
\nabla_x Y = \sum_{i=1}^{m} \langle \nabla_x Y, e_i \rangle e_i,
\]
其中 \(\{e_i\} \) 为局部 \(C^\infty \) 规范正交基向量场, 而 \(\langle \nabla_x Y, e_i \rangle \) 按公式（\ast \ast）给出. 如果 \(\{\overline{e}_i\} \) 为另一局部 \(C^\infty \) 规范正交基向量场, 则
\[
\sum_{i=1}^{m} \langle \nabla_x Y, \overline{e}_i \rangle \overline{e}_i
= \sum_{i=1}^{m} \langle \nabla_x Y, \sum_{j=1}^{m} a^i e_j \rangle \langle \sum_{i=1}^{m} a^i e_i \rangle
= \sum_{j=i=1}^{m} \langle \sum_{i=1}^{m} a^i a_i \rangle \langle \nabla_x Y, e_j \rangle e_i
= \sum_{j=1}^{m} \delta_{ij} \langle \nabla_x Y, e_j \rangle e_i
= \sum_{j=1}^{m} \langle \nabla_x Y, e_j \rangle e_j
\]
也就是公式（\ast \ast）与局部 \(C^\infty \) 规范正交基的选取无关, 故 \(\nabla_x Y \) 确实定义了一个整体 \(C^\infty \) 切向量场. 由 Z 的任意性, 通过（\ast \ast）作简
单的运算可知 \(\triangledown \) 满足线性联络的三个条件。此外，由
\[
2\langle \triangledown_{x} Y - \triangledown_{x} Z, X \rangle - [X, Y] \rangle = 0
\]
和引理 6 推出
\[
T(X, Y) = \triangledown_{x} Y - \triangledown_{x} Z - [X, Y] = 0,
\]
即 \(\triangledown \) 满足 (4)。此外
\[
2\langle \triangledown_{z} X, Y \rangle + 2\langle \triangledown_{z} Y, X \rangle = Z \langle X, Y \rangle - Y \langle Z, X \rangle - X \langle Z, Y \rangle - \langle X, [Z, Y] \rangle
\]
和
\[
X \langle Z, Y \rangle - \langle X, [Z, Y] \rangle = 2\langle [X, Y], Z \rangle, \]
即
\[
Z \langle X, Y \rangle = \langle \triangledown_{z} X, Y \rangle + \langle X, \triangledown_{z} Y \rangle.
\]
这就证明了 \(\triangledown \) 满足 (5)。

证明 2（坐标观点）

设 \(\{x^{i}\} \) 和 \(\{y^{i}\} \) 为 \(p \in M \) 的局部坐标系，
\[
g_{ij} = \langle \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}} \rangle, \sum_{j=1}^{m} g_{ij}g^{jk} = \delta^{k}_{i}
\]
\[
\tilde{g}_{ij} = \langle \frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial y^{j}} \rangle = \langle \sum_{s=1}^{n} \frac{\partial x^{i}}{\partial y^{s}}, \sum_{s=1}^{n} \frac{\partial x^{j}}{\partial y^{s}} \rangle
\]
\[
= \sum_{s=1}^{m} \frac{\partial x^{i}}{\partial y^{s}} \frac{\partial x^{j}}{\partial y^{s}} g^{ss},
\]
\[
\sum_{j=1}^{m} \tilde{g}_{ij} \tilde{g}^{jk} = \delta^{k}_{i}, \quad \tilde{g}^{ij} = \sum_{s=1}^{m} \frac{\partial y^{i}}{\partial x^{s}} \frac{\partial y^{j}}{\partial x^{s}} g^{ss},
\]
\[
\triangledown \frac{\partial}{\partial x^{i}} \frac{\partial}{\partial y^{j}} = \sum_{i=1}^{m} T_{ij} \frac{\partial}{\partial x^{i}}, \quad \triangledown \frac{\partial}{\partial y^{i}} \frac{\partial}{\partial y^{j}} = \sum_{i=1}^{m} \tilde{T}_{ij} \frac{\partial}{\partial y^{i}}.
\]
（唯一性）
\[
\frac{1}{2} \sum_{j=1}^{m} g^{jk} \left(\frac{\partial g_{ik}}{\partial x^{j}} + \frac{\partial g_{kj}}{\partial x^{i}} - \frac{\partial g_{ij}}{\partial x^{k}} \right)
\]

52
\[
= \frac{1}{2} \left(- \sum_{r=1}^{m} g^{kr} \left(\sum_{i=1}^{m} g_{ij} \Gamma_{ri}^{k} + \sum_{l=1}^{m} g_{kl} \Gamma_{lj}^{k} \right) + \sum_{r=1}^{m} g^{kr} \left(\sum_{i=1}^{m} g_{ij} \Gamma_{ri}^{k} + \sum_{l=1}^{m} g_{kl} \Gamma_{lj}^{k} \right) + \sum_{r=1}^{m} g^{kr} \left(\sum_{i=1}^{m} g_{ij} \Gamma_{ri}^{k} + \sum_{l=1}^{m} g_{kl} \Gamma_{lj}^{k} \right) \right)
= \frac{1}{2} (\Gamma_{ij}^{*} + \Gamma_{ji}^{*}) = \Gamma_{ij}^{*},
\]

这就证明了 Γ_{ij}^{*}，从而 Riemann 联络 ∇ 完全由 g_{ij} 及其偏导数确定，即由 Riemann 度量 g 确定。

（存在性）设 $\Gamma_{ij}^{*} = \frac{1}{2} \sum_{r=1}^{m} g^{kr} \left(\frac{\partial g_{ij}}{\partial x^r} + \frac{\partial g_{ri}}{\partial x^j} - \frac{\partial g_{rj}}{\partial x^i} \right)$，$\Gamma_{\alpha \beta}^{*} = \frac{1}{2} \sum_{\delta=1}^{m} \tilde{g}^{\delta \beta} \left(\frac{\partial \tilde{g}_{\alpha \delta}}{\partial y^\alpha} + \frac{\partial \tilde{g}_{\delta \alpha}}{\partial y^\beta} - \frac{\partial \tilde{g}_{\alpha \beta}}{\partial y^\delta} \right)$，则 $\Gamma_{ij}^{*} = \Gamma_{ji}^{*}, \Gamma_{\alpha \beta}^{*} = \Gamma_{\beta \alpha}^{*}$，且作下面的计算：

\[
\tilde{g}_{\delta \beta} = \sum_{i,j=1}^{m} \frac{\partial x^i}{\partial y^\delta} \frac{\partial x^j}{\partial y^\beta},
\]

\[
\frac{\partial \tilde{g}_{\alpha \delta}}{\partial y^\alpha} = \sum_{i,j=1}^{m} \frac{\partial x^i}{\partial y^\alpha} \frac{\partial x^j}{\partial y^\delta} \frac{\partial g_{ij}}{\partial x^i}
+ \sum_{i,j=1}^{m} \left(\frac{\partial x^i}{\partial y^\alpha} \frac{\partial x^j}{\partial y^\delta} + \frac{\partial x^i}{\partial y^\delta} \frac{\partial x^j}{\partial y^\alpha} \right),
\]

同理，

\[
\frac{\partial \tilde{g}_{\delta \alpha}}{\partial y^\beta} = \sum_{i,j=1}^{m} \frac{\partial x^i}{\partial y^\delta} \frac{\partial x^j}{\partial y^\alpha} \frac{\partial g_{ij}}{\partial x^i}
+ \sum_{i,j=1}^{m} \left(\frac{\partial x^i}{\partial y^\beta} \frac{\partial x^j}{\partial y^\alpha} + \frac{\partial x^i}{\partial y^\alpha} \frac{\partial x^j}{\partial y^\beta} \right),
\]

\[
\frac{\partial \tilde{g}_{\delta \alpha}}{\partial y^\alpha} = \sum_{i,j=1}^{m} \frac{\partial x^i}{\partial y^\delta} \frac{\partial x^j}{\partial y^\alpha} \frac{\partial g_{ij}}{\partial x^i}
+ \sum_{i,j=1}^{m} \left(\frac{\partial x^i}{\partial y^\delta} \frac{\partial x^j}{\partial y^\alpha} + \frac{\partial x^i}{\partial y^\alpha} \frac{\partial x^j}{\partial y^\delta} \right),
\]

53
\[\mathcal{R}_{\gamma\theta} = \frac{1}{2} \sum_{d=1}^{m} g^{\gamma\delta} \left(\frac{\partial g_{\gamma\delta}}{\partial y^a} + \frac{\partial g_{\gamma\delta}}{\partial y^b} - \frac{\partial g_{\gamma\delta}}{\partial y^c} \right) \]

\[= \frac{1}{2} \sum_{i,j,k,l,s,t=1}^{m} \frac{\partial y^i \partial y^j}{\partial x^k} \frac{\partial x^k}{\partial y^t} \left(\frac{\partial y^i}{\partial x^a} - \frac{\partial y^i}{\partial x^b} + \frac{\partial y^i}{\partial x^c} \right) \]

\[+ \frac{1}{2} \sum_{i,j,k,l,s,t=1}^{m} \frac{\partial y^i y^j}{\partial x^k} g^{kl} \left(\frac{\partial x^l}{\partial y^a} + \frac{\partial x^l}{\partial y^b} - \frac{\partial x^l}{\partial y^c} \right) \]

\[= \frac{1}{2} \sum_{i,j,k,l,s,t=1}^{m} \frac{\partial y^i y^j}{\partial x^k} g^{kl} \left(\frac{\partial y^i}{\partial x^a} + \frac{\partial y^i}{\partial x^b} - \frac{\partial y^i}{\partial x^c} \right) \]

\[+ \sum_{i,j,k,l,s,t=1}^{m} \frac{\partial y^i y^j}{\partial x^k} g^{kl} \left(\frac{\partial y^i}{\partial x^a} + \frac{\partial y^i}{\partial x^b} - \frac{\partial y^i}{\partial x^c} \right) \]

\[= \sum_{i,j,k,l,s,t=1}^{m} \frac{\partial x^i \partial x^j}{\partial y^a} g^{kl} \left(\frac{\partial x^l}{\partial x^a} + \frac{\partial x^l}{\partial x^b} - \frac{\partial x^l}{\partial x^c} \right) \]

\sum_{i,j,k,l,s,t=1}^{m} \frac{\partial x^i \partial x^j}{\partial y^a} g^{kl} \left(\frac{\partial x^l}{\partial x^a} + \frac{\partial x^l}{\partial x^b} - \frac{\partial x^l}{\partial x^c} \right)

\sum_{i,j,k,l,s,t=1}^{m} \frac{\partial x^i \partial x^j}{\partial y^a} g^{kl} \left(\frac{\partial x^l}{\partial x^a} + \frac{\partial x^l}{\partial x^b} - \frac{\partial x^l}{\partial x^c} \right)

\[= \frac{1}{2} \sum_{i,j,k,l,s,t=1}^{m} \frac{\partial x^i \partial x^j}{\partial y^a} g^{kl} \left(\frac{\partial x^l}{\partial x^a} + \frac{\partial x^l}{\partial x^b} - \frac{\partial x^l}{\partial x^c} \right) \]

\[+ \sum_{i,j,k,l,s,t=1}^{m} \frac{\partial x^i \partial x^j}{\partial y^a} g^{kl} \left(\frac{\partial x^l}{\partial x^a} + \frac{\partial x^l}{\partial x^b} - \frac{\partial x^l}{\partial x^c} \right) \]

\[= \frac{1}{2} \sum_{i,j,k,l,s,t=1}^{m} \frac{\partial x^i \partial x^j}{\partial y^a} g^{kl} \left(\frac{\partial x^l}{\partial x^a} + \frac{\partial x^l}{\partial x^b} - \frac{\partial x^l}{\partial x^c} \right) \]

\[+ \sum_{i,j,k,l,s,t=1}^{m} \frac{\partial x^i \partial x^j}{\partial y^a} g^{kl} \left(\frac{\partial x^l}{\partial x^a} + \frac{\partial x^l}{\partial x^b} - \frac{\partial x^l}{\partial x^c} \right) \]

\[= \frac{1}{2} \left(\frac{\partial x^i}{\partial x^a} + \frac{\partial x^i}{\partial x^b} - \frac{\partial x^i}{\partial x^c} \right) + \frac{1}{2} \left(\frac{\partial x^j}{\partial x^a} + \frac{\partial x^j}{\partial x^b} - \frac{\partial x^j}{\partial x^c} \right) \]

\[+ \frac{1}{2} \left(\frac{\partial x^k}{\partial x^a} + \frac{\partial x^k}{\partial x^b} - \frac{\partial x^k}{\partial x^c} \right) \]

\[= \frac{\partial x^i}{\partial x^a} + \frac{\partial x^j}{\partial x^b} - \frac{\partial x^k}{\partial x^c} \]

于是，由 \(I^* \) 确定的线性联络满足 Riemann 联络的五个条件。
证明 3 (应用活动标架和结构方程) 参阅 1.7 定理 5.

注 1 \(\nabla \frac{\partial}{\partial y_i} = \sum_{i=1}^{m} \Gamma^r_{ij} \frac{\partial}{\partial x^r} \) 中的 \(\Gamma^r_{ij} \) 称为联络系数或 \(\nabla \) 相对于 \{x^r\} 的分量 (不管 \(\nabla \) 是否是一个 Riemann 度量的 Levi-Civita 联络). 而 \(\Gamma^r_{ij} \) 用 \{g_{ij}\} 的表达式:

\[
\Gamma^r_{ij} = \frac{1}{2} \sum_{r=1}^{n} g^{rs} \left(\frac{\partial g_{ij}}{\partial x^s} + \frac{\partial g_{ir}}{\partial x^j} - \frac{\partial g_{jr}}{\partial x^i} \right)
\]

应归功于 Christoffel (1869 年), 所以 Levi-Civita 联络的 \(\Gamma^r_{ij} \) 称为 Christoffel 记号.

注 2 对称联络不一定是 Riemann 联络. 例如, 如果 \(\nabla \) 为 \((M,g)\) 上的 Riemann 联络, 则 \(T = 0 \). 令 \(\overline{\nabla} = \nabla + C \), 其中 \(C \) 为 \(TM \) 上的 \(C^\infty \) 阶对称协变向量值张量场, 且 \(C \neq 0 \), 故 \(\overline{\nabla} \neq \nabla \). 但 \(A(X,Y) = \frac{1}{2} [C(X,Y) - C(Y,X)] = 0 \) 和 \(T(X,Y) = T(X,Y) + 2A(X,Y) = 0 + 0 = 0 \).

1.4 Riemann 联接率、Ricci 曲率、
数量曲率和常接曲率流形

微分几何主要研究流形的弯曲程度, 即各种各样的曲率. 这一节着重介绍 Riemann 联接率、Ricci 曲率和数量曲率, 同时给出常曲率空间的判定准则和描述种种常接曲率空间的典型例子.

先证 Bianchi 第 1 和第 2 恒等式.

定理 1 设 \(\nabla \) 为 \(m \) 维 \(C^\infty \) 流形上的线性联络, \(X, Y, Z, W \in C^\infty(TM) \), 则

(1) (Bianchi 第 1 恒等式)

\[
\mathcal{S}\{R(X,Y)Z\} = \mathcal{S}\{((\nabla_x T)(Y,Z)) + \mathcal{S}\{T(T(X,Y),Z)\}
\]

其中 \(\mathcal{S}\{R(X,Y),Z\} = R(X,Y)Z + R(Y,Z)X + R(Z,X)Y \) 表示循环和；

(2) (Bianchi 第 2 恒等式)
\[\sum_{x,y,z} \{ \nabla_z R(X,Y,W) \} + \sum_{x,y,z} \{ R(T(X,Y),Z)W \} = 0. \]

特别地，如果 \(T = 0 \)，则

(1') \hspace{1cm} \sum_{x,y,z} \{ R(X,Y)Z \} = 0;

(2') \hspace{1cm} \sum_{x,y,z} \{ (\nabla_z R)(X,Y,W) \} = 0.

证明 (1) 由 Jacobi 恒等式 \(\sum \{ [[X,Y],Z] \} = 0 \) 和

\[
T(T(X,Y),Z) = T(\nabla_x Y, Z) - T(\nabla_Y X, Z) - T([X,Y], Z)
\]

\[
= T(\nabla_x Y, Z) + T(Z, \nabla_Y X) - T([X,Y], Z),
\]

\[
(\nabla_z T)(X,Y) = \nabla_z (T(X,Y)) - T(\nabla_z X, Y) - T(X, \nabla_z Y),
\]

得到

\[
\sum \{ T(T(X,Y),Z) \} = \sum \{ (\nabla_z T)(X,Y) \}
\]

\[
+ \sum \{ \nabla_z (T(X,Y) - T([X,Y],Z)) \}
\]

从而有

\[
\sum \{ R(X,Y)Z \} = \sum \{ R(X,X)Z \} + 0
\]

\[
= \sum \{ \nabla_x \nabla_y Z - \nabla_y \nabla_x Z - \nabla_{[x,y]} Z \} + \sum \{ [[X,Y],Z] \}
\]

\[
= \sum \{ \nabla_z (T(X,Y)) - T([X,Y],Z) \}
\]

\[
= \sum \{ (\nabla_z T)(X,Y) \} + \sum \{ T(T(X,Y),Z) \}
\]

\[
= \sum \{ (\nabla_x T)(Y,Z) \} + \sum \{ T(T(X,Y),Z) \}.
\]

(2) 显然

\[
(\nabla_z R)(X,Y,W) = \nabla_z (R(X,Y)W) - R(X,Y) \nabla_z W
\]

\[- R(\nabla_z X,Y,W) - R(X,\nabla_z Y)W,
\]

\[
\sum_{x,y,z} \{ R(T(X,Y),Z)W \}
\]

\[
= \sum_{x,y,z} \{ R(\nabla_X Y,Z)W + R(Z,\nabla_Y X)W - R([X,Y],Z)W \}
\]

\[
= \sum_{x,y,z} \{ R(\nabla_X Z,Y)W + R(X,\nabla_z Y)W - \sum_{x,y,z} \{ R([X,Y],Z)W \}
\]

\[
= - \sum_{x,y,z} \{ (\nabla_z R)(X,Y,W) \} + \sum_{x,y,z} \{ \nabla_z (R(X,Y)W) \}
\]

\[- R(X,Y) \nabla_z W - R([X,Y],Z)W \},
\]

因此

\[
\sum_{x,y,z} \{ (\nabla_z R)(X,Y,W) \} + \sum_{x,y,z} \{ R(T(X,Y),Z)W \}
\]

56
\[
= \mathcal{S} \{ \nabla_z(R(X,Y)W) - R(X,Y)\nabla_zW \} - R([X,Y],Z)W
\]
\[
= \mathcal{S} \{ \nabla_z\nabla_x\nabla_Y - \nabla_z\nabla_Y\nabla_x - \nabla_z\nabla_{[X,Y]} - \nabla_x\nabla_y\nabla_z
\]
\[
+ \nabla_y\nabla_x\nabla_z + \nabla_{[X,Y]}\nabla_z - \nabla_{[X,Y]}\nabla_z
\]
\[
+ \nabla_z\nabla_{[X,Y]} + \nabla_{[[X,Y],Z]}W \}
\]
\[
= \mathcal{S} \{ [\nabla_z, [\nabla_x, \nabla_y]]W \} + \nabla_{[[X,Y],Z]}W \}
\]
\[
= 0 + 0 = 0.
\]

注 1 如果选 \(X, Y, Z\) 为坐标向量场，且 \(T = 0\)，则 \([X,Y] = 0, [Y,Z] = 0, [Z,X] = 0\) 和
\[
\nabla_xY = \nabla_yX,
\]
\[
R(X,Y) = \nabla_x\nabla_y - \nabla_y\nabla_x,
\]
因此，(1')和(2')的证明就简单了。

Bianchi 恒等式的坐标形式为:

定理 1' (1) (Bianchi 第 1 恒等式)
\[
R_{xkl} + R_{kli} + R_{ijk} = (T_{xkl} \pm T_{kli} + T_{jkl}) + \sum_{\mu=1}^{m} (T_{\mu}T_{\mu}\pm T_{\mu}T_{\mu} + T_{\mu}T_{\mu})
\]

(2) (Bianchi 第 2 恒等式)
\[
R_{ijkl} + R_{klij} + R_{likj} + \sum_{\mu=1}^{m} (T_{\mu}R_{\mu} + T_{\mu}R_{\mu} + T_{\mu}R_{\mu}) = 0.
\]

特别地，如果 \(T = 0\)，则

(1') \quad R_{xkl} + R_{kli} + R_{ijk} = 0;

(2') \quad R_{ijkl} + R_{klij} + R_{likj} = 0.

证明 1 (1) 设 \(\{X_i\}\) 为局部 \(C^\infty\) 基向量场，根据定理 1(1) 得到
\[
\sum_{i=1}^{m} (R_{xkl} + R_{kli} + R_{ijk})X_i = \mathcal{S} \{ \sum_{i=1}^{m} R_{ijkl}X_i \}
\]
\[
= \mathcal{S} \{ R(X_j, X_i)X_i \}
\]
\[
= \mathcal{S} \{ (\nabla_x T)(X_i, X_i) \} + \mathcal{S} \{ T(T(X_j, X_i), X_i) \}
\]
\[= \mathcal{S} \{ \sum_{i=1}^{m} T_{i,j} X_i \} + \mathcal{S} \{ T(\sum_{a=1}^{m} T_{j,a} X_a, X_i) \} \]

\[= \mathcal{S} \{ \sum_{i=1}^{m} T_{i,i,j} X_i \} + \mathcal{S} \{ \sum_{a=1}^{m} T_{j,a} \sum_{i=1}^{m} T_{i,a} X_i \} \]

\[= \sum_{i=1}^{m} (T_{i,i,j} + T_{i,j,k} + T_{j,k,i}) X_i \]

\[+ \sum_{j=1}^{m} \left(\sum_{\nu=1}^{m} T_{\nu,j} T_{\nu,i} + T_{\nu,j} T_{\nu,k} + T_{\nu,i} T_{\nu,k} \right) X_i, \]

\[R_{j,k} + R_{k,j} + R_{i,j,k} \]

\[= (T_{i,i,j} + T_{j,j,k} + T_{j,k,i}) + \sum_{\nu=1}^{m} (T_{\nu,j} T_{\nu,i} + T_{\nu,j} T_{\nu,k} + T_{\nu,i} T_{\nu,k}). \]

(2) 根据定理 1(2) 得

\[\sum_{h=1}^{m} [(R_{j,k,h} + R_{k,l,j} + R_{l,j,k}) + \sum_{\mu=1}^{m} [(T_{j,k} R_{\mu,k} + T_{k,l} R_{\mu,j} + T_{l,j} R_{\mu,k})] X_h \]

\[= \mathcal{S} \{ (\nabla_x R)(X_j, X_k, X_i) \} + \mathcal{S} \{ R(T(X_j, X_k), X_i) X_i \} \]

\[= 0, \]

\[R_{i,j,k,l} + R_{k,l,i,j} + R_{l,j,k} + \sum_{\mu=1}^{m} (T_{i,k} R_{\mu,i} + T_{j,l} R_{\mu,j} + T_{l,j} R_{\mu,k}) = 0. \]

证明 2 (1) 从 1.2 引理 1(1)，如果 \(\{X_i\} \) 为坐标基向量场，则

\[[X_j, X_k] = 0, c_{j,k}^{\mu} = 0, T_{\mu,i} = -T_{i,\mu} , T_{j,k} = T_{j,k} - T_{i,k} , \]

\[\sum_{\mu=1}^{m} T_{j,k} T_{\mu,i} = \sum_{\mu=1}^{m} T_{j,k} T_{\mu,i} + \sum_{\mu=1}^{m} c_{j,k}^{\mu} T_{\mu,i} , \]

\[T_{j,k} = \frac{\partial T_{j,k}}{\partial x^i} + \sum_{\mu=1}^{m} \Gamma_{j,k}^{\mu} T_{\mu,i} - \sum_{\mu=1}^{m} \Gamma_{j,k}^{\mu} T_{\mu,i} - \sum_{\mu=1}^{m} \Gamma_{j,k}^{\mu} T_{\mu,i} . \]

于是

\[(T_{j,k} + T_{j,k} + T_{j,k}) + \sum_{\nu=1}^{m} (T_{j,k} T_{\nu,i} + T_{j,k} T_{\nu,i} + T_{j,k} T_{\nu,i}) \]

\[= \mathcal{S} \{ T_{j,k} + \sum_{\mu=1}^{m} T_{j,k} T_{\mu,i} \} \]

58
\[
\mathcal{S} \left(\frac{\partial T^{e}_{ik}}{\partial x^i} + \sum_{\mu=1}^{m} \Gamma^e_{\mu k} T^{e}_{\mu k} \right)
\]
\[
= \mathcal{S} \left\{ \frac{\partial \Gamma^e_{ik}}{\partial x^i} - \frac{\partial \Gamma^e_{k j}}{\partial x^j} + \sum_{\mu=1}^{m} \Gamma^e_{\mu k} \left(\Gamma^e_{j \mu} - \Gamma^e_{j k} \right) \right\}
\]
\[
= \mathcal{S} \left\{ \frac{\partial \Gamma^e_{ik}}{\partial x^i} - \frac{\partial \Gamma^e_{k j}}{\partial x^j} + \sum_{\mu=1}^{m} \left(\Gamma^e_{\mu k} \Gamma^e_{j \mu} - \Gamma^e_{\mu k} \Gamma^e_{j k} \right) \right\}
\]
\[
= \mathcal{S} \left\{ R^e_{ikl} \right\}
\]

(2) 由于 \(T^e_{jk} = \Gamma^e_{jk} - \Gamma^e_{kj} \), 故
\[
\sum_{\mu=1}^{m} T^e_{jk} R^e_{\mu kl} = \sum_{\mu=1}^{m} \Gamma^e_{jk} R^e_{\mu kl} + \sum_{\mu=1}^{m} \Gamma^e_{kj} R^e_{\mu kl}.
\]
此外，还有
\[
R^e_{ij k l} = \frac{\partial}{\partial x^i} R^e_{jk l} + \sum_{\mu=1}^{m} R^e_{ij} \Gamma^e_{\mu k l} - \sum_{\mu=1}^{m} R^e_{ij k} \Gamma^e_{\mu l}
- \sum_{\mu=1}^{m} R^e_{ij} \Gamma^e_{\mu k} - \sum_{\mu=1}^{m} R^e_{ij k} \Gamma^e_{\mu l},
\]
于是
\[
\mathcal{S} \left\{ R^e_{ij k l} + \sum_{\mu=1}^{m} T^e_{jk} R^e_{\mu kl} \right\}
\]
\[
= \mathcal{S} \left\{ \frac{\partial R^e_{ij k l}}{\partial x^i} + \sum_{\mu=1}^{m} R^e_{ij} \Gamma^e_{\mu k l} - \sum_{\mu=1}^{m} R^e_{ij k} \Gamma^e_{\mu l} - \sum_{\mu=1}^{m} R^e_{ij} \Gamma^e_{\mu k} - \sum_{\mu=1}^{m} R^e_{ij k} \Gamma^e_{\mu l} \right\}
\]
\[
= \mathcal{S} \left\{ \frac{\partial R^e_{ij k l}}{\partial x^i} + \sum_{\mu=1}^{m} R^e_{ij} \Gamma^e_{\mu k l} - \sum_{\mu=1}^{m} R^e_{ij k} \Gamma^e_{\mu l} \right\}
\]
\[
= 0
\]
(最后一个等式请读者自证)。

注 2 从证明 2 和得到定理 1’, 然后由定理 1’证明定理 1, 这就给出了定理 1 的第 2 个证法。

在 1.7 中，我们将用微分形式来表达 Bianchi 第 1 和第 2 恒
等式。

定义 1 设 ∇ 为 m 维 C^∞ Riemann 流形 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 上的 Riemann 联络，则称 TM 上的 $(0, 4)$ 型 C^∞ 张量场 $K: C^\infty(TM) \times C^\infty(TM) \times C^\infty(TM) \to C^\infty(M, \mathbb{R})$，

$$K(X_1, X_2, X_3, X_4) = \langle X_1, R(X_3, X_4)X_2 \rangle = \langle R(X_3, X_4)X_2, X_1 \rangle$$

为 Riemann-Christoffel 曲率张量。

定理 2 设 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 为 m 维 C^∞ Riemann 流形，$X_i, X_2, X_3, X_4 \in C^\infty(TM)$，则有

(1) $\sum_{2, 3, 4} \{K(X_1, X_2, X_3, X_4)\} = K(X_1, X_2, X_3, X_4) + K(X_1, X_3, X_4, X_2) + K(X_1, X_4, X_2, X_3) = 0$;

(2) $K(X_1, X_2, X_3, X_4) = -K(X_2, X_1, X_3, X_4)$;

(3) $K(X_1, X_2, X_3, X_4) = -K(X_2, X_1, X_4, X_3)$;

(4) $K(X_1, X_2, X_3, X_4) = K(X_3, X_4, X_1, X_2)$.

证明 (1) $\sum_{2, 3, 4} \{K(X_1, X_2, X_3, X_4)\} = \sum_{2, 3, 4} \langle X_1, R(X_3, X_4)X_2 \rangle$

$= \langle X_1, \sum_{2, 3, 4} R(X_3, X_4)X_2 \rangle = \langle X_1, 0 \rangle = 0$.

(2)

$$K(X_1, X_2, X_3, X_4) + K(X_2, X_1, X_3, X_4)$$

$$= \langle X_1, R(X_3, X_4)X_2 \rangle + \langle X_2, R(X_3, X_4)X_1 \rangle$$

$$= \langle X_1, \nabla_{X_2} \nabla_{X_3} X_2 - \nabla_{X_3} \nabla_{X_2} X_2 - \nabla_{[X_2, X_3]} X_2 \rangle$$

$$+ \langle X_3, \nabla_{X_3} \nabla_{X_4} X_1 - \nabla_{X_4} \nabla_{X_3} X_1 - \nabla_{[X_3, X_4]} X_1 \rangle$$

$$= \{\langle X_1, \nabla_{X_2} \nabla_{X_3} X_2 \rangle + \langle X_2, \nabla_{X_3} \nabla_{X_2} X_1 \rangle - \langle X_1, \nabla_{X_3} \nabla_{X_2} X_2 \rangle$$

$$- \langle X_2, \nabla_{X_3} \nabla_{X_2} X_1 \rangle \} - \{\langle X_1, \nabla_{[X_2, X_3]} X_2 \rangle - \langle X_2, \nabla_{[X_3, X_4]} X_1 \rangle \}$$

$$= X_3X_4\langle X_1, X_2 \rangle - X_4X_3\langle X_1, X_2 \rangle - [X_3, X_4]\langle X_1, X_2 \rangle = 0.$$

(3) 由 $R(X_3, X_4) = -R(X_4, X_3)$ 得到。

(4) 由 (1), (2), (3) 得到

$$0 = K(X_1, X_2, X_3, X_4) + K(X_1, X_3, X_4, X_2)$$

$$+ K(X_1, X_4, X_2, X_3) - K(X_2, X_3, X_4, X_1)$$

$$- K(X_2, X_4, X_1, X_3) - K(X_2, X_1, X_3, X_4)$$

60
\[-K(X_3, X_4, X_1, X_2) - K(X_3, X_1, X_2, X_4) - K(X_3, X_2, X_4, X_1) + K(X_4, X_1, X_2, X_3) + K(X_4, X_2, X_3, X_1) + K(X_4, X_3, X_1, X_2) = 2K(X_1, X_2, X_3, X_4) - 2K(X_3, X_4, X_1, X_2)
\]
\[K(X_1, X_2, X_3, X_4) = K(X_3, X_4, X_1, X_2).\]

定理 2' 设 \(\{X_i\}\) 为局部坐标域 \(U\) 中的 \(C^\infty\) 基向量场，\(K_{ijkl} = K(X_i, X_j, X_k, X_l)\)，则

(1) \[K_{ijkl} = \sum_{s=1}^{m} g_{is} R_{jskl}^s;\]

(2) \[K_{ijkl} = -K_{jkl}, K_{ijkl} = -K_{ijlk}, K_{ijkl} = K_{klji} = K_{ijlk} = 0.\]

证明 (1) \[K_{ijkl} = K(X_i, X_j, X_k, X_l) = \langle X_i, R(X_k, X_l) X_j \rangle = \langle X_i, \sum_{s=1}^{m} R_{jskl}^s X_s \rangle = \sum_{s=1}^{m} g_{is} R_{jskl}^s.\]

(2) 分别由定理 2 的(2)、(3)、(4)和(1)得到。

引理 1 设 \(X, Y \in T, M, \|X \wedge Y\|^2 = \langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2 \neq 0(\text{即 } X, Y \text{ 线性无关})\)，它们张成 2 维平面 \(X \wedge Y\)。

令

\[\overline{K}(X, Y) = \frac{K(X, Y, X, Y)}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2} = \frac{K(X, Y, X, Y)}{\|X \wedge Y\|^2},\]

则 \(\overline{K}(X, Y) = \overline{K}(aX + bY, cX + dY), ad - bc \neq 0(\text{即 } \overline{K} \text{ 与张成 } X \wedge Y \text{ 的基的选取无关})\)。

证明 由 \(aX + bY\) 和 \(cX + dY\) 张成的平行四边形面积平方为

\[\langle aX + bY, aX + bY \rangle \langle cX + dY, cX + dY \rangle - \langle aX + bY, cX + dY \rangle^2 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}^2 \langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2.\]

而由引理 2 得到

\[K(aX + bY, cX + dY, aX + bY, cX + dY) = \langle aX + bY, R(aX + bY, cX + dY)(cX + dY) \rangle \]

61
$$\begin{align*}
&= \langle aX + bY, (ad - bc)R(X,Y) (cX + dY) \rangle \\
&= \begin{vmatrix} a & b \\ c & d \end{vmatrix} \langle aX + bY, R(X,Y) (cX + dY) \rangle \\
&= \begin{vmatrix} a & b \\ c & d \end{vmatrix} \{ ac\langle X, R(X,Y) X \rangle + ad \langle X, R(X,Y) Y \rangle \\
&+ bc\langle Y, R(X,Y) X \rangle + bd \langle Y, R(X,Y) Y \rangle \} \\
&= \begin{vmatrix} a & b \\ c & d \end{vmatrix}^2 \langle X, R(X,Y) Y \rangle \\
&= \begin{vmatrix} a & b \\ c & d \end{vmatrix}^2 K(X,Y, X, Y),
\end{align*}$$

因此

$$\bar{K}(aX + bY, cX + dY) = \frac{K(aX + bY, cX + dY, aX + bY, cX + dY)}{\langle aX + bY, aX + bY \rangle \langle cX + dY, cX + dY \rangle - \langle aX + bY, cX + dY \rangle^2}$$

$$= \begin{vmatrix} a & b \\ c & d \end{vmatrix}^2 K(X,Y, X, Y)$$

$$= \begin{vmatrix} a & b \\ c & d \end{vmatrix}^2 (\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2)$$

$$= \bar{K}(X,Y).$$

定义 2 设 $X, Y \in T_p M, \langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2 \neq 0$，称

$$\bar{K}(X,Y) = \frac{K(X,Y, X, Y)}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2}$$

为由向量 X, Y 张成的 2 维平面 $X \wedge Y$ 的 (Riemann) 裁曲率。记作 $R_2(X \wedge Y) = \bar{K}(X,Y)$. 它不仅依赖于点 $p \in M$, 而且也依赖于平面 $X \wedge Y$. 但与张成平面 $X \wedge Y$ 的基的选取无关．

对于常曲率 (Riemann 裁曲率与点 p, 平面 $X \wedge Y$ 无关，它恒为常数) 有以下几个等价条件

定理 3 设 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 为 m 维 C^∞ Riemann 流形，则

(1) $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 具有常 Riemann 裁曲率 c

$$\Leftrightarrow (2) K = cK_1, \text{ 其中}$$

$$K_1(X_1, X_2, X_3, X_4) = \langle X_1, X_3 \rangle \langle X_2, X_4 \rangle - \langle X_2, X_3 \rangle \langle X_4, X_1 \rangle$$
（显然 K_1 满足定理 2 中关于 K 的 4 个条件）

$$
\Leftrightarrow (3) \quad R(X_1, X_2) X_3 = c \left\langle X_3, X_1 \right\rangle X_1 - \left\langle X_3, X_1 \right\rangle X_2,
$$

$$
\forall \ X_1, X_2, X_3 \in C^\infty(TM)
$$

$$
\Leftrightarrow (4) \text{ 在局部坐标系} \{x^i\} \text{ 中，} K \text{ 关于} \left\{ \frac{\partial}{\partial x^i} \right\} \text{ 的分量有}

K_{ijx^t} = c (g_{ij} g_{tu} - g_{iu} g_{jt}).
$$

证明 $(1) \Rightarrow (2)$ 由

$$
R_x (X_1 \wedge X_2) = \frac{K(X_1, X_2, X_1, X_2)}{\left\langle X_1, X_1 \right\rangle \left\langle X_2, X_2 \right\rangle - \left\langle X_1, X_2 \right\rangle^2} = c
$$

($\left\langle X_1, X_1 \right\rangle \left\langle X_2, X_2 \right\rangle - \left\langle X_1, X_2 \right\rangle^2 \neq 0$) 得到

$$
K(X_1, X_2, X_1, X_2) = c K_1 (X_1, X_2, X_1, X_2).
$$

因为 K 与 K_1 都满足定理 2 中的 4 个性质，所以上式当 $\left\langle X_1, X_1 \right\rangle \left\langle X_2, X_2 \right\rangle - \left\langle X_1, X_2 \right\rangle^2 = 0$ 时（即 $X_1 = \lambda X_2$ 或 $X_2 = \lambda X_1$）也成立。

为证明 $K = c K_1$，设 $S = K - c K_1$。则对 $\forall \ X_1, X_2 \in C^\infty(TM)$，

$$
S(X_1, X_2, X_1, X_2) = 0, \text{ 于是对} \forall \ X_1, X_2, X_4 \in C^\infty(TM), \text{ 有}
$$

$$
0 = S(X_1, X_2 + X_4, X_1, X_2 + X_4)
$$

$$
= S(X_1, X_2, X_1, X_4) + S(X_1, X_4, X_1, X_2)
$$

$$
= 2 S(X_1, X_2, X_1, X_4),
$$

即 $S(X_1, X_2, X_1, X_4) = 0)。进一步，对 $\forall \ X_1, X_2, X_3, X_4 \in C^\infty(TM)$，

$$
0 = S(X_1 + X_3, X_2, X_1 + X_3, X_4)
$$

$$
= S(X_1, X_2, X_3, X_4) + S(X_3, X_2, X_1, X_4)
$$

$$
= S(X_1, X_2, X_3, X_4) - S(X_1, X_4, X_2, X_3),
$$

于是 $S(X_1, X_2, X_3, X_4) = S(X_1, X_4, X_2, X_3)$。用 X_3, X_4, X_2 代替 X_2, X_3, X_1 得

$$
S(X_1, X_2, X_3, X_4) = S(X_1, X_3, X_4, X_2).
$$

由此又可推出，对 $\forall \ X_1, X_2, X_3, X_4 \in C^\infty(TM)$，有

$$
3 S(X_1, X_2, X_3, X_4)
$$

$$
= S(X_1, X_2, X_3, X_4) + S(X_1, X_3, X_4, X_2) + S(X_1, X_4, X_2, X_3) = 0.
$$
即 \(S(X_1, X_2, X_3, X_4) = 0, K - cK_1 = 0, K = cK_1 \).

(2) \(\Rightarrow\) (3) 因为
\[
\langle X_4, R(X_1, X_2)X_3 \rangle = K(X_4, X_3, X_1, X_2)
= cK_1(X_4, X_3, X_1, X_2)
= c\{ \langle X_4, X_1 \rangle \langle X_3, X_2 \rangle - \langle X_3, X_1 \rangle \langle X_2, X_4 \rangle \}
= \langle X_4, c\{ \langle X_3, X_2 \rangle X_1 - \langle X_3, X_1 \rangle X_2 \} \rangle,
\]
故由 1.3 引理 6 得 (注意 \(X_4 \) 是任取的)
\[
R(X_1, X_2)X_3 = c\{ \langle X_3, X_2 \rangle X_1 - \langle X_3, X_1 \rangle X_2 \}.
\]
(3) \(\Rightarrow\) (1)
\[
R(X \land Y) = \frac{K(X, Y, X, Y)}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2}
= \frac{\langle X, R(X, Y)Y \rangle}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2}
= c\frac{\langle X, \langle Y, Y \rangle X - \langle Y, X \rangle Y \rangle}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2} = c.
\]
(2) \(\Leftrightarrow\) (4) 是十分明显的。

更一般地，我们有

定理 4 (F. Schur) 设 \((M, g) = (M, \langle , \rangle)\) 为连通的 Riemann 流形，\(\nabla\) 为 Riemann 联络，\(\dim M = m \geq 3\)，如果切空间中平面 \(X \land Y\) 在 \(p \in M\) 的截曲率仅依赖于点 \(p\) 而与 \(X \land Y\) 选取无关，即 \(R_p(X \land Y) = c(p)\)，则 \((M, g)\) 为常截曲率的流形。

证明 1 设 \(K(W, Z, X, Y) = \langle W, R(X, Y)Z \rangle, K_1(W, Z, X, Y) = \langle W, X \rangle \langle Z, Y \rangle - \langle Z, X \rangle \langle W, Y \rangle, W, Z, X, Y \in C^\infty(TM)\)。类似定理 3 的证明，有
\[
K(W, Z, X, Y) = c(p)K_1(W, Z, X, Y).
\]
因此
\[
K(\nabla_\nu W, Z, X, Y) + \langle W, \nabla_\nu R(X, Y)Z \rangle
= \langle \nabla_\nu W, R(X, Y)Z \rangle + \langle W, \nabla_\nu R(X, Y)Z \rangle
= \nabla_\nu \langle W, R(X, Y)Z \rangle = \nabla_\nu K(W, Z, X, Y) = \nabla_\nu \{ cK_1(W, Z, X, Y) \}
= \nabla_\nu c \{ \langle W, X \rangle \langle Z, Y \rangle - \langle Z, X \rangle \langle W, Y \rangle \}
\]
64
\begin{align*}
&= (Uc)\langle W, (Z, Y)X - (Z, X)Y \rangle \\
&\quad + c\{K_1(\nabla_v W, Z, X, Y) + K_1(W, \nabla_v Z, X, Y) \\
&\quad + K_1(W, Z, \nabla_v X, Y) + K_1(W, Z, X, \nabla_v Y)\} \\
&= (Uc)\langle W, (Z, Y)X - (Z, X)Y \rangle + K(\nabla_v W, Z, X, Y) \\
&\quad + \langle W, R(X, Y) \nabla_v Z + R(\nabla_v X, Y)Z + R(X, \nabla_v Y)Z, \\
&\quad W, \nabla_v R(X, Y)Z - R(X, Y) \nabla_v Z - R(\nabla_v X, Y)Z - R(X, \nabla_v Y)Z \rangle \\
&= \langle W, (Uc)(\langle Z, Y)X - (Z, X)Y \rangle \rangle.
\end{align*}

根据 1.3 引理 6 得

\[\nabla_v R(X, Y)Z - R(X, Y) \nabla_v Z - R(\nabla_v X, Y)Z - R(X, \nabla_v Y)Z = (Uc)(\langle Z, Y)X - (Z, X)Y \rangle, \]

再由 Bianchi 第 2 恒等式推出

\[(Uc)(\langle Z, Y)X - (Z, X)Y \rangle + (Xc)(\langle Z, U)Y - (Z, U)X \rangle \\
\quad + (Yc)(\langle Z, X)U - (Z, U)X \rangle \\
= \bigotimes_{u, x, y} (Uc)(\langle Z, Y)X - (Z, X)Y \rangle \\
= \bigotimes_{u, x, y} \{ \nabla_v R(X, Y)Z - R(X, Y) \nabla_v Z \\
\quad - R(\nabla_v X, Y)Z - R(X, \nabla_v Y)Z \} \\
= \bigotimes_{u, x, y} \{ (\nabla_v R)(X, Y)Z \} = 0. \]

设 \(X, Y, Z \) 是彼此正交的线性无关的 \(C^\infty \) 向量场（这里用到 \(\text{dim}M = m \geq 3 \)），且 \(U = Z, \| Z \| = 1 \)，则 \((Xc)Y - (Yc)X = 0 \)，从而 \(Xc = 0, Yc = 0 \)。

对于任何局部坐标系 \(\{x^i\} \)，在此坐标领域中取 \(C^\infty \) 规范正交基 \(\{X_i\} \)，则 \(Xc = 0 \)。于是

\[\frac{\partial}{\partial x^i}c = (\sum_{j=1}^m a^i_j X_j)c = \sum_{j=1}^m a^i_j (X_i c) = 0, \quad i = 1, \ldots, m. \]

根据数学分析的知识，\(c \) 是局部常值函数，再由 \(M \) 连通性 \(c \) 为常值函数，即 \((M, g) \) 具有常截曲率。

证明 2 由定理 3 的证明，在局部坐标系 \(\{x^i\} \) 中，

\[K_{\alpha\beta\gamma} = c(g_{\alpha\beta \gamma} - g_{\alpha\gamma}g_{\beta\gamma}), \]

65
其中 c 为 M 上的 C^∞ 函数，等价地，

$$R_{ijk} = c(\delta_i^*g_{jk} - \delta_k^*g_{ij}).$$

根据连续的 Ricci 引理，$g_{ij,k} = 0$ 和 $\delta_i^*g_{ij} = 0$，这蕴含着

$$R_{ijk} = \frac{\partial}{\partial x^i}(\delta_i^*g_{jk} - \delta_k^*g_{ij}).$$

从定理 1' 中的 Bianchi 第 2 恒等式，我们有

$$0 = R_{ijk} + R_{ijk} + R_{ikj},$$

$$= \frac{\partial}{\partial x^i}(\delta_i^*g_{jk} - \delta_k^*g_{ij}) + \frac{\partial}{\partial x^j}(\delta_j^*g_{ik} - \delta_k^*g_{ij}) + \frac{\partial}{\partial x^k}(\delta_k^*g_{ij} - \delta_i^*g_{jk}),$$

令 $k = k$，并对 k 求和得

$$0 = \sum_{k=1}^{m} \left[\frac{\partial}{\partial x^i}(\delta_i^*g_{uk} - \delta_k^*g_{ij}) + \frac{\partial}{\partial x^j}(\delta_j^*g_{ik} - \delta_k^*g_{ij}) + \frac{\partial}{\partial x^k}(\delta_k^*g_{ij} - \delta_i^*g_{jk}) \right]$$

$$= \frac{\partial}{\partial x^i}(g_{ij} - mg_{ij}) + \frac{\partial}{\partial x^j}g_{ij} - \frac{\partial}{\partial x^k}g_{ij} + m \left(\frac{\partial}{\partial x^k}g_{ij} - \frac{\partial}{\partial x^i}g_{ij} \right)$$

$$= (m - 2) \left(\frac{\partial}{\partial x^k}g_{ij} - \frac{\partial}{\partial x^i}g_{ij} \right).$$

因为 dim$M = m \geq 3$，有

$$\frac{\partial}{\partial x^k}g_{ij} = \frac{\partial}{\partial x^i}g_{ij}.$$

所以

$$\delta_i^* \frac{\partial}{\partial x^j} = \sum_{i=1}^{m} g^{*g}_{ij} \frac{\partial}{\partial x^i} = \sum_{i=1}^{m} g^{*g}_{ij} \frac{\partial}{\partial x^i} = \delta_j^* \frac{\partial}{\partial x^i}.$$

选择 $n = j \neq l$，就得 $\frac{\partial}{\partial x^i} = 0, \forall l = 1, \ldots, m$，这意味着 c 是局部常值函数。由于 M 连通，故 c 在 M 上是常值函数，即 (M, g) 是常曲率的流形。

证明 3 (应用活动标法) 参阅 1.7 定理 7。

引理 2 (Ricci) (M, g) 是 m 维 C^∞ Riemann 流形，g_{ij} 为 g 关于局部坐标系 $\{x^i\}$ 的分量，(g^{*}) 为 (g_{ij}) 的逆矩阵。则 g_{ij} 和 g^{*} 关于协变导数 ∇ 似乎像常数，即

$$g_{ij,j} = 0, \quad g^{*}_{ij,k} = 0.$$

66
证明 由 Riemann 记号条件 (5)，

\[g_{ij,k} = (\nabla \partial \frac{\partial g}{\partial x_i})_{ij} = (\nabla \partial \frac{\partial g}{\partial x_j}) \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right) \]

\[= \nabla \partial \left(g \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right) \right) - g \left(\nabla \partial \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right) - g \left(\frac{\partial}{\partial x^i}, \nabla \partial \frac{\partial}{\partial x^j} \right) \]

\[= 0. \]

从

\[\nabla \partial \left(dx^i \right) \left(\frac{\partial}{\partial x^k} \right) = \nabla \partial \left(dx^i \right) \left(\frac{\partial}{\partial x^k} \right) - \left(\sum_{\mu = 1}^{m} \Gamma^\mu_{\nu \lambda} \frac{\partial}{\partial x^\nu} \right) = - \Gamma^k_{\nu i}, \]

\[\nabla \partial \left(dx^i \right) = - \sum_{\nu = 1}^{m} \Gamma^i_{\nu} dx^\nu, \]

得到

\[\delta_{i,k} = (\nabla \partial \delta)_{i} = (\nabla \partial \delta) \left(dx^i, \frac{\partial}{\partial x^i} \right) \]

\[= \nabla \partial \left(\delta \left(dx^i, \frac{\partial}{\partial x^i} \right) \right) - \delta \left(\nabla \partial \left(dx^i, \frac{\partial}{\partial x^i} \right) \right) - \delta \left(dx^i, \nabla \partial \frac{\partial}{\partial x^i} \right) \]

\[= \nabla \partial \delta^i - \delta \left(- \sum_{\nu = 1}^{m} \Gamma^i_{\nu} dx^\nu, \frac{\partial}{\partial x^i} \right) - \delta \left(dx^i, \sum_{\nu = 1}^{m} \Gamma^i_{\nu} \frac{\partial}{\partial x^\nu} \right) \]

\[= 0 + \sum_{\nu = 1}^{m} \Gamma^i_{\nu} \delta^\nu - \sum_{\nu = 1}^{m} \Gamma^i_{\nu} \delta^\nu \]

\[= \Gamma^i_{\nu} - \Gamma^i_{\nu} = 0. \]

于是

\[0 = \delta_{i,k} = \left(\sum_{j=1}^{m} g^{ir} g_{rl} \right)_{ik} \]

\[= \sum_{j=1}^{m} (g^{ir})_{ik} g_{rl} + \sum_{j=1}^{m} g^{ir} (g_{rl})_{ik} \]

\[= \sum_{r=1}^{m} (g^{ir})_{ik} g_{rl}. \]
\[g_{ij} = \sum_{r=1}^{m} (g^{rr})_{ij} \delta_{r} = \sum_{r,i=1}^{m} (g^{rr})_{ij} g_{rj} \]
\[= \sum_{i=1}^{m} 0 g_{ij} = 0. \]

下面给出几个典型的常 Riemann 截曲率的例子。

例 1 设 \(\{x^i\} \) 为 Euclid 空间 \(\mathbb{R}^n \) 上的通常的整体坐标系，\(g = \langle \cdot , \cdot \rangle \) 为 \(\mathbb{R}^n \) 上的通常的 \(C^\infty \) Riemann 度量，即
\[g_{ij} = \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle = \delta_{ij}, \]
\[\langle X, Y \rangle = \langle \sum_{i=1}^{m} a^i \frac{\partial}{\partial x^i}, \sum_{j=1}^{m} b^j \frac{\partial}{\partial x^j} \rangle = \sum_{i=1}^{m} a^i b^i. \]

则由公式 \(I_{ij}^\kappa = \frac{1}{2} \sum_{r=1}^{m} g^{rr} \left(\frac{\partial g_{rj}}{\partial x^i} + \frac{\partial g_{ri}}{\partial x^j} - \frac{\partial g_{rj}}{\partial x^i} \right) = 0 \) 得到
\[\nabla \frac{\partial}{\partial x^j} \frac{\partial}{\partial x^i} = \sum_{i=1}^{m} I_{ij}^\kappa \frac{\partial}{\partial x^i} = 0, \]
\[\nabla x Y = \nabla x \left(\sum_{j=1}^{m} b^j \frac{\partial}{\partial x^j} \right) = \sum_{j=1}^{m} (X b^j) \frac{\partial}{\partial x^j}. \]

特别当 \(\gamma \) 为 \(C^\infty \) 曲线，\(X = \gamma'(t) \) 时，
\[\nabla \gamma Y = \sum_{j=1}^{m} (\gamma' b^j) \frac{\partial}{\partial x^j} = \sum_{j=1}^{m} \frac{db^j(\gamma(t))}{dt} \frac{\partial}{\partial x^j}. \]

如果 \(\gamma \) 为坐标曲线 \(x^i \)，则有
\[\nabla \frac{\partial}{\partial x^i} Y = \sum_{j=1}^{m} \frac{\partial b^j}{\partial x^i} \frac{\partial}{\partial x^j}. \]

显然，向量的平移方程为
\[\frac{db^j}{dt} = 0, \quad j = 1, \ldots, m. \]
\[Y(t) = \sum_{j=1}^{m} b^j \frac{\partial}{\partial x^j}, \quad b^j \text{ 为常数} (j = 1, \ldots, m). \]

而测地线方程为
\[\frac{d^2 x^j}{dt^2} = 0, \quad x^j = \alpha_j t + \beta_j, \quad \text{和} \beta_j \text{ 为常数}, \quad j = 1, \ldots, m. \]

68
即测地线为 \mathbb{R}^n 中的直线。

此外，$\omega' = dx', \omega_i' = \sum_{i=1}^{m} \Gamma_{ij}w^j = 0$, 由 $T_{ij} = \Gamma_{ij} - \Gamma_{ij}$ 及

$$
\sum_{i=1}^{m} R_{bij}^i \frac{\partial}{\partial x^i} = R\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right) \frac{\partial}{\partial x^i} = \nabla_{\frac{\partial}{\partial x^i}} \nabla_{\frac{\partial}{\partial x^j}} \frac{\partial}{\partial x^i} - \nabla_{\frac{\partial}{\partial x^i}} \nabla_{\frac{\partial}{\partial x^j}} \frac{\partial}{\partial x^i} - \nabla_{\frac{\partial}{\partial x^j}} \nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^i} = 0
$$

或从 $R_{bij}^i = \sum_{i=1}^{m} (\Gamma_{ij}^* I_{i}^* - \Gamma_{ij}^* I_{i}^*) + \frac{\partial}{\partial x^i} I_{ij}^* - \frac{\partial}{\partial x^j} I_{ij}^*$ 得到 $R_{bij}^i = 0$。从而

$$
R(X, Y)Z = R\left(\sum_{i=1}^{m} a^i \frac{\partial}{\partial x^i}, \sum_{j=1}^{m} b^j \frac{\partial}{\partial x^j}\right) \left(\sum_{k=1}^{m} c^k \frac{\partial}{\partial x^k}\right)
$$

$$
= \sum_{i,j,k=1}^{m} a^i b^j c^k R\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right) \frac{\partial}{\partial x^k} = 0,
$$

$$
K(X_1, X_2, X_3, X_4) = \langle X_1, R(X_3, X_4)X_2 \rangle = \langle X_1, 0 \rangle = 0,
$$

$$
R_s(X \wedge Y) = \frac{K(X, Y, X, Y)}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2} = 0.
$$

由于 $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ 的 Riemann 截曲率恒为 0, 故称它为平坦空间。

例 2 设 $M = \{x = (x_1, \cdots, x_n) \in \mathbb{R}^n | \sum_{i=1}^{m} x_i^2 < -\frac{4}{c} \}$, 其中 $c < 0$ 为常数。这里 $\{x_i\}$ 为 \mathbb{R}^n 的通常坐标。在 M 上定义 Riemann 度量 $g = \langle \cdot, \cdot \rangle$ 为

$$
g_{ij} = \langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle = \frac{1}{A^2} \delta_{ij},
$$

$$
A = 1 + \frac{c}{4} \sum_{i=1}^{m} x_i^2 > 1 + \frac{c}{4} (-\frac{4}{c}) = 0,
$$

$$
g(X, Y) = g\left(\sum_{i=1}^{m} a^i \frac{\partial}{\partial x_i}, \sum_{j=1}^{m} b^j \frac{\partial}{\partial x_j}\right)
$$

$$
= \sum_{i,j=1}^{m} a^i b^j \frac{1}{A^2} \delta_{ij} = \frac{1}{A^2} \sum_{i=1}^{m} a^i b^i.
$$

称 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 为双曲空间或 Poincaré 空间。它具有负常
Riemann 轮曲率, 下面将证明之.

由 \(g_{ij} = \frac{1}{A^2} \delta_{ij} \) 知 \(g^{ij} = A^2 \delta^{ij} = \begin{cases} A^2, & i = j \\ 0, & i \neq j \end{cases} \)。如果 \(i, j, k \) 互不相同，则

\[
\Gamma^i_{jk} = \frac{1}{2} \sum_{r=1}^{n} g^{ir} \left(\frac{\partial g_{rj}}{\partial x_i} + \frac{\partial g_{ri}}{\partial x_j} - \frac{\partial g_{ij}}{\partial x_r} \right) = \frac{1}{2} \left(g^{ij} \frac{\partial g_{ji}}{\partial x_i} + g^{ji} \frac{\partial g_{ij}}{\partial x_j} \right)
\]

\[
= \frac{1}{2} (0 + 0) = 0.
\]

如果 \(i, j \) 不相同，则

\[
\Gamma^i_{ij} = \Gamma^i_{ji} = \frac{1}{2} \sum_{r=1}^{n} g^{ir} \left(\frac{\partial g_{rj}}{\partial x_i} + \frac{\partial g_{ri}}{\partial x_j} - \frac{\partial g_{ij}}{\partial x_r} \right) = \frac{1}{2} g^{ij} \left(\frac{\partial (1)}{\partial x_i} \right) = \frac{1}{2} A^2 \left(-2A^{-3} \frac{c}{4} 2x_i \right) = -\frac{cx_i}{2A},
\]

\[
\Gamma^i_{ii} = \frac{1}{2} \sum_{r=1}^{n} g^{ir} \left(\frac{\partial g_{ri}}{\partial x_i} + \frac{\partial g_{ri}}{\partial x_r} - \frac{\partial g_{ri}}{\partial x_i} \right) = \frac{1}{2} g^{ii} \left(\frac{\partial (1)}{\partial x_i} \right) = \frac{cx_i}{2A},
\]

还有

\[
\Gamma^i_{ii} = \frac{1}{2} \sum_{r=1}^{n} g^{ir} \left(\frac{\partial g_{ri}}{\partial x_i} + \frac{\partial g_{ri}}{\partial x_r} - \frac{\partial g_{ri}}{\partial x_i} \right) = \frac{1}{2} g^{ii} \left(\frac{\partial g_{ii}}{\partial x_i} + \frac{\partial g_{ri}}{\partial x_i} - \frac{\partial g_{ri}}{\partial x_i} \right)
\]
\[R_{ij} = \sum_{s=1}^{m} (\Gamma_{ij}^s \Gamma_{ii}^s - \Gamma_{ij}^s \Gamma_{ij}^s) + \frac{\partial \Gamma_{ij}^s}{\partial x_i} - \frac{\partial \Gamma_{ij}^s}{\partial x_j} \]

\[= \left(\sum_{s \neq i, j} \Gamma_{ij}^s \Gamma_{ii}^s + \Gamma_{ij}^s \Gamma_{ij}^s \right) - \Gamma_{ij}^i \Gamma_{ii}^j + \frac{\partial \Gamma_{ij}^j}{\partial x_i} - \frac{\partial \Gamma_{ij}^i}{\partial x_j} \]

\[= \sum_{s \neq i, j} \frac{c x_j}{2A} \left(- \frac{c x_j}{2A} \right) + \frac{c x_i}{2A} \left(- \frac{c x_i}{2A} \right) + \left(- \frac{c x_j}{2A} \right) \left(- \frac{c x_j}{2A} \right) \]

\[- \left(- \frac{c x_j}{2A} \right) \left(- \frac{c x_j}{2A} \right) - \left(- \frac{c x_i}{2A} \right) \frac{c x_i}{2A} + \frac{\partial (\frac{c x_i}{2A})}{\partial x_i} - \frac{\partial (\frac{c x_j}{2A})}{\partial x_j} \]

\[= - \sum_{s \neq i, j} \frac{c^2 x_j^2}{4A^2} + \left(\frac{c}{2A} - \frac{c^2 x_j^2}{4A^2} \right) + \left(\frac{c}{2A} - \frac{c^2 x_i^2}{4A^2} \right) \]

\[= \frac{c}{A} - \sum_{s=1}^{m} \frac{c^2 x_j^2}{4A^2} \]

\[= \frac{c}{A} - \frac{c}{A^2} (A - 1) = \frac{c}{A^2} \quad (i \neq j), \]

\[R \left(\frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_j} \right) = \frac{\langle \frac{\partial}{\partial x_i}, R \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right) \frac{\partial}{\partial x_j} \rangle}{\langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle^2 - \langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle \frac{\partial}{\partial x_j} \rangle^2} \]

\[= \frac{\langle \frac{\partial}{\partial x_i}, \sum_{k=1}^{m} R_{ij}^k \frac{\partial}{\partial x_k} \rangle}{\frac{1}{A^2} \cdot \frac{1}{A^2} - 0^2} \]

\[= A^4 R_{ij}^k \cdot \frac{1}{A^2} = A^2 \cdot \frac{c}{A^2} = c \quad (i \neq j). \]

进一步，令 \(e_i = A \frac{\partial}{\partial x_i} \)，则 \(\langle e_i, e_j \rangle = \langle A \frac{\partial}{\partial x_i}, A \frac{\partial}{\partial x_j} \rangle = A^2 \delta_{ij} = \delta_{ij}, \)

71
即 \(\{ e_i \} \) 为 \(TM \) 的局部 \(C^\infty \) 规范正交基向量场，设 \(\pi \) 为 \(p \in M \) 的任一维平面，\(\{ f_1, f_2 \} \) 为 \(\pi \) 的规范正交基，则存在正交变换 \(U \)，使 \(f_i = U e_i, i = 1, \ldots, m \)。因为 \(\langle UX, UY \rangle = \frac{1}{A^2} \langle X, Y \rangle \) 通常 \(\frac{1}{A^2} \langle X, Y \rangle \) 通常 \(\langle X, Y \rangle \)。所以如果作正交变换 \(U : M \to M \)，则 \(U_* (f_1, f_2) = U_* (e_1, e_2) \)。

\[
R_s (f_1 \wedge f_2) = R_s (U e_1 \wedge U e_2) = R_{U_*} (e_1 \wedge e_2)
= R_{U_*} (A \frac{\partial}{\partial x_1} \wedge A \frac{\partial}{\partial x_2}) = R_{U_*} (\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}) = c.
\]

还可利用公式直接进行计算，由于

\[
g = \frac{1}{A^2} \sum_{i=1}^{m} dx_i \otimes dx_i, \text{ 其中 } A^2 = 1 + \frac{c}{4} \sum_{i=1}^{m} x_i^2,
\]

\[
g_{ij} = \frac{\delta_{ij}}{A^2}, \quad g^{ij} = A^2 \delta^{ij},
\]

我们有

\[
\Gamma^i_{ij} = \frac{1}{2} \sum_{r=1}^{n} g^{ir} \left(\frac{\partial g_{jr}}{\partial x_i} + \frac{\partial g_{ir}}{\partial x_j} - \frac{\partial g_{ij}}{\partial x_r} \right)
= -\frac{c}{2A} (\delta_{ik} x_j + \delta_{jk} x_i - \delta_{ij} x_k).
\]

\[
\frac{\partial}{\partial x^i} \Gamma^i_{kj} - \frac{\partial}{\partial x^k} \Gamma^i_{ij}
\]

\[
= -\frac{c}{2} \frac{\partial}{\partial x^i} \delta_{ik} x_j + \delta_{jk} x_i - \delta_{ij} x_k
+ \frac{c}{2} \frac{\partial}{\partial x^k} \delta_{ik} x_j + \delta_{jk} x_i - \delta_{ij} x_k
\]

\[
= -\frac{c}{2} \frac{\partial}{\partial x^i} \delta_{ik} x_j + \delta_{jk} x_i - \delta_{ij} x_k
+ \frac{c}{2} \frac{\partial}{\partial x^k} \delta_{ik} x_j + \delta_{jk} x_i - \delta_{ij} x_k
\]

\[
+ \frac{c}{2} (\delta_{ik} x_j + \delta_{jk} x_i - \delta_{ij} x_k) \frac{2}{A^2} x_i - \frac{c}{2} (\delta_{ik} x_j + \delta_{jk} x_i - \delta_{ij} x_k) \frac{2}{A^2} x_i
\]

\[
= \frac{c}{A} (\delta_{ik} x_j - \delta_{ik} x_i) + \frac{c^2}{4A^2} (\delta_{ik} x_j + \delta_{jk} x_i - \delta_{ij} x_k) x_i
\]

72
\[-\frac{c^2}{4A^2} (\delta_{jk} x_j + \delta_{kj} x_k - \delta_{kl} x_l) x_l\]

\[= \frac{c^2}{A^2} \left[\frac{1}{c} (\delta_{ij} \delta_{sk} - \delta_{ik} \delta_{sj}) (1 + \frac{c}{4} \sum_{r=1}^{m} x_r^2) + \frac{1}{4} (\delta_{sk} x_k - \delta_{s} x_i) x_j + \frac{1}{4} (\delta_{ij} x_i - \delta_{s} x_s) \right],\]

\[\sum_{s=1}^{n} \left(T_{ij} T_{ji} - T_{ij} T_{ji} \right)\]

\[= \sum_{s=1}^{n} \frac{c^2}{4A^2} \left[(\delta_{sk} x_k + \delta_{ij} x_i - \delta_{sj} x_j) (\delta_{sk} x_k + \delta_{sj} x_j - \delta_{s} x_s) \\
- (\delta_{sk} x_k + \delta_{ij} x_i - \delta_{sj} x_j) (\delta_{sk} x_k + \delta_{sj} x_j - \delta_{s} x_s) \right]\]

\[= \frac{c^2}{A^2} \left[\frac{1}{4} (\delta_{sk} x_k - \delta_{s} x_s) x_j + \frac{1}{4} (\delta_{ij} x_i - \delta_{s} x_s) x_s + \frac{1}{4} (\delta_{ij} \delta_{sk} - \delta_{ij} \delta_{sk}) \sum_{l=1}^{m} x_l^2 \right],\]

于是

\[R_{jkl} = \frac{\partial}{\partial x^j} T_{kl} - \frac{\partial}{\partial x^l} T_{kj} + \sum_{s=1}^{n} \left(T_{ij} T_{ji} - T_{ij} T_{ji} \right)\]

\[= \frac{c}{A^2} (\delta_{ij} \delta_{sk} - \delta_{ik} \delta_{sj}),\]

\[K_{ijkl} = K \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_k}, \frac{\partial}{\partial x_l} \right)\]

\[= \sum_{s=1}^{n} g_{is} R_{jkl}^{is}\]

\[= \sum_{s=1}^{n} \frac{\delta_{is} c (\delta_{ij} \delta_{sk} - \delta_{ik} \delta_{sj})}{A^2}\]

\[= \frac{c}{A^2} (\delta_{ij} \delta_{sk} - \delta_{ik} \delta_{sj})\]

\[= c (g_{is} g_{ij} - g_{is} g_{ji}).\]

再根据定理 3(4) 得到 M 具有负常 Riemann 框曲率 c.
例 3 设 \(M = \{x = (x_1, \cdots, x_{m + 1}) \in \mathbb{R}^{m + 1} | \sum_{i=1}^{m} x_i^2 = c\}, c > 0, I: M \to \mathbb{R}^{m + 1} \) 为包含映射，为计算 \(p \in M \) 的 Riemann 轨曲线，不妨设 \(p \) 的第 \(m + 1 \) 个坐标大于 0，并选取南极投射得到局部坐标系 \((u_1, \cdots, u_m) \)，坐标投射 \(\varphi_i \) 使得

\[
\varphi_i^{-1}: \mathbb{R}^m \to M - \{(0, \cdots, 0, -1)\},
\]

\[
\varphi_i^{-1}: u \mapsto x = \left(\frac{2cu_1}{c + \sum_{i=1}^{m} u_i^2}, \cdots, \frac{2cu_m}{c + \sum_{i=1}^{m} u_i^2}, \frac{\sqrt{c}(c - \sum_{i=1}^{m} u_i^2)}{c + \sum_{i=1}^{m} u_i^2} \right).
\]

设 \(\mathbb{R}^{m + 1} \) 的标准 Riemann 度量为 \(\tilde{g} \)，则 \(M \) 的诱导 Riemann 度量 \(g = I^* \tilde{g} \)，且

\[
(q_i^{-1})^* \circ I^* \tilde{g} = (q_i^{-1})^* \circ I^* \left(\sum_{i=1}^{m+1} dx_i \otimes dx_i \right)
\]

\[
= \sum_{i=1}^{m} \left(\frac{2cu_i}{c + \sum_{j=1}^{m} u_j^2} - \frac{4cu_i \sum_{j=1}^{m} u_j du_j}{(c + \sum_{j=1}^{m} u_j^2)^2} \right) \otimes \left(\frac{-2cu_i}{c + \sum_{j=1}^{m} u_j^2} - \frac{4cu_i \sum_{j=1}^{m} u_j du_j}{(c + \sum_{j=1}^{m} u_j^2)^2} \right)
\]

\[
+ \frac{-4c \sqrt{c} \sum_{i=1}^{m} u_i du_i}{(c + \sum_{j=1}^{m} u_j^2)^2} \otimes \frac{-4c \sqrt{c} \sum_{i=1}^{m} u_i du_i}{(c + \sum_{j=1}^{m} u_j^2)^2}
\]

\[
= \frac{4c^2}{(c + \sum_{j=1}^{m} u_j^2)^2} \sum_{i=1}^{m} du_i \otimes du_i - \frac{16c^2}{(c + \sum_{j=1}^{m} u_j^2)^3} \left(\sum_{j=1}^{m} u_j du_j \right) \otimes \left(\sum_{i=1}^{m} u_i du_i \right)
\]

\[
+ \frac{16c^2}{(c + \sum_{j=1}^{m} u_j^2)^4} \left(\sum_{j=1}^{m} u_j du_j \right) \otimes \left(\sum_{j=1}^{m} u_j du_j \right)
\]

74
\[+ \frac{16c^3}{(c + \sum_{j=1}^{m} u_i^2)^4} \left(\sum_{i=1}^{m} u_i du_i \right) \otimes \left(\sum_{j=1}^{m} u_j du_j \right) \]

\[= \frac{4c^2}{(c + \sum_{j=1}^{m} u_i^2)^2} \sum_{i=1}^{m} du_i \otimes du_i \]

\[= \frac{c^2}{(1 + \frac{c}{4} \sum_{j=1}^{m} v_i^2)^2} \sum_{i=1}^{m} dv_i \otimes dv_i, \]

其中 \(u_i = \frac{c}{2} v_i \).

类似例 2 中直接计算的方法，有

\[g_{ij} = \frac{c^2}{A^2} \delta_{ij}, g^{ij} = \frac{A^2}{c^2} \delta^{ij}, I^i_j \text{ 和 } R^i_{jkl} \text{ 与例 2 形式相同，} \]

\[K_{ijkl} = \frac{c^3}{A^4} (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{kj}) = \frac{1}{c} (g_{ik} g_{lj} - g_{li} g_{kj}). \]

因此，\(M \) 的 Riemann 超曲率恒为 \(\frac{1}{c} \).

如果选 \(\{x_1, \ldots, x_m\} \) 为 \(p \) 的局部坐标系，\(\varphi^{-1}(x_1, \ldots, x_m) = (x_1, \ldots, x_m, \sqrt{c - \sum_{i=1}^{m} x_i^2}) \)，则

\[x_{m+1} = \sqrt{c - \sum_{i=1}^{m} x_i^2}, \quad dx_{m+1} = -\sum_{i=1}^{m} x_i dx_i, \]

\[(\varphi^{-1})^* \tilde{g} = (\varphi^{-1})^* I^* \left(\sum_{i=1}^{m+1} dx_i \otimes dx_i \right) \]

\[= \frac{1}{x_{m+1}^2} \left(-\sum_{i=1}^{m} x_i dx_i \right) \otimes \left(-\sum_{i=1}^{m} x_i dx_i \right) + \sum_{i=1}^{m} dx_i \otimes dx_i \]

\[= \sum_{i=1}^{m} \left(1 + \frac{x_i^2}{x_{m+1}^2} \right) dx_i \otimes dx_i + \sum_{i \neq j} \frac{x_i x_j}{x_{m+1}^2} dx_i \otimes dx_j. \]
因为 $\hat{g} = \sum_{i=1}^{m+1} dx_i \otimes dx_i$ 在 \mathbb{R}^{m+1} 上正定，所以 $(\varphi^{-1})^\ast \cdot I^\ast \hat{g}$ 也正定，且

$$(g_{ij}) = I_m + P^TP,$$

其中 I_m 是 m 阶单位矩阵，P^T 是 P 的转置矩阵，$P = \frac{1}{x_{m+1}}(x_1, \cdots, x_m)$。

设 $(g^{ij}) = I_m + \lambda P^TP$，则由

$$(I_m + \lambda P^TP)(I_m + P^TP)$$

$$= I_m + (\lambda + 1)P^TP + \lambda P^TPP^TP$$

$$= I_m + [\lambda(1 + PP^T) + 1]P^TP = I_m,$$

令 $\lambda(1 + PP^T) + 1 = 0$，即

$$\lambda = \frac{-1}{1 + PP^T} = -\frac{1}{\frac{1}{2} \sum_{i=1}^{m+1} x_i^2} = -\frac{x_{m+1}^2}{\sum_{i=1}^{m+1} x_i^2} = -\frac{1}{c} x_{m+1}^2.$$

于是

$$g^{ij} = (\delta^{ij} - \frac{x_i x_j}{c}),$$

$$I^{ij} = \frac{1}{2} \sum_{r=1}^{m} g^{iv} \left(\frac{\partial g_{ri}}{\partial x_j} + \frac{\partial g_{rj}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_r} \right)$$

$$= \frac{1}{2} \sum_{r=1}^{m} g^{iv} \left[\frac{\partial}{\partial x_j} \left(\delta_{ri} + \frac{x_i x_r}{x_{m+1}^2} \right) + \frac{\partial}{\partial x_i} \left(\delta_{rj} + \frac{x_r x_j}{x_{m+1}^2} \right) \right.$$

$$- \frac{\partial}{\partial x_r} \left(\delta_{ij} + \frac{x_i x_j}{x_{m+1}^2} \right) \right]$$

$$= \frac{1}{2} \sum_{r=1}^{m} g^{iv} \left[\frac{2x_i x_j x_r}{x_{m+1}^4} + \frac{\delta_{ij}}{x_{m+1}^2} + \frac{\delta_{rj}}{x_{m+1}^2} \right.$$

$$\left. + \frac{2x_i x_j x_r}{x_{m+1}^4} + \frac{\delta_{ij}}{x_{m+1}^2} + \frac{\delta_{rj}}{x_{m+1}^2} \right.$$
\[
\begin{align*}
&= \sum_{r=1}^{n} (\delta^{tr} - \frac{x_kx_r}{c}) \left(\frac{x_i x_j x_r}{x_{m+1}^4} + \frac{\delta_{ij} x_r}{x_{m+1}^2} \right) \\
&= \frac{1}{x_{m+1}^2} \sum_{r=1}^{n} (\delta^{tr} x_r - \frac{x_kx_r^2}{c}) (\delta_{ij} + \frac{x_j}{x_{m+1}^2}) \\
&= \frac{1}{x_{m+1}^2} (x_k - \frac{x_k}{c} \sum_{r=1}^{n} x_r^2) (\delta_{ij} + \frac{x_j}{x_{m+1}^2}) \\
&= \frac{x_k}{c} (\delta_{ij} + \frac{x_j}{x_{m+1}^2}),
\end{align*}
\]

\[
\frac{\partial}{\partial x_k} \Gamma_{kj}^{l} - \frac{\partial}{\partial x_l} \Gamma_{kj}^{v}
\]

\[
\begin{align*}
&= \frac{\partial}{\partial x_k} \left[\frac{x_i}{c} (\delta_{ij} + \frac{x_j}{x_{m+1}^2}) \right] - \frac{\partial}{\partial x_l} \left[\frac{x_i}{c} (\delta_{ij} + \frac{x_j}{x_{m+1}^2}) \right] \\
&= \frac{1}{c} (\delta_{kj} - \delta_{ik}) + \frac{\partial_{ij} x_i x_j + \partial_{ij} x_i x_l + \partial_{ij} x_i x_k}{cx_{m+1}^2} \\
&- \frac{\partial_{ij} x_i x_j + \partial_{ij} x_i x_l + \partial_{ij} x_i x_k}{cx_{m+1}^2} + \frac{2x_i x_j x_k}{cx_{m+1}^4} - \frac{2x_i x_j x_k}{cx_{m+1}^4} \\
&= \frac{1}{c} (\delta_{kj} - \delta_{ik}) + \frac{\partial_{ij} x_i x_j + \partial_{ij} x_i x_l - \partial_{ij} x_i x_j - \delta_{ij} x_i x_k}{cx_{m+1}^2},
\end{align*}
\]

\[
\sum_{l=1}^{m} (\Gamma_{ij}^{l} \Gamma_{kl}^{v} - \Gamma_{ij}^{l} \Gamma_{kl}^{v})
\]

\[
\begin{align*}
&= \frac{1}{c^2} \sum_{l=1}^{m} \left[x_i (\delta_{ij} + \frac{x_j}{x_{m+1}^2}) x_r (\delta_{kl} + \frac{x_l}{x_{m+1}^2}) \\
&- x_i (\delta_{ij} + \frac{x_j}{x_{m+1}^2}) x_r (\delta_{kl} + \frac{x_l}{x_{m+1}^2}) \right] \\
&= \frac{1}{c^2} \sum_{l=1}^{m} x_i x_r \left[(\delta_{ij} \delta_{kl} - \delta_{ik} \delta_{jl}) + \frac{\partial_{ij} x_i x_j + \delta_{ij} x_i x_l - \delta_{ij} x_i x_j - \delta_{ij} x_i x_k}{x_{m+1}^2} \right]
\end{align*}
\]
\[
= \frac{1}{c^2} \left[(\delta_i x_i x_j - \delta_k x_k x_j) + \frac{1}{x_{m+1}^2} (x_{m+1}^2 \sum_{i=1}^m x_i^2 - \delta_k x_k x_i) \right] \\
+ \frac{1}{x_{m+1}^2} (x_{m+1}^2 x_{m+1} - \delta_k x_k x_{m+1}) \\
= \frac{1}{c^2} \left[(\delta_i x_i x_j - \delta_k x_k x_j) + \frac{1}{x_{m+1}^2} (\delta_i x_i x_j - \delta_k x_k x_i) (c - x_{m+1}^2) \right] \\
= \frac{\delta_i x_i x_j - \delta_k x_k x_i}{cx_{m+1}^2}, \\
R_{jk} = \frac{\partial}{\partial x_k} \Gamma_{kj}^{il} - \frac{\partial}{\partial x_i} \Gamma_{kj}^{jl} + \sum_{i=1}^m (\Gamma_{ij}^{lu} - \Gamma_{kj}^{lu}) \\
= \frac{1}{c} \left(\delta_{ik} \delta_{lj} - \delta_{il} \delta_{kj} \right) + \frac{\delta_i x_i x_j + \delta_j x_j x_i - \delta_k x_k x_i - \delta_l x_l x_i}{cx_{m+1}^2} \\
+ \frac{\delta_j x_j x_k - \delta_k x_k x_l}{cx_{m+1}^2} \\
= \frac{1}{c} \left[\delta_{ik} \left(\delta_{lj} + \frac{x_l x_j}{x_{m+1}^2} \right) - \delta_{ij} \left(\delta_{ik} + \frac{x_k x_i}{x_{m+1}^2} \right) \right], \\
K_{ijkl} = \sum_{s=1}^m g_{is} R_{jskl} \\
= \frac{1}{c} \sum_{s=1}^m g_{is} (\delta_{ks} g_{lj} - \delta_{ls} g_{kj}) \\
= \frac{1}{c} \left(g_{ks} g_{lj} - g_{kj} g_{ls} \right), \\
\text{这就证明了 } M = \{ x = (x_1, \cdots, x_{m+1}) \in \mathbb{R}^{m+1} | \sum_{i=1}^{m+1} x_i^2 = c \} \text{ 的 Riemann 超曲率为 } \frac{1}{c}. \\
\text{另一证法可参阅 1.6 例 5.} \\
\text{例 4 常负曲率的双曲空间的另一例子。设 } H^n = \{ x = (x_1, \cdots, x_{m+1}) \in \mathbb{R}^{m+1} | \sum_{i=1}^m x_i^2 - x_{m+1}^2 = c (c < 0), x_{m+1} > 0 \} = \{ x \in \mathbb{R}^{m+1} | x \}
\[
= (x_1, \ldots, x_n, \sqrt{\sum_{i=1}^{m} x_i^2 - c}),
\]

\[
\varphi^{-1}: \mathbb{R}^m \rightarrow H^n,
\]

\[
(x_1, \ldots, x_m) \mapsto (x_1, \ldots, x_m, \sqrt{\sum_{i=1}^{m} x_i^2 - c}),
\]

则微分构造的基 \(\mathcal{D}' = \{(H^n, \varphi)\} \) 唯一确定了一个 \(m \) 维 \(C^\infty \) 流形 \((M, \mathcal{D})\)。记 \(I: H^n \rightarrow \mathbb{R}^{n+1} \) 为包含映射，

\[
\tilde{g} = \sum_{i=1}^{m} dx_i \otimes dx_i - dx_{m+1} \otimes dx_{m+1}
\]

为 2 阶 \(C^\infty \) 对称协变张量场，令 \(g = I^* \tilde{g} \)。则

\[
(q^{-1})^* \circ I^* \tilde{g} = \sum_{i=1}^{m} dx_i \otimes dx_i - dx_{m+1} \otimes dx_{m+1}
\]

\[
= \sum_{i=1}^{m} \left(1 - \frac{x_i^2}{x_{m+1}^2} \right) dx_i \otimes dx_i - \sum_{i \neq j} \frac{x_i x_j}{x_{m+1}^2} dx_i \otimes dx_j,
\]

\[
(\tilde{g}_{ij}) = I_m - P^TP = (\delta_{ij} - \frac{x_i x_j}{x_{m+1}^2}),
\]

\[
P = \frac{1}{x_{m+1}} (x_1, \ldots, x_m).
\]

由行列式的性质知

\[
\det[\lambda I_m - (I_m - P^TP)] = \det[(\lambda - 1)I_m + P^TP]
\]

\[
= (\lambda - 1)^{n-1} \left(\lambda + \frac{1}{x_{m+1}^2} \sum_{i=1}^{m} x_i^2 \right),
\]

即 \((\tilde{g}_{ij}) = I_m - P^TP\) 的特征值为 1, \ldots, 1, \quad -\frac{1}{x_{m+1}^2} \sum_{i=1}^{m} x_i^2 = -c
\]

因此 \((\tilde{g}_{ij})\) 是正定的，\(g = I^* \tilde{g} \) 确实为 \(H^n \) 的 Riemann 度量。

令 \((g'') = I_m + \lambda P^TP\)，则

\[
I_m = (I_m - P^TP)(I_m + \lambda P^TP)
\]

\[
= I_m + (\lambda - 1)P^TP - \lambda(P^TP)P^TP
\]

\[
= I_m + [\lambda(1 - PP^T) - 1]P^TP,
\]

79
\[\lambda (1 - PP^T) - 1 = 0. \]

\[\lambda = \frac{1}{1 - PP^T} = \frac{1}{1 - \sum_{i=1}^{m} \frac{x_i^2}{x_{m+1}^2}} = -\frac{x_{m+1}^2}{x_{m+1}^2} = -\frac{x_{m+1}^2}{c}, \]

\[(g^{ij}) = (\delta^{ij} - \frac{x_{m+1}^2}{c}PP^P) = (\delta^{ij} - \frac{x_i}{c}), \]

\[\Gamma^r_{ij} = \frac{1}{2} \sum_{r=1}^{m} (\frac{\partial g_{ir}}{\partial x_j} + \frac{\partial g_{jr}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_r}) \]

\[= \frac{1}{2} \sum_{r=1}^{m} g^{rs} \left[-\frac{\partial}{\partial x_r} \left(\frac{x_i}{x_{m+1}^2} \right) \right] \]

\[= \frac{1}{2} \sum_{r=1}^{m} \left[-\frac{\partial}{\partial x_r} \left(\frac{x_i}{x_{m+1}^2} \right) + \frac{\partial}{\partial x_r} \left(\frac{x_i}{x_{m+1}^2} \right) \right] \]

\[= \frac{1}{2} \sum_{r=1}^{m} \left[-\delta_{ir}x_i + \delta_{ir}x_i \right] = 0 \]

\[= \sum_{r=1}^{m} \delta^{kr} \left(\frac{x_k}{c} \right) \left(\frac{x_i}{x_{m+1}^2} \right) \]

\[= \frac{x_i x_k}{x_{m+1}^4} - \frac{\delta_{ij} x_k}{x_{m+1}^4} = \frac{\sum_{r=1}^{m} x_r^2}{x_{m+1}^4} \]

\[= \frac{x_i x_k (1 - \frac{1}{c} \sum_{r=1}^{m} x_r^2)}{x_{m+1}^4} - \frac{\delta_{ij} x_k}{x_{m+1}^4} \]

\[= -\frac{1}{c} \left(\frac{x_i x_k}{x_{m+1}^2} - \delta_{ij} x_k \right), \]

\[R^s_{jkl} = \frac{\partial}{\partial x_k} \Gamma^r_{ij} - \frac{\partial}{\partial x_l} \Gamma^r_{ij} + \sum_{t=1}^{m} (\Gamma_{ij} \Gamma_{kt} - \Gamma_{ij} \Gamma_{kt}) \]

\[= -\frac{1}{c} \frac{\partial}{\partial x_k} \left(\frac{x_i x_j x_k}{x_{m+1}^2} - \delta_{ij} x_k \right) + \frac{1}{c} \frac{\partial}{\partial x_l} \left(\frac{x_i x_j x_l}{x_{m+1}^2} - \delta_{ik} x_j \right) \]

\[+ \frac{1}{c^2} \sum_{t=1}^{m} \left(\frac{x_i x_j x_t}{x_{m+1}^2} - \delta_{ij} x_t \right) \left(\frac{x_k x_j x_t}{x_{m+1}^2} - \delta_{ik} x_t \right) \]
\[- \frac{1}{c^2} \sum_{t=1}^{m} \left(\frac{x_k x_t}{x_{m+1}} - \delta_{kt} \frac{x_t}{x_{m+1}} \right) \left(\frac{x_k x_t}{x_{m+1}} - \delta_{kt} \frac{x_t}{x_{m+1}} \right) \]

\[= \frac{1}{c} \left(\delta_{ij} \delta_{ks} - \delta_{jk} \delta_{ls} \right) \]

\[+ \frac{\delta_{ij} x_k x_s (2x_k) - x_k x_s (2x_t)}{c^2 x_{m+1}} + \frac{x_k x_s (2x_k) - x_k x_s (2x_t)}{c^2 x_{m+1}} \sum_{t=1}^{m} x_t^2 \]

\[= \frac{1}{c} \left(\delta_{ij} \delta_{ks} - \delta_{jk} \delta_{ls} \right) - \frac{\delta_{ij} x_k x_s - \delta_{jk} x_k x_s}{c^2 x_{m+1}^2} \sum_{t=1}^{m} x_t^2 + \frac{1}{c^2} \left(\delta_{ij} x_k x_s - \delta_{jk} x_k x_s \right) \]

\[= \frac{1}{c} \left(\delta_{ij} \delta_{ks} - \delta_{jk} \delta_{ls} \right) - \frac{\delta_{ij} x_k x_s - \delta_{jk} x_k x_s}{c^2 x_{m+1}^2} \sum_{t=1}^{m} x_t^2 + \frac{1}{c^2} \left(\delta_{ij} x_k x_s - \delta_{jk} x_k x_s \right) \]

\[K_{ijkl} = \sum_{s=1}^{m} g_{is} R_{jkl}^s \]

\[= - \frac{1}{c} \sum_{s=1}^{m} g_{is} \left[- \left(\delta_{ij} \delta_{ks} - \delta_{jk} \delta_{ls} + \frac{\delta_{ks} x_j - \delta_{ls} x_j}{x_{m+1}} \right) \right] \]

\[= - \frac{1}{c} \sum_{s=1}^{m} g_{is} \left[- \delta_{is} (\delta_{ij} - \frac{x_j}{x_{m+1}^2}) + \delta_{is} (\delta_{jk} - \frac{x_j}{x_{m+1}^2}) \right] \]

\[= - \frac{1}{c} \sum_{s=1}^{m} g_{is} (- \delta_{is} g_{ij} + \delta_{is} g_{jk}) \]

\[= \frac{1}{c} (g_{is} g_{ij} - g_{is} g_{jk}). \]

注 1 应用例 1, 3, 4 的结果，不难看出

\[R^n(c) = \{(x^1, \ldots, x^{m+1}) \in \mathbb{R}^{m+1} | \sqrt{c} \left[\sum_{i=1}^{m} (x^i)^2 + \text{sgn} \ c \cdot (x^{m+1})^2 \right] - 2x^{m+1} = 0 \} \]

81
为在 Riemann 度量 \(g = \sum_{i=1}^{m} dx^i \otimes dx^i + \text{sgn } c \cdot dx^{n+1} \otimes dx^{n+1} \) 下的常截曲率 c 的标准空间形式.

例 5 设 \(M = \{ x = (x_1, \cdots, x_m) \in \mathbb{R}^n | x_m > 0 \} \) 为上半空间，

\[
g = \frac{1}{c x_m^2} \sum_{i=1}^{m} dx_i \otimes dx_i, \quad g_{ij} = \frac{\delta_{ij}}{c x_m^2}, \quad g^{ij} = c x_m^3 \delta^{ij}, c > 0.
\]

则

\[
\Gamma^s_{ij} = \frac{1}{2} \sum_{r=1}^{m} g^{sr} \left(\frac{\partial g_{ri}}{\partial x_j} + \frac{\partial g_{rj}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_r} \right)
\]

\[
= \frac{1}{2} \sum_{r=1}^{m} c x_m^3 \delta^{sr} \left[2 \delta_{ri} \delta_{jm} - 2 \delta_{rj} \delta_{im} + 2 \delta_{ij} \delta_{rm} \right]
\]

\[
= \frac{1}{x_m} \left(\delta_{ij} \delta_{km} - \delta_{ik} \delta_{jm} - \delta_{kj} \delta_{im} \right),
\]

\[
\frac{\partial}{\partial x_k} \Gamma^s_{ij} - \frac{\partial}{\partial x_i} \Gamma^s_{kj} = \frac{1}{x_m^2} \sum_{t=1}^{m} \left(\Gamma^s_{ij} \Gamma^t_{kt} - \Gamma^s_{kj} \Gamma^t_{it} \right)
\]

\[
= \frac{1}{x_m^2} \sum_{t=1}^{m} \left[\left(\delta_{ij} \delta_{tm} - \delta_{it} \delta_{jm} - \delta_{it} \delta_{jm} \right) \delta_{km} + (\delta_{kj} \delta_{tm} - \delta_{kt} \delta_{jm} - \delta_{kt} \delta_{jm}) \delta_{im} \right]
\]

\[
= \frac{1}{x_m} \sum_{t=1}^{m} \left(\Gamma^s_{ij} \Gamma^t_{kt} - \Gamma^s_{kj} \Gamma^t_{it} \right)
\]

\[
= \frac{1}{x_m^2} \sum_{t=1}^{m} \left[\left(\delta_{ij} \delta_{tm} - \delta_{it} \delta_{jm} - \delta_{it} \delta_{jm} \right) \left(\delta_{it} \delta_{km} - \delta_{it} \delta_{km} \right) - \left(\delta_{kj} \delta_{tm} - \delta_{kt} \delta_{jm} - \delta_{kt} \delta_{jm} \right) \left(\delta_{it} \delta_{km} - \delta_{it} \delta_{km} \right) \right]
\]

\[
= \frac{1}{x_m^2} \left[(\delta_{ij} \delta_{st} - \delta_{ij} \delta_{st}) + (\delta_{ij} \delta_{sm} - \delta_{st} \delta_{jm}) \delta_{km} + (\delta_{st} \delta_{jm} - \delta_{ij} \delta_{sm}) \delta_{im} \right],
\]

\[
R^s_{jkl} = \frac{\partial}{\partial x_k} \Gamma^s_{ij} - \frac{\partial}{\partial x_l} \Gamma^s_{ij} + \sum_{t=1}^{m} (\Gamma^s_{ij} \Gamma^t_{kt} - \Gamma^s_{kj} \Gamma^t_{it})
\]

\[
= \frac{1}{x_m^2} \left(\delta_{ij} \delta_{st} - \delta_{ij} \delta_{st} \right),
\]

82
\[K_{ijkl} = \sum_{s=1}^{m} g_{is} R^s_{jkl} \]
\[= \sum_{s=1}^{m} \frac{1}{c x^4_m} \delta_{is} (\delta_{kj} \delta_{ul} - \delta_{lj} \delta_{uk}) \]
\[= - \frac{1}{c x^4_m} (\delta_{is} \delta_{lj} - \delta_{lj} \delta_{is}) \]
\[= - c (g_{is} g_{lj} - g_{lj} g_{is}) \]

这就证明了 \(M \) 的 Riemann 截曲率为 \(-c\).

第 5 章 5.2 定理 3 指出：

定理 5 任何两个 \(C^\infty \) 单连通 (参阅第 5 章 5.1 定义 4)、完备的具有相同常 Riemann 截曲率的流形 \((\tilde{M}, \tilde{g})\) 和 \((M, g)\) 是彼此等距的，即存在 \(C^\infty \) 微分同胚 \(f: \tilde{M} \to M \)，使得 \(\tilde{g} = f^* g \).

定义 3 \(C^\infty \) 单连通 (参阅第 5 章 5.1 定义 4) 的常 Riemann 截曲率的流形 \((M, g)\) 称为**空间形式**.

例 1，例 3 和例 4 都是空间形式的典型例子。这些例子的单连通性是明显的。要证明的是完备性。例 1 的完备性在数学分析中早已知道。例 3 中的 \(m \) 维球面是紧致集从而为序列紧致集，由此推得它也是完备的。至于例 4 的完备性，是不明显的，但根据第 5 章 5.2 推论 2，如果可证明它是 \(C^\infty \) 齐性 Riemann 流形，那么就立即推出它是完备的（注意，例 1，例 3 也是 \(C^\infty \) 齐性 Riemann 流形）。

事实上，Witt 定理（参阅 [Ar]，p121）指出，设 \(Q \) 为线性空间 \(V \) 上的非退化二次型，\(U \subseteq V \) 为线性子空间，\(f: U \to V \) 为线性映射，使得 \(Q(f(x)) = Q(x) \), \(\forall x \in U \)，则 \(f \) 可以扩张到 \(V \) 上的线性同构，且 \(Q(f(x)) = Q(x) \), \(\forall x \in V \)。特别地，如果 \(x, y \in V, Q(x) = Q(y) \)，则存在线性同构 \(f: V \to V \) 使得 \(Q \) 不变和 \(f(x) = y \)。

根据 Witt 定理，考虑 \(C^\infty \) 作用在 \(\mathbb{R}^{n+1} \) 上且保持非退化二次型 \(Q(x) = \sum_{i,j=1}^{n+1} \tilde{g}_{ij} x_i x_j \) 和 \(C^\infty \) Riemann 度量 \(\tilde{g} = \sum_{i,j=1}^{n+1} \tilde{g}_{ij} dx_i \otimes dx_j \)，都不变的
线性等距变换群 G，它限制到 C^∞ 流形 $M = \{x \in \mathbb{R}^{n+1} | \sum_{i,j=1}^{n+1} g_{ij} x_i x_j = c\}$ 上是一个 C^∞ 可迁 Lie 群，所以 M 是 C^∞ 齐性 Riemann 流形。

如果一个空间形式的 Riemann 载曲率是正的、负的或零，则称它是椭圆的、双曲的或抛物的。

最后，我们来研究与 Riemann 载曲率张量 K 和 Riemann 载曲率密切相关的 Ricci 张量 $\text{Ric}(X,Y)$ 和数量曲率 $s(p)$。

定义 4 设 M 是 m 维 C^∞ 流形，∇ 为线性联络，对 $\forall X, Y, Z \in T_x M$，由

$$\text{Ric}_x(X,Y) = \text{trace}(Z \to R(Z,X)Y)$$

决定了一个 C^∞ 2 阶协变张量场，称为 Ricci 张量场。

如果 $(M, g) = (M, \langle , \rangle)$ 是 Riemann 流形，$\{e_1, \cdots, e_m\}$ 为 $T_x M$ 的规范正交基，则对 $\forall X, Y \in T_x M$，

$$\text{Ric}_x(X,Y) = \sum_{i=1}^m \langle e_i, R(e_i, X)Y \rangle$$

$$= \sum_{i=1}^m K(e_i, Y, e_i, X),$$

易见

$$\text{Ric}_x(X,Y) = \sum_{i=1}^m K(e_i, Y, e_i, X)$$

$$= \sum_{i=1}^m K(e_i, X, e_i, Y) = \sum_{i=1}^m \langle e_i, R(e_i, Y)X \rangle$$

$$= \text{Ric}_x(Y, X),$$

即 Ric 是对称的。

称 $s(p) = \text{trace} \text{Ric}(X,Y) = \sum_{j=1}^m \text{Ric}_x(e_j, e_j) = \sum_{i,j=1}^m K(e_i, e_j, e_i, e_j)$

$$= \sum_{i \neq j}^m K(e_i, e_j, e_i, e_j)$$ 为数量曲率。自然，它与规范正交基的选取无关，且为 M 上的 C^∞ 函数。

84
在局部 C^∞ 规范文正基 $\{e_i\}$ 及其对偶基 $\{e^i\}$ 下，

$$R_{ij} = R(e_i, e_j) = \sum_{l=1}^{m} \langle e_i, R(e_l, e_i)e_j \rangle$$

$$= \sum_{l=1}^{m} K_{ijkl} = R_{ji},$$

$$\text{Ric} = \sum_{i,j=1}^{m} R_{ij} e^i \otimes e^j,$$

$$s = \sum_{i=1}^{m} \text{Ric}(e_i, e_i) = \sum_{i=1}^{m} R_{ii} (= \text{trace}(R_{ii}))$$

$$= \sum_{i=1}^{m} K_{ii},$$

如果选局部坐标基向量场（局部标架场）$\{ \frac{\partial}{\partial x^i}\}$，则

$$R_{ij} = \text{Ric} \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right)$$

$$= \sum_{s=1}^{m} \langle e_s, R(e_s, \frac{\partial}{\partial x^i}) \frac{\partial}{\partial x^j} \rangle$$

$$= \sum_{i=1}^{m} \left(\sum_{k=1}^{m} a^i_k \frac{\partial}{\partial x^i}, R \left(\sum_{l=1}^{m} a^i_l \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right) \right) \frac{\partial}{\partial x^j}$$

$$= \sum_{k=1}^{m} g^{tk} K_{kji}.$$

$$\text{Ric} = \sum_{j,k=1}^{m} R_{jk} dx^j \otimes dx^k$$

$$s = \sum_{i,j,k=1}^{m} R_{jk} dx^j \otimes dx^k (e_i, e_i)$$

$$= \sum_{i,j,k=1}^{m} R_{jk} dx^j \otimes dx^k \left(\sum_{l=1}^{m} a^i_l \frac{\partial}{\partial x^l}, \sum_{s=1}^{m} a^i_s \frac{\partial}{\partial x^s} \right)$$

$$= \sum_{j,k,l,s=1}^{m} R_{jk} g^{i\ell} \delta_{i}^{j} \delta_{s}^{k}.$$
\[= \sum_{i,k=1}^{m} g^{ij} R_{ik}. \]

对于常截曲率的 \(C^\infty \) Riemann 流形的数量曲率，有

定理 6 设 \((M, g) = (M, \langle, \rangle)\) 为具有常截曲率 \(c\) 的 \(m\) 维 \(C^\infty\) Riemann 流形，则其数量曲率

\[s = cm(m - 1). \]

证明 设 \(\{e_i\}\) 为 \((M, g)\) 的局部 \(C^\infty\) 规范正交基向量场，则

\[K_{ijkl} = c(\delta_{ik}\delta_{jl} - \delta_{jl}\delta_{ik}), \]

\[K_{il} = c(\delta_{il}\delta_{kl} - \delta_{kl}\delta_{il}) = c(1 - \delta_{il}\delta_{kl}) \]

\[= \begin{cases} 0, & i = l, \\ c, & i \neq l, \end{cases} \]

\[s = \sum_{i,l=1}^{m} K_{il} = \sum_{i \neq l} K_{il} \]

\[= \sum_{i \neq l} c = c(m^2 - m) = cm(m - 1). \]

类似 Schur 定理，我们有下面的经典结果。

定理 7 设 \((M, g)\) 为 \(m\) 维 \(C^\infty\) 连通 Riemann 流形，\(m \geq 3\)，如果 \(\text{Ric} = \lambda g, \lambda\) 为 \(M\) 上的 \(C^\infty\) 函数，则 \(\lambda\) 必为常数。

证明 在局部坐标系 \(\{x_i\}\) 中，由 Bianchi 第 2 恒等式可得 (引理 3)

\[K_{ijkl} + K_{ijlk} + K_{ijlk} = 0. \]

于是

\[\text{Ric}_{ij} = \lambda_{ij} g, \]

\[\text{Ric}_{ij} = \lambda_{ij} g_{ij} + \lambda g_{ij} = \lambda_{ij} g_{ij}, \]

\[\lambda_{ij} \delta^j_i = \sum_{j=1}^{m} \lambda_{ij} g_{ij} = \sum_{j=1}^{m} R_{ij} g^{ij}, \]

\[0 = \sum_{i,j,k,l=1}^{m} g^{ij} g^{kl} (K_{ijkl} + K_{ijlk} + K_{ijlk}) \]

\[= \sum_{j,l=1}^{m} g^{jl} R_{jl} + \sum_{i,k=1}^{m} g^{ik} R_{ik} + \sum_{j,i,l=1}^{m} g^{jl} R_{jl}. \]
\[
\begin{align*}
&= \sum_{j=1}^{m} \lambda_{ij} \delta_j^i - \sum_{k=1}^{m} \lambda_{ik} \delta_k^i - \sum_{l=1}^{m} \lambda_{il} \delta_l^i \\
&= m \lambda_{1} - \lambda_{1n} - \lambda_{1n} \\
&= (m - 2) \lambda_{1n}.
\end{align*}
\]

因此，\(\lambda_{1n} = 0, n = 1, \cdots, m(m \geq 3) \). 从而 \(\lambda \) 为常值。

引理 3 \(\sum_{i,j,k} (\nabla_{x}K)(W, U, X, Y) = 0 \), 即
\[\sum_{k,l,n} K_{ijkl} = K_{ijlkn} + K_{ijlmk} = 0.\]

证明 因为
\[
\begin{align*}
(\nabla_{x}K)(W, U, X, Y) &+ K(\nabla_{x}W, U, X, Y) + K(W, \nabla_{x}U, X, Y) \\
&+ K(W, U, \nabla_{x}X, Y) + K(W, U, X, \nabla_{x}Y) \\
&= \nabla_{x}(K(W, U, X, Y)) \\
&= \nabla_{x}(W, R(X, Y)U) \\
&= \langle \nabla_{x}W, R(X, Y)U \rangle + \langle W, (\nabla_{x}R)(X, Y)U \rangle \\
&+ \langle W, R(\nabla_{x}X, Y)U \rangle + \langle W, R(X, \nabla_{x}Y)U \rangle \\
&+ \langle W, R(X, Y)\nabla_{x}U \rangle,
\end{align*}
\]
所以
\[
(\nabla_{x}K)(W, U, X, Y) = \langle W, (\nabla_{x}R)(X, Y)U \rangle,
\]
\[\sum_{x, y, z} (\nabla_{x}K)(W, U, X, Y) = \langle W, (\nabla_{x}R)(X, Y)U \rangle \]
\[\quad = \langle W, R(X, Y)U \rangle \]
\[\quad = \langle W, 0 \rangle = 0.\]
取坐标基向量 \(X = \frac{\partial}{\partial x^1}, Y = \frac{\partial}{\partial x^2}, Z = \frac{\partial}{\partial x^3}, W = \frac{\partial}{\partial x^4}, U = \frac{\partial}{\partial x^4} \), 立即得到
\[
\sum_{k,l,n} K_{ijkl} = 0.
\]
由张量的偏线性，从引理中坐标形式的第 2 式立即推出第 1 式。

定义 5 如果 \(m \) 维 \(C^\infty \) Riemann 流形 \((M, g)\) 满足 \(\text{Ric} = \lambda g, \lambda \) 为常数，则称 \((M, g)\) 为 Einstein 流形。

推论 1 3 维 \(C^\infty \) Einstein 流形 \((M, g)\) 必为常截曲率的 Rie-
mann 流形。

证明 设 π 为 TₚM 的任一平面, e₁, e₂, e₃ 为 TₚM 的规范正交基，使得 π 由 e₁, e₂ 张成, 即 π = e₁ ∧ e₂, 则

\[
\begin{align*}
\text{Ric}(e₁, e₁) &= R(e₁ ∧ e₂) + R(e₁ ∧ e₃), \\
\text{Ric}(e₂, e₂) &= R(e₂ ∧ e₁) + R(e₂ ∧ e₃), \\
\text{Ric}(e₃, e₃) &= R(e₃ ∧ e₁) + R(e₃ ∧ e₂);
\end{align*}
\]

因此

\[
\begin{align*}
\lambda &= \lambda\left[g(e₁, e₁) + g(e₂, e₂) - g(e₃, e₃)\right] \\
&= \text{Ric}(e₁, e₁) + \text{Ric}(e₂, e₂) - \text{Ric}(e₃, e₃) \\
&= 2R(e₁ ∧ e₂) = 2R(\pi),
\end{align*}
\]

\[
R(\pi) = \frac{1}{2} \lambda, \text{ 即 } (M, g) \text{ 为常截曲率 Riemann 流形。}
\]

推论 2 设 (M, g) 为 3 维 C∞ Einstein 流形, 且对任何单位向量 X ∈ TₚM 有

\[
0 < c < \text{Ric}(X, X) < 2c \text{ (或 } 2c < \text{Ric}(X, X) < c < 0),
\]

则 (M, g) 为常正 (负) 截曲率的 Riemann 流形。

证明 从推论 1 中的式子, 有

\[
R(\pi) = \frac{1}{2}\left[\text{Ric}(e₁, e₁) + \text{Ric}(e₂, e₂) - \text{Ric}(e₃, e₃)\right]
\]

\[
> \frac{1}{2}(c + c - 2c) = 0.
\]

在过去十几年中, 人们对 Ricci 曲率及数量曲率的理解有了很大的推进, 后面还将会讨论有关 Ricci 曲率的一些问题, 但很少提及数量曲率, 因此, 有必要列出一些关于数量曲率这个函数的论文: [GL], [SY].

1.5 Laplace 算子 Δ

本节主要讨论 C∞ 向量场的散度和 C∞ 函数的 Laplace 及其有关的性质.
定义 1 V 为 m 维实向量空间，$\otimes^{0,s} V$ 为 V 上的 $(0,s)$ 型张量的全体，对 $v \in V, \theta \in \otimes^{0,s} V$, 称

$$i_v: \otimes^{0,s} V \to \otimes^{0,s-1} V,$$

$$i_v \theta(v_1, \ldots, v_{s-1}) = \theta(v, v_1, \ldots, v_{s-1})$$

为由 v 确定的内导数。如果 $\theta \in \otimes^{0,0} V = R$, 则定义

$$i_v \theta = 0.$$

引理 1 (1) 设 $v_1, v_2, v \in V, \lambda \in R, \theta, \eta \in \otimes^{0,s} V$, 则

$$i_v (\theta + \eta) = i_v \theta + i_v \eta, i_v (\lambda \theta) = \lambda i_v \theta,$$

$$i_{v_1 + v_2} = i_{v_1} + i_{v_2}, i_{cv} = \lambda i_v.$$

(2) 设 $v \in V, \theta \in \Lambda^r V^*, \eta \in \Lambda^s V^*$, 则 $i_v \theta \in \Lambda^{r-1} V^*, i_v \eta \in \Lambda^{s-1} V^*$，且

$$i_v (\theta \wedge \eta) = (i_v \theta) \wedge \eta + (-1)^r \theta \wedge (i_v \eta);$$

(3) 设 $v \in V, \theta \in \Lambda^r V^*$, 则 $i_v^2 \theta = 0$.

证明 (1) 由 i_v 的定义立得.

(2) 由 θ 的反称性知 $i_v \theta$ 也具有反称性，故 $i_v \theta \in \Lambda^{r-1} V^*, i_v \eta \in \Lambda^{s-1} V^*$, 对 r 应用归纳法可证

$$i_v (\theta \wedge \eta) = (i_v \theta) \wedge \eta + (-1)^r \theta \wedge (i_v \eta).$$

事实上，当 $r = 0$ 时，令 $\theta = \lambda$, 则

$$i_v (\lambda \wedge \eta) = \lambda i_v \eta = (i_v \lambda) \wedge \eta + (-1)^r \lambda \wedge (i_v \eta).$$

假设公式对 $r - 1$ 成立，则公式对 r 也成立。由于 i_v 的线性性，只须对 $\theta_1, \ldots, \theta_r \in \Lambda^1 V^*$ 加以证明:

$$i_v (\theta_1 \wedge \cdots \wedge \theta_r) \wedge \eta = i_v (\theta_1 \wedge \cdots \wedge \theta_{r-1}) \wedge (\theta_r \wedge \eta)$$

$$= i_v (\theta_1 \wedge \cdots \wedge \theta_{r-1}) \wedge \theta_r \wedge \eta$$

$$+ (-1)^{r-1} (\theta_1 \wedge \cdots \wedge \theta_{r-1}) \wedge i_v (\theta_r \wedge \eta)$$

$$= [i_v (\theta_1 \wedge \cdots \wedge \theta_{r-1}) \wedge \theta_r$$

$$+ (-1)^{r-1} (\theta_1 \wedge \cdots \wedge \theta_{r-1}) \wedge i_v \theta_r] \wedge \eta$$

$$+ (-1)^r (\theta_1 \wedge \cdots \wedge \theta_r) \wedge i_v \eta$$

$$= i_v (\theta_1 \wedge \cdots \wedge \theta_r) \wedge \eta + (-1)^r (\theta_1 \wedge \cdots \wedge \theta_r) \wedge i_v \eta.$$

(3) 由 θ 的反称性得
设 M 为 m 维 C^∞ 流形，$X \in C^\infty(TM)$，令

\[i_x \theta (v_1, \cdots, v_r) = i_x \theta (v, v_1, \cdots, v_r) \]

\[= \theta (v, v, v_1, \cdots, v_r) = 0. \]

如果 $\theta \in C^\infty(\wedge T^* M)$，$X_1, \cdots, x_{s-1} \in C^\infty(TM)$，由 θ 的反称性和 1.1 定理 2(2) 以及

\[i_x \theta (X_1, \cdots, x_{s-1}) = \theta (X, X_1, \cdots, x_{s-1}) \in C^\infty(M, R) \]

立即推出 $i_x \theta \in C^\infty(\wedge T^* M)$. 如果 $\theta \in C^\infty(\wedge T^* M) = C^\infty(M, R)$，则 $i_x \theta = 0$.

引理 2 (1) 设 $X_1, X_2, X \in C^\infty(TM), f \in C^\infty(M, R), \theta, \eta \in C^\infty(\bigotimes^{0, s} TM)$，则

\[i_x (\theta + \eta) = i_x \theta + i_x \eta, \quad i_x (f \theta) = f i_x \theta, \]

\[i_{x_1 + x_2} = i_{x_1} + i_{x_2}, \quad i_{fx} = f i_x; \]

(2) 设 $X \in C^\infty(TM), \theta \in C^\infty(\wedge T^* M), \eta \in C^\infty(\wedge T^* M)$，则 $i_x \theta \in C^\infty(\wedge T^* M), i_x \eta \in (\wedge T^* M)$，且

\[i_x (\theta \wedge \eta) = (i_x \theta) \wedge \eta + (-1)^s \theta \wedge (i_x \eta); \]

(3) 设 $X \in C^\infty(TM), \theta \in C^\infty(\wedge T^* M)$，则 $i_x \theta = 0$.

证明 由引理 1 推出.

定义 2 设 M 为 m 维 C^∞ 流形，$X \in C^\infty(TM)$。令

\[L_x; C^\infty(\bigotimes^{0, s} TM) \rightarrow C^\infty(\bigotimes^{0, s} TM), \]

\[\theta \rightarrow L_x \theta; \]

满足

(1) $L_x f = X f, \ f \in C^\infty(M, R) = C^\infty(\bigotimes^{0, 0} TM)$；

(2) $L_x Y = [X, Y], \ Y \in C^\infty(TM) = C^\infty(\bigotimes^{1, 0} TM)$；

(3) $(L_x \theta)(Y) = X \theta (Y) - \theta ([X, Y]) = X \theta (Y) - \theta (L_x Y), \ Y \in C^\infty(TM) = C^\infty(\bigotimes^{0, 1} TM)$；

90
\[(L_x \theta)(W_1, \cdots, W_r, Y_1, \cdots, Y_s) = L_x(\theta(W_1, \cdots, W_r, Y_1, \cdots, Y_s)) - \sum_{i=1}^r \theta(W_1, \cdots, W_{i-1}, L_x W_i, W_{i+1}, \cdots, W_r, Y_1, \cdots, Y_s) - \sum_{j=1}^s \theta(W_1, \cdots, W_r, Y_1, \cdots, Y_{j-1}, L_x Y_j, Y_{j+1}, \cdots, Y_s),\]
\[
\theta \in C^\infty(\otimes^r TM), W_i \in C^\infty(T^* M), Y_j \in C^\infty(TM).\]

我们称 $L_x \theta$ 为 θ 关于 X 的 Lie 导数，称 L_x 为由 X 确定的 Lie 导数。

引理 3 (1) $L_x f \in C^\infty(M, \mathbb{R}) = C^\infty(\otimes^0.0 TM)$, $L_x Y \in C^\infty(TM) = C^\infty(\otimes^1.0 TM), L_x \theta \in C^\infty(\otimes^{r*} TM)$, 其中 $f \in C^\infty(M, \mathbb{R})$, $X, Y \in C^\infty(TM), \theta \in C^\infty(\otimes^{r*} TM)$;

(2) $L_x : C^\infty(\wedge^s T^* M) \rightarrow C^\infty(\wedge^s T^* M)$;

(3) $L_x(\theta + \eta) = L_x \theta + L_x \eta, \theta, \eta \in C^\infty(\otimes^{r*} TM)$;

(4) $L_x(\theta \otimes \eta) = (L_x \theta) \otimes \eta + \theta \otimes (L_x \eta), \theta \in C^\infty(\otimes^{r*} TM)$,

\[\eta \in C^\infty(\otimes^{k\dagger} TM) \quad (\text{导性});\]

(5) $L_x (a \wedge \beta) = (L_x a) \wedge \beta + a \wedge L_x \beta, a \in C^\infty(\wedge^s T^* M), \beta \in C^\infty(\wedge^s T^* M),$

(6) $L_x \circ C_j = C_j \circ L_x$.

证明 (1)—(5) 类似于 1.2 引理 2 的证明。为证明(6)，只须取 $e_i = \frac{\partial}{\partial x^i}, e^i = dx^i$. 于是

\[\begin{align*}
(L_x dx^i)\left(\frac{\partial}{\partial x^j}\right) &= X dx^i \left(\frac{\partial}{\partial x^j}\right) - dx^i \left(L_x \frac{\partial}{\partial x^j}\right) \\
&= X \delta_i^j - dx^i \left[\sum_{a=1}^n a^a \frac{\partial}{\partial x^a^*}, \frac{\partial}{\partial x^i}\right]
\end{align*}\]
\[
= d^t_x \left(\sum_{i=1}^m \frac{\partial^t_x \partial x_i}{\partial x} \right) = \sum_{i=1}^m \frac{\partial^t_x \delta_i^t}{\partial x}
= \frac{\partial^t_x}{\partial x},
\]

\[
L_x dx^t = \sum_{i=1}^m \frac{\partial^t_x}{\partial x} dx^i.
\]

又因
\[
L_x \frac{\partial}{\partial x^t} = \left[\sum_{i=1}^m a_i \frac{\partial}{\partial x^i} \right] \frac{\partial}{\partial x^t} \frac{\partial}{\partial x},
\]

故
\[
\theta(W_1, \cdots, W_{i-1}, L_x dx^t, W_i, \cdots, W_{r-1}, Y_1, \cdots, Y_{j-1}, \frac{\partial}{\partial x^t}, Y_j, \cdots, Y_{s-1})
\]
\[
= \sum_{i=1}^m \frac{\partial^t_x}{\partial x} \theta(W_1, \cdots, W_{i-1}, dx^t, W_i, \cdots, W_{r-1},
Y_1, \cdots, Y_{j-1}, \frac{\partial}{\partial x^t}, Y_j, \cdots, Y_{s-1})
\]
\[
\theta(W_1, \cdots, W_{i-1}, dx^t, W_i, \cdots, W_{r-1}, Y_1, \cdots, Y_{j-1}, L_x \frac{\partial}{\partial x^t}, Y_j, \cdots, Y_{s-1})
\]
\[
= -\sum_{i=1}^m \frac{\partial^t_x}{\partial x} \theta(W_1, \cdots, W_{i-1}, dx^t, W_i, \cdots, W_{r-1},
Y_1, \cdots, Y_{j-1}, \frac{\partial}{\partial x^t}, Y_j, \cdots, Y_{s-1}),
\]
\[
\sum_{i=1}^m \left[\theta(W_1, \cdots, W_{i-1}, L_x dx^t, W_i, \cdots, W_{r-1},
Y_1, \cdots, Y_{j-1}, \frac{\partial}{\partial x^t}, Y_j, \cdots, Y_{s-1})
+ \theta(W_1, \cdots, W_{i-1}, dx^t, W_i, \cdots, W_{r-1},
Y_1, \cdots, Y_{j-1}, L_x \frac{\partial}{\partial x^t}, Y_j, \cdots, Y_{s-1}) \right]
\]
\[
= 0.
\]

再类似于 1.2 引理 2(6) 得到 \(L_x \circ C_i = C_i \circ L_x \).

注 1 由[GHL], p37, \(L_x \theta = \frac{d}{dt} (q_t \theta) \bigg|_{t=0} \), 有

92
\[L_X \circ C_j \theta = \frac{d}{dt} (\varphi_t^* C_j \theta) \bigg|_{t=0} = C_j \frac{d}{dt} (\varphi_t^* \theta) \bigg|_{t=0} = C_j \circ L_X \theta. \]

定理 1 设 \(M \) 为 \(m \) 维 \(C^\infty \) 流形，\(X \in C^\infty(TM) \) ，则
\[L_X = d \circ i_x + i_x \circ d, \]
即对任意 \(\omega \in C^\infty(\Lambda^* T^* M) \)，有
\[L_X \omega = (d \circ i_x + i_x \circ d) \omega. \]

证明 如果 \(f \in C^\infty(M, \mathbb{R}) = C^\infty(\otimes^0 \otimes T M) \)，则
\[
(d \circ i_x + i_x \circ d) f = d(i_x f) + i_x (df)
\]
\[= 0 + df(X) = Xf = L_X f, \]
\[L_X = d \circ i_x + i_x \circ d. \]

如果 \(\omega \in C^\infty(\Lambda^* T^* M) \)，则
\[(i_x \cdot d \omega)(X_1, \cdots, X_s) = i_x(d \omega)(X_1, \cdots, X_s) \]
\[= d \omega(X, X_1, \cdots, X_s) \]
\[= \{ X(\omega(X_1, \cdots, X_s)) \}
+ \sum_{j=1}^{s} (-1)^{i+j+1} \omega([X, X_j], X, X_1, \cdots, \overset{\wedge}{X_j}, \cdots, X_s) \}
+ \{ \sum_{i=1}^{s} (-1)^{i+j} \omega(X_1, \cdots, \overset{\wedge}{X_i}, \cdots, X_1, \cdots, X_s) \}
+ \sum_{i<j} (-1)^{i+j+1} \omega([X_i, X_j], X, X_1, \cdots, \overset{\wedge}{X_i}, \cdots, \overset{\wedge}{X_j}, \cdots, X_s) \}
= (L_X \omega - d \circ i_x \omega)(X_1, \cdots, X_s), \]
\[i_x \circ d = L_X - d \circ i_x, \]
\[L_X = i_x \circ d + d \circ i_x. \]

定义 3 设 \(M \) 为 \(m \) 维 \(C^\infty \) 定向流形，\(\Omega \) 为 \(M \) 上的处处非 0 的 \(m \)
阶 \(C^\infty \) 微分形式（由 1.3 定理 3，这样的 \(\Omega \) 总存在），它也称为 \(M \) 的体
积元素，对 \(X \in C^\infty(TM) \)，令
\[L_X \Omega = (\text{div} X) \Omega, \]
其中 \(\text{div} X \in C^\infty(M, \mathbb{R}) \) 称为 \(C^\infty \) 切向量场 \(X \) 关于体积元素 \(\Omega \) 的散
度. 特别地，如果 \(\Omega = dV \) 为由 \(M \) 的 Riemann 度量 \(g \) 确定的体积元

93
素 (e_1 \wedge \cdots \wedge e^n)(e_1, \ldots, e_n) = 1 \neq 0 \text{ 知 } \Omega = dV = e^1 \wedge \cdots \wedge e^n

为 M 上的处处非 0 的 m 阶 C^\infty 微分形式，其中 \{e_i\} 为 (M, g) 上的局部规范正交基向量场 (e_i) 的对偶基，则称 div X 为 C^\infty 切向量场 X 关于 Riemann 度量 g 的散度．

定理 2 (Green) 设 M 为 m 维 C^\infty 定向流形，\Omega 为 M 上的体积元，\bar{U} \subset M 为开集，\bar{U} 紧致且 \mathcal{U} 为 M 的 m - 1 维 C^\infty 正则子流形或 \emptyset，X 为 M 上的 C^\infty 切向量场．则

$$\int_\mathcal{U} \text{div } X \cdot \Omega = \int_{\mathcal{U}} I^*(i_X \Omega),$$

其中 \(I: \mathcal{U} \rightarrow M \) 为包含映射．如果 suppX = \{ p \in M | X, \neq 0 \} 紧致，特别当 M 紧致时 (\bar{U} = M, \mathcal{U} = \emptyset)，有 \(\int_M \text{div } X \cdot \Omega = 0 \).

证明 由 Stokes 定理和 d\Omega = 0，有

$$\int_\mathcal{U} \text{div } X \cdot \Omega = \int_{\mathcal{U}} L_X \Omega = \int_{\mathcal{U}} (d \circ i_X + i_X \circ d) \Omega$$

$$= \int_{\mathcal{U}} d \circ i_X \cdot \Omega = \int_{\mathcal{U}} I^*(i_X \Omega).$$

如果 suppX 紧致，取开集 U 使得 suppX \subset U，故 \(I^*(i_X \Omega)|_\mathcal{U} = 0 \)，于是

$$\int_\mathcal{U} \text{div } X \cdot \Omega = \int_{\mathcal{U}} I^*(i_X \Omega).$$

注 2 如果 suppX 紧致，则 X 有整体 1 参数群 \(\varphi_t \) 利用 \(L_X \Omega = \frac{d}{dt}(\varphi_t^* \Omega) \bigg|_{t=0} \) 和 \(\int_M \varphi_t^{-1} \Omega = \int_M \Omega \)，有

$$0 = \frac{d}{dt}(\int_M \varphi_t^{-1} \Omega) \bigg|_{t=0} = \int_M \frac{d}{dt}(\varphi_t^{-1} \Omega) \bigg|_{t=0}$$

$$= -\int_M L_X \Omega = -\int_M \text{div } X \cdot \Omega.$$

于是

$$\int_M \text{div } X \cdot \Omega = 0.$$

定义 4 设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为 m 维 C^\infty Riemann 流形，f \in
\[C^\infty(M, \mathbb{R}), \text{通过} \]

\[\langle \text{grad} f, \text{y} \rangle = Yf, \quad \forall \ Y \in C^\infty(TM) \]

在 M 上定义了一个称为 f 的梯度场的 \(C^\infty \) 向量场 \(\text{grad} f \)。容易看出，在局部坐标系 \(\{ x^i \} \) 中，如果记 \(\text{grad} f = \sum_{i=1}^{m} a^i \frac{\partial}{\partial x^i} \)，则

\[
\sum_{k=1}^{m} a^k g_{kj} = \langle \sum_{k=1}^{m} a^k \frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^j} \rangle = \langle \text{grad} f, \frac{\partial}{\partial x^j} \rangle = \frac{\partial f}{\partial x^j}.
\]

\[
a^i = \sum_{k=1}^{m} a^k \delta_{ki} = \sum_{j,k=1}^{m} a^k g_{kj} g^{ij} = \sum_{j=1}^{m} g^{ij} \frac{\partial f}{\partial x^j},
\]

\[\text{grad} f = \sum_{i=1}^{m} \left(\sum_{j=1}^{m} g^{ij} \frac{\partial f}{\partial x^j} \right) \frac{\partial}{\partial x^i}. \]

定义 5 设 \((M, g) = (M, \langle , \rangle) \) 为 m 维 \(C^\infty \) 向量 Riemann 流形，则称

\[\Lambda : C^\infty(M, \mathbb{R}) \to C^\infty(M, \mathbb{R}) \]

\[f \to \Lambda f = \text{div} \ \text{grad} f \]

为 \((M, g) \) 的 Laplace（或 Laplace-Beltrami）算子。

如果 \(\Lambda f = 0 \)，则称 f 为 M 上的调和函数。

引理 4 设 \((M, g) = (M, \langle , \rangle) \) 为 m 维 \(C^\infty \) 向量 Riemann 流形，\(\{ x^i \} \) 为 M 的局部坐标系，\(\left[\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^m} \right] \) 与 M 的定向一致，在该局部坐标系中，

\[\text{div} X = \sum_{i=1}^{m} \frac{\partial x^i}{\partial x^j} + \frac{1}{2} \sum_{i=1}^{m} a^i \frac{\partial \ln \det(g_{ij})}{\partial x^i} \]

\[= \sum_{i=1}^{m} \frac{\partial x^i}{\partial x^j} + \sum_{i=1}^{m} a^i \sum_{n=1}^{m} I_{ni}, \quad \text{(其中} X = \sum_{i=1}^{m} a^i \frac{\partial}{\partial x^i}, \text{)} \]

\[\Lambda f = \sum_{i,j=1}^{m} g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j} + \sum_{i,j=1}^{m} \left(\frac{\partial g^{ij}}{\partial x^i} + \frac{1}{2} g^{ij} \frac{\partial \ln \det(g_{ij})}{\partial x^i} \right) \frac{\partial f}{\partial x^j}. \]

证明 因为 \([X, \frac{\partial}{\partial x^j}] = \left[\sum_{j=1}^{m} a^i \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^i} \right] = - \sum_{j=1}^{m} \frac{\partial a^j}{\partial x^i} \frac{\partial}{\partial x^i}, \Omega(\frac{\partial}{\partial x^i}, \right) \]
\[\frac{\partial}{\partial x^i} = \sqrt{\det(g_{ij})} dx^i \land \ldots \land dx^m(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^m}) = \sqrt{\det(g_{ij})}, \]

所以

\[(\text{div} \, X) \sqrt{\det(g_{ij})} = (\text{div} \, X) \Omega(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^m}) \]

\[= (L_X \Omega)(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^m}) \]

\[= X(\Omega(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^m})) - \sum_{i=1}^{m} \Omega(\frac{\partial}{\partial x^1}, \ldots, [X, \frac{\partial}{\partial x^i}], \ldots, \frac{\partial}{\partial x^m}) \]

\[= X \sqrt{\det(g_{ij})} + \sum_{i, j=1}^{m} \frac{\partial a^j}{\partial x^i} \Omega(\frac{\partial}{\partial x^i}, \ldots, \frac{\partial}{\partial x^{i-1}}, \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^{i+1}}, \ldots, \frac{\partial}{\partial x^m}) \]

\[= \sum_{i=1}^{m} a^i \frac{\partial \sqrt{\det(g_{ij})}}{\partial x^i} + \sum_{i=1}^{m} \frac{\partial a^i}{\partial x^i} \sqrt{\det(g_{ij})}, \]

\[\text{div} \, X = \sum_{i=1}^{m} \frac{\partial a^i}{\partial x^i} + \frac{1}{2} \sum_{i=1}^{m} a^i \frac{\partial \ln \det(g_{ij})}{\partial x^i}, \]

进而有

\[\text{div} \, X = \sum_{i=1}^{m} \frac{\partial a^i}{\partial x^i} + \sum_{i=1}^{m} a^i \sum_{s=1}^{m} \Gamma^s_{ai}. \]

因为

\[\frac{\partial \det(g_{ij})}{\partial x^i} = \sum_{s, r=1}^{m} G_{sr} \frac{\partial g_{st}}{\partial x^i} = \sum_{s, r=1}^{m} G_{sr} \frac{\partial g_{rs}}{\partial x^i} \]

（\(G_{sr} \) 为 \(g_{sr} \) 的代数余子式），所以

\[\sum_{s=1}^{m} \Gamma^s_{ai} = \frac{1}{2} \sum_{s, r=1}^{m} g^{sr} \left(\frac{\partial g_{ri}}{\partial x^s} + \frac{\partial g_{rs}}{\partial x^i} - \frac{\partial g_{ri}}{\partial x^r} \right) \]

\[= \frac{1}{2} \sum_{s, r=1}^{m} g^{sr} \frac{\partial g_{ri}}{\partial x^r} = \frac{1}{2} \sum_{s, r=1}^{m} \frac{G_{sr}}{\det(g_{ij})} \frac{\partial g_{ri}}{\partial x^r} \]

\[= \frac{1}{2 \det(g_{ij})} \frac{\partial \det(g_{ij})}{\partial x^i} \]

\[= \frac{1}{2} \frac{\partial \ln \det(g_{ij})}{\partial x^i}. \]

再用 \(\text{grad} \, f = \sum_{i=1}^{m} \left(\sum_{j=1}^{m} g^{ij} \frac{\partial f}{\partial x^j} \right) \frac{\partial f}{\partial x^i} \) 代入散度公式得到
\[\Delta f = \sum_{i,j=1}^{m} g^{ij} \frac{\partial f}{\partial x^i} \partial_j + \sum_{i,j=1}^{m} \left(g^{ij} \partial_i + \frac{1}{2} g^{ij} \partial \ln \det(g_{ij}) \right) \frac{\partial f}{\partial x^i}. \]

注 3 如果 \(M = \mathbb{R}^n, \{x^i\} \) 为 \(\mathbb{R}^n \) 的通常的直角坐标系, \(g_{ij} = \delta_{ij}, g^{ij} = \delta^{ij}, \det(g_{ij}) = \det(\delta_{ij}) = 1 \), 则

\[\text{div} X = \sum_{i=1}^{n} \frac{\partial x^i}{\partial x^i}, \nabla f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^i}. \]

注 4 当 \(m \) 维 \(C^\infty \) Riemann 流形 \((M, g) = (M, \langle , \rangle) \) 可定向时，利用体积元素定义了 \(\text{div} X \) 和 \(\nabla f \). 如果 \(M \) 不可定向，则可用上述 \(\text{div} X \) 和 \(\Delta f \) 的坐标形式分别作它们的定义, 并通过直接计算验证其定义与局部坐标系的选择无关.

还可以用另外的方式引进 \(\text{div} \) 和 \(\Delta \).

定义 3' 设 \(M \) 为 \(m \) 维 \(C^\infty \) 流形, \(X \in C^{\infty}(TM), X \) 的散度 \(\text{div} X \) 为

\[\text{div} X = \text{trace}(Y \rightarrow \nabla_Y X), Y \in T, M, p \in M. \]

如果 \((M, g) \) 为 \(C^\infty \) Riemann 流形, 容易验证, 上述定义与定义 3 是一致的. 事实上, 对 \(\{ \frac{\partial}{\partial x^i} \} \), 有

\[\frac{\partial}{\partial x^i} \rightarrow \nabla \frac{\partial}{\partial x^i} = \nabla \frac{\partial}{\partial x^i} \sum_{i=1}^{n} \frac{\partial}{\partial x^i} \]

\[= \sum_{i=1}^{n} \frac{\partial x^i}{\partial x^i} \frac{x^j}{\partial x^i} + \sum_{i,s=1}^{n} a^s \Gamma_{js} \frac{\partial}{\partial x^i}, \]

\[= \sum_{i=1}^{n} \frac{\partial x^i}{\partial x^i} + \sum_{i,s=1}^{n} a^s \Gamma_{js} \frac{\partial}{\partial x^i} \]

\[\text{div} X = \sum_{i=1}^{n} \frac{\partial x^i}{\partial x^i} + \sum_{i,s=1}^{n} a^s \Gamma_{js}, \]

\[= \sum_{i=1}^{n} \frac{\partial x^i}{\partial x^i} + \sum_{i=1}^{n} a^s \sum_{i=1}^{n} \Gamma_{js} \]

这与引理 4 中的表示是相同的. 因此, 定义 3 与 3' 中的 \(\text{div} \) 的定义是一致的.

定义 6 设 \(M \) 为 \(m \) 维 \(C^\infty \) Riemann 流形, 令

97
\[\nabla : C^\infty (\otimes^r T^* M) \rightarrow C^\infty (\otimes^{r+1} T^* M), \]
\[\theta \rightarrow \nabla \theta, \]

使得
\[(\nabla \theta) (W_1, \cdots, W_r, Y_1, \cdots, Y_{r+1}) \]
\[= \left(\nabla_{Y_{r+1}} \theta \right) (W_1, \cdots, W_r, Y_1, \cdots, Y_r), \]
其中 \(W_j \in C^\infty (T^* M), Y_j \in C^\infty (TM) \). 显然，\(\nabla \theta \in C^\infty (\otimes^{r+1} T^* M) \)，则称 \(\nabla \) 为一般协变导数算子。而
\[\text{div} : C^\infty (\otimes^r T^* M) \rightarrow C^\infty (\otimes^{r-1} T^* M), \]
\[\text{div} = C_{r+1} \circ \nabla \]
称为散度，\(\text{div \ grad} \) 称为 Laplace (或 Laplace-Beltrami) 算子。

显然，\(\nabla \) 为线性算子，且由 \(\nabla_x \circ C_j = C_j \circ \nabla_x \) 知 \(\nabla \circ C_j = C_j \circ \nabla \)。于是
\[\text{div} X = C_1 \circ \nabla X = \sum_{s=1}^m \nabla X (dx^s, \frac{\partial}{\partial x^s}) \]
\[= \sum_{s=1}^m (\nabla_{\frac{\partial}{\partial x^s}} X) (dx^s) = \sum_{s=1}^m dx^s \left(\nabla_{\frac{\partial}{\partial x^s}} \left(\sum_{i=1}^m a^i \frac{\partial}{\partial x^i} \right) \right) \]
\[= \sum_{s=1}^m dx^s \left(\sum_{i=1}^m \frac{\partial a^i}{\partial x^s} \frac{\partial}{\partial x^i} + \sum_{i=1}^m a^i \nabla_{\frac{\partial}{\partial x^s}} \frac{\partial}{\partial x^i} \right) \]
\[= \sum_{s, i=1}^m \frac{\partial a^i}{\partial x^s} \delta_i^s + \sum_{s, i=1}^m a^i dx^s \left(\sum_{i=1}^m \Gamma_{s i}^r \frac{\partial}{\partial x^r} \right) \]
\[= \sum_{i=1}^m \frac{\partial a^i}{\partial x^s} + \sum_{s, i=1}^m a^i \Gamma_{s i}^r \delta_i^s \]
\[= \sum_{i=1}^m \frac{\partial a^i}{\partial x^s} + \sum_{i=1}^m a^i \left(\sum_{s=1}^m \Gamma_{s i}^r \right) \]
\[= \sum_{i=1}^m \frac{\partial a^i}{\partial x^s} + \frac{1}{2} \sum_{i=1}^m a^i \frac{\partial n \det (g_{kl})}{\partial x^i}. \]

这就得到了与定义 3 和 3' 中相同的表示，所以，向量场散度的三种定义是一致的。

引理 5 设 \((M, g) = (M, \langle , \rangle)\) 为 \(m\) 维 \(C^\infty\) Riemann 流形，\(\{e_i\}\)
为局部 C^∞ 规范正交基，$f \in C^\infty(M, \mathbb{R})$，则

$$
\Delta f = \sum_{k=1}^{m} \nabla^2 f(e_k, e_k)
$$

$$
= \sum_{k=1}^{m} (e_k e_k - \nabla_{e_k} e_k) f.
$$

证明 1 设 $\{e^i\}$ 为 $\{e_i\}$ 的对偶基，则有

$$
\sum_{l=1}^{m} (e_l f) e^l \nabla_{e_l} e_i = \sum_{l=1}^{m} df(e_l) e^l (\nabla_{e_l} e_i)
$$

$$
= \sum_{l=1}^{m} df(e_l) e^l \left(\sum_{s=1}^{m} \langle \nabla_{e_s} e_i, e_s \rangle e_s \right)
$$

$$
= \sum_{l=1}^{m} df(e_l) \langle \nabla_{e_l} e_i, e_l \rangle
$$

$$
= -\sum_{l=1}^{m} df(e_l) \langle e_l, \nabla_{e_l} e_i \rangle
$$

$$
= -df(\sum_{l=1}^{m} \langle e_l, \nabla_{e_l} e_i \rangle e_i)
$$

$$
= -df(\nabla_{e_i} e_i) = -(\nabla_{e_i} e_i) f
$$

得到

$$
\Delta f = \operatorname{div} \operatorname{grad} f = C^1 \circ \nabla \operatorname{grad} f
$$

$$
= \sum_{k=1}^{m} \nabla \operatorname{grad} f(e_k, e_k)
$$

$$
= \sum_{k=1}^{m} (\nabla_{e_k} \operatorname{grad} f)(e_k) = \sum_{k=1}^{m} e^k (\nabla_{e_k} \operatorname{grad} f)
$$

$$
= \sum_{k=1}^{m} e^k \left[\nabla_{e_k} \sum_{l=1}^{m} (e_l f) e_l \right]
$$

$$
= \sum_{k=1}^{m} e^k \sum_{l=1}^{m} \left[(e_k e_l f) e_l + (e_l f) \nabla_{e_k} e_l \right]
$$

$$
= \sum_{k=1}^{m} e_k e_l f + \sum_{k,l=1}^{m} (e_l f) e^k (\nabla_{e_k} e_l)
$$
\[= \sum_{k=1}^{m} (e_k e_k - \nabla_e e_k) f.\]

此外，还有
\[\sum_{k=1}^{m} \nabla^2 f(e_k, e_k) = \sum_{k=1}^{m} \nabla df(e_k, e_k)\]
\[= \sum_{k=1}^{m} (\nabla e_k df)(e_k) = \sum_{k=1}^{m} \left[\nabla e_k (df(e_k)) - df(\nabla e_k e_k)\right]\]
\[= \sum_{k=1}^{m} \left[e_k e_k f - (\nabla e_k e_k) f\right]\]
\[= \sum_{k=1}^{m} (e_k e_k - \nabla e_k e_k) f.\]

证明 2 设 \(X \in C^\infty(TM)\)，则 \(\nabla f(X) = \nabla_x f = Xf = df(X)\)，即 \(\nabla f = df\)，
\[\sum_{k=1}^{m} \nabla^2 f(e_k, e_k) = \sum_{k=1}^{m} \nabla df(e_k, e_k)\]
\[= \sum_{k=1}^{m} \nabla df(\sum_{i=1}^{m} a_i \frac{\partial}{\partial x^i}, \sum_{j=1}^{m} a_i \frac{\partial}{\partial x^j})\]
\[= \sum_{k, i, j=1}^{m} a_i a_j \nabla df\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right)\]
\[= \sum_{i, j=1}^{m} g^{ij} (\nabla \frac{\partial}{\partial x^i} df(\frac{\partial}{\partial x^i})))\]
\[= \sum_{i, j=1}^{m} g^{ij} \left[\frac{\partial}{\partial x^j} df\left(\frac{\partial}{\partial x^i}\right) - df(\nabla \frac{\partial}{\partial x^i})\right]\]
\[= \sum_{i, j=1}^{m} g^{ij} \frac{\partial f}{\partial x^j \partial x^i} - \sum_{i, j, z=1}^{m} g^{ij} \frac{df}{\partial x^z} \frac{\partial}{\partial x^i}\]
\[= \sum_{i, j=1}^{m} g^{ij} \frac{\partial f}{\partial x^j \partial x^i} - \sum_{i, j, z=1}^{m} \left(\sum_{r=1}^{m} g^{ir} \frac{\partial g_{rz}}{\partial x^j}\right) \frac{df}{\partial x^i}\]
\[- \frac{1}{2} \sum_{r=1}^{m} g^{rr} \frac{\partial \ln \det(g_{uv})}{\partial x^r} \frac{df}{\partial x^r}\]
\[
\begin{aligned}
&= \sum_{i,j=1}^{m} g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j} + \sum_{j=1}^{m} \frac{\partial f}{\partial x^j} \frac{\partial}{\partial x^j} + \frac{1}{2} \sum_{i,j=1}^{m} g^{ij} \frac{\partial \ln \det(g_{kl})}{\partial x^i} \frac{\partial f}{\partial x^j} \\
&= \sum_{i,j=1}^{m} g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j} + \sum_{i,j=1}^{m} \frac{\partial g^{ij}}{\partial x^j} + \frac{1}{2} g^{ij} \frac{\partial \ln \det(g_{kl})}{\partial x^i} \frac{\partial f}{\partial x^j} \\
&= \Delta f,
\end{aligned}
\]

其中，\(\sum_{i,j=1}^{m} a_{ia} g_{ij} = \langle \sum_{i=1}^{m} a_{i} \frac{\partial}{\partial x^i}, \sum_{j=1}^{m} a_{j} \frac{\partial}{\partial x^j} \rangle = \langle e_t, e_t \rangle = \delta_{tt}\)，即 \(\sum_{k=1}^{m} a_{ia} = g^{ij}\)。

\[
\sum_{i,j=1}^{m} g^{ij} g^{sr} \frac{\partial g_{st}}{\partial x^i} = \sum_{i,j=1}^{m} g^{sr} \left[\frac{\partial (g^{ij}) g_{sr}}{\partial x^i} - \frac{\partial g^{ij}}{\partial x^i} g_{sr} \right] \\
= \sum_{r=1}^{m} g^{sr} \frac{\partial g_{ij}}{\partial x^j} - \sum_{i=1}^{m} \frac{\partial g_{ij}}{\partial x^i} \delta_{ij} = -\frac{\partial g_{ij}}{\partial x^j}
\]

和

\[
\sum_{i,j=1}^{m} g^{ij} y_{ji} = \frac{1}{2} \sum_{i,j,r=1}^{m} g^{ij} g^{sr} \left(\frac{\partial y_{ri}}{\partial x^j} + \frac{\partial y_{rj}}{\partial x^i} - \frac{\partial y_{ij}}{\partial x^i} \right) \\
= \sum_{i,j,r=1}^{m} g^{ij} g^{sr} \frac{\partial y_{ri}}{\partial x^j} - \frac{1}{2} \sum_{i,j,r=1}^{m} g^{ij} g^{sr} \frac{\partial y_{ij}}{\partial x^r} \\
= \sum_{i,j,r=1}^{m} g^{ij} g^{sr} \frac{\partial y_{ri}}{\partial x^j} - \sum_{r=1}^{m} g^{sr} \frac{\partial \ln \det(g_{kl})}{\partial x^r}.
\]

注 5 由引理 5，我们可以用 \(\sum_{k=1}^{m} \nabla^2 f(\bar{e}_t, \bar{e}_t)\) 或 \(\sum_{k=1}^{m} \langle e_t, e_t \rangle = \nabla^2 f(\bar{e}_t, \bar{e}_t)\) 来定义 \(\Delta f\)。从证明的过程知道，它与局部 \(C^\infty\) 规范正交基向量场 \(\{e_t\}\) 的选取无关，都等于

\[
\sum_{i,j=1}^{m} g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j} + \sum_{i,j=1}^{m} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j} + \frac{1}{2} g^{ij} \frac{\partial \ln \det(g_{kl})}{\partial x^i} \frac{\partial f}{\partial x^j},
\]

但也可直接从

\[
\sum_{k=1}^{m} \nabla^2 f(\bar{e}_t, \bar{e}_t) = \sum_{k=1}^{m} \nabla^2 f(\sum_{i=1}^{m} a_{i} e_i, \sum_{j=1}^{m} a_{j} e_j)
\]

101
\[
\begin{align*}
= \sum_{i,j=1}^{m} a_i a_j \nabla^2 f(e_i, e_j) &= \sum_{i,j=1}^{m} \delta^i_j \nabla^2 f(e_i, e_j) \\
= \sum_{i=1}^{m} \nabla^2 f(e_i, e_j)
\end{align*}
\]

看出它与局部 \(C^\infty \) 规范正交基的选取无关，其中 \(\{ \tilde{e}_i \} \) 为另一局部 \(C^\infty \) 规范正交基向量场。

引理 6 设 \((M, g)\) 为 \(m\) 维 \(C^\infty \) Riemann 流形，\(f \in C^\infty (M, \mathbb{R}) \)，则
\[\nabla^2 f \in C^\infty (\odot^2 T^* M)\]，其中 \(\odot^2 T^* M \) 是 \(TM \) 上的对称 2 阶协变张量丛。

证明 因为
\[
\nabla^2 f(X, Y) = \nabla^2 f(Y, X)
\]
\[
= (\nabla df)(X, Y) - (\nabla df)(Y, X)
\]
\[
= (\nabla_x df)(X) - (\nabla_y df)(Y)
\]
\[
= Y(df(X)) - df(\nabla_y X) - X(df(Y)) + df(\nabla_x Y)
\]
\[
= (XY - YX)f + (\nabla_x Y - \nabla_y X)f
\]
\[
= - [X, Y]f + [X, Y]f = 0,
\]
故 \(\nabla^2 f(X, Y) = \nabla^2 f(Y, X) \)，即 \(\nabla^2 f \in C^\infty (\odot^2 T^* M) \)。

在局部坐标系 \(\{ x^i \} \) 中，可以换一种方式来表示 \(\text{grad} f, \text{div} X, \Delta f \)。记
\[
\begin{align*}
X &= \sum_{i=1}^{m} a^i \frac{\partial}{\partial x^i}, df = \sum_{i=1}^{m} f_i dx^i, f_i = \frac{\partial f}{\partial x^i},
\end{align*}
\]
则
\[
\text{grad} f = \sum_{i=1}^{m} f_i \frac{\partial}{\partial x^i}, f = \sum_{j=1}^{m} g^{ij} \frac{\partial f}{\partial x^j} = \sum_{j=1}^{m} g^{ij} f_j;
\]
\[
\text{div} X = C_1 \circ \nabla X = C_1 (\sum_{j, k=1}^{m} a^i_{jk} \frac{\partial}{\partial x^i} \otimes dx^j)
\]
\[
= \sum_{i=1}^{m} (\sum_{j, k=1}^{m} a^i_{jk} \frac{\partial}{\partial x^j} \otimes dx^i)(dx^i, \frac{\partial}{\partial x^i}) = \sum_{i=1}^{m} a^i_{ii};
\]
\[\Delta f = \text{div } \text{grad } f = \sum_{i=1}^{m} f_{i,i} = \sum_{i,j=1}^{m} g^{ij} f_{i,j} = \sum_{i,j=1}^{m} g^{ij} f_{i,j}, \]

特别地，如果 \(\{ x^i \} \) 为以 \(p \) 为原点的正规（法）坐标（参阅第3章3.1定义2），则在 \(p \) 点，\(g^{ij} = \delta_{ij}, g^{ij} = \delta_{ij} \) 和 \(f_{i,j} = \frac{\partial f}{\partial x^j} \)，从而

\[(\Delta f)_i = \sum_{i=1}^{m} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^i} \]

引理7 设 \((M, g) = (M, \langle , \rangle) \) 为 \(m \) 维 \(C^\infty \) Riemann 流形，则

(1) \(\text{div} (fX) = Xf + f \text{div } X \);
(2) \(\Delta (fh) = f \Delta h + h \Delta f + 2g(df, dh) \)

\[= f \Delta h + h \Delta f + 2 \langle \text{grad } f, \text{grad } h \rangle, \]

特别地 \(\Delta f^2 = 2f \Delta f + 2g(df, df) = 2f \Delta f + 2 \| \text{grad } f \|^2. \)

证明 (1) \(\text{div} (fX) \)

\[= \sum_{i=1}^{m} \frac{\partial (fa^i)}{\partial x^i} + \frac{1}{2} \sum_{i=1}^{m} (fa^i) \frac{\partial \ln \det (g_{ij})}{\partial x^i} \]

\[= \sum_{i=1}^{m} a^i \frac{\partial f}{\partial x^i} + f \left\{ \sum_{i=1}^{m} \frac{\partial a^i}{\partial x^i} + \frac{1}{2} \sum_{i=1}^{m} a^i \frac{\partial \ln \det (g_{ij})}{\partial x^i} \right\} \]

\[= Xf + f \text{div } X \]

（或从 \text{div} 的任一种定义出发，都可以证明此公式）。

(2) 设 \(\{ e_i \} \) 为局部 \(C^\infty \) 规范正交基向量场，由(1)得到

\[\Delta (fh) = \text{div } \text{grad } (fh) \]

\[= \text{div} \left[\sum_{i=1}^{m} e_i (fh) \cdot e_i \right] \]

\[= \text{div} \left[h \sum_{i=1}^{m} (e_i f) e_i + f \sum_{i=1}^{m} (e_i h) e_i \right] \]

\[= \text{div} \left[h \cdot \text{grad } f + f \cdot \text{grad } h \right] \]

\[= h \text{div } \text{grad } f + (\text{grad } f) h + f \text{div } \text{grad } h + (\text{grad } h) f \]

\[= h \Delta f + f \Delta h + \sum_{i,j=1}^{m} g^{ij} \frac{\partial f}{\partial x^j} \frac{\partial h}{\partial x^i} + \sum_{i,j=1}^{m} g^{ij} \frac{\partial h}{\partial x^j} \frac{\partial f}{\partial x^i} \]

\[= h \Delta f + f \Delta h + 2g(df, dh), \]
其中 \[g(df, dh) = g\left(\sum_{i=1}^{m} \frac{\partial f}{\partial x^i} dx^i, \sum_{j=1}^{m} \frac{\partial h}{\partial x^j} dx^j \right) = \sum_{i,j=1}^{m} \frac{\partial f}{\partial x^i} \frac{\partial h}{\partial x^j} g(dx^i, dx^j) = \sum_{i,j=1}^{m} g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial h}{\partial x^j}. \]

\[\langle \text{grad} f, \text{grad} h \rangle = \sum_{s,t=1}^{m} g^{st} \left(\sum_{i=1}^{m} g^{ui} \frac{\partial f}{\partial x^i} \right) \left(\sum_{j=1}^{m} g^{vj} \frac{\partial h}{\partial x^j} \right) = \sum_{i,j=1}^{m} \delta^{ij} \frac{\partial f}{\partial x^i} \frac{\partial h}{\partial x^j} = \sum_{i,j=1}^{m} g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial h}{\partial x^j} = g(df, dh). \]

定理 3(散度定理) 设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为 \(m\) 维 \(C^\infty)\) 定向 Riemann 流形，\(U \subset M\) 为开集，\(U\) 紧致且 \(\mathcal{U}\) 为 \(M\) 的 \(m-1\) 维 \(C^\infty)\) 正则子流形或 \(\varnothing, N\) 为 \(\mathcal{U}\) 上指向开集 \(U\) 外部的 \(C^\infty)\) 单位法向量场。\(I; \mathcal{U} \rightarrow M\) 为包含映射，\(\omega = dV_m\) 为由 \(g\) 确定的 \(M\)（及 \(U\)）上的体积元
素，\(dV_{m-1}\) 为 \(\mathcal{U}\) 上的体积元
素。

(1) (散度定理) 如果 \(X \in C^\infty(TM)\)，则
\[
\iint_X \text{div} X dV_m = \int_X I^*(i_X dV_m) = \int_{\mathcal{U}} \langle X, N \rangle dV_{m-1}.
\]

(2) 如果 \(f \in C^\infty(M, \mathbb{R})\)，则
\[
\int_U \Delta f dV_m = \int_U \text{div} \text{grad} f dV_m
\]
\[
= \int_X I^* (i_{\text{grad} f} dV_m)
\]
\[
= \int_{\mathcal{U}} \langle \text{grad} f, N \rangle dV_{m-1}.
\]

当 \(\text{supp grad f}\) 紧致，特别当 \(M\) 紧致时有
\[
\int_M \Delta f dV_m = 0.
\]

证明 (1) 由 Green 定理，只须证
\[i_\mathbf{x}dV_m \big|_{\mathcal{U}} = \langle X, N \rangle dV_{m-1}. \]

事实上，选取 \(\{e_1, \cdots, e_{m-1}, e_m = -N\} \) 和 \(\{e_1, \cdots, e_{m-1}\} \) 分别为 \(M \) 和 \(\mathcal{U} \) 上的局部 \(C^\infty \) 规范正交基向量场，\(\{e_1, \cdots, e_{m-1}, e^m\} \) 和 \(\{e_1, \cdots, e^{m-1}\} \) 分别为相应的对偶基向量场。则对 \(\mathcal{U} \) 上的局部 \(C^\infty \) 切向量场 \(X, \cdots, X_{m-1} \)，有

\[
i_\mathbf{x}dV_m(X_1, \cdots, X_{m-1}) = dV_m(X, X_1, \cdots, X_{m-1})
= (e^1 \wedge \cdots \wedge e^m)(X, X_1, \cdots, X_{m-1})
= -e^m(X)(-1)^m e^1 \wedge \cdots \wedge e^{m-1})(X_1, \cdots, X_{m-1})
= \langle X, N \rangle dV_{m-1}(X_1, \cdots, X_{m-1}),
\]

\[i_\mathbf{x}dV_m \big|_{\mathcal{U}} = \langle X, N \rangle dV_{m-1}. \]

(2) 在(1)中令 \(X = \text{grad} f \)，以及由定理2(Green定理)立即推得(2)中的结论。

引理8 设 \((M, g) = (M, \langle , \rangle)\) 为 \(m \) 维 \(C^\infty \) 定向 Riemann 流形，
\(U \subset M \) 为开集，\(\mathcal{U} \) 紧致且 \(\mathcal{U} \) 为 \(M \) 的 \(m-1 \) 维 \(C^\infty \) 正则子流形，\(N \) 为
\(\mathcal{U} \) 上的指向开集 \(U \) 外部的 \(C^\infty \) 单位法向量场，\(\Omega = dV_m \) 为由 \(g \) 确定的体积元素，\(dV_{m-1} \) 为 \(\mathcal{U} \) 上的体积元素，\(f \in C^\infty(M, \mathbb{R}) \)，则

\[
\int_U Af^2 = 2 \int_U \left[fAf + \| \text{grad} f \|^2 \right] dV_m
= 2 \int_{\mathcal{U}} \langle f\text{grad} f, N \rangle dV_{m-1}.
\]

特别地，如果 \(f |_{\mathcal{U}} = 0 \)，或者 \(\mathcal{U} = \emptyset \)，则

\[
\int_U fAf dV_m = -\int_U \| \text{grad} f \|^2 dV_m.
\]

证明 根据散度定理，

\[
2 \int_U \left[fAf + \| \text{grad} f \|^2 \right] dV_m
= \int_U Af^2 dV_m = \int_U \text{div}(\text{grad} f^2) dV_m
= \int_{\mathcal{U}} \langle \text{grad} f^2, N \rangle dV_{m-1}
\]
定理 4 \(m \) 维 \(C^\infty \) 紧致连通定向 Riemann 流形 \((M, g) = (M, \langle , \rangle)\) 上的调和函数 \(f(\Delta f = 0) \) 为常值函数.

证明 由 \(\Delta f = 0 \) 和引理 8，
\[
\int_M \| \nabla f \|^2 dV_m = - \int_M f \Delta f dV_m = 0,
\]
故 \(\| \nabla f \| \equiv 0, \nabla f = 0 \). 因此，在局部坐标系 \(\{ x^i \} \) 中，
\[
\sum_{i=1}^m \left(\sum_{j=1}^m g^{ij} \frac{\partial f}{\partial x^j} \right) \frac{\partial}{\partial x^i} = 0
\]
\[
\iff \sum_{j=1}^m g^{ij} \frac{\partial f}{\partial x^j} = 0 \quad \forall \ i = 1, \ldots, m
\]
\[
\iff \frac{\partial f}{\partial x^j} = 0, \forall \ j = 1, \ldots, m
\]
\[
\iff f \text { 是局部常值函数}.
\]
再由 \(M \) 连通提出 \(f \) 为 \(M \) 上的常值函数。

注 6 由于 \(\Delta f \) 的定义实质上并不需要 \(M \) 可定向。而 \(C^\infty \) 外形式的积分需要 \(M \) 是定向流形。为统一解决这个问题，考虑 \(M \) 的 2 层定向覆叠空间（参阅第 5 章 5.1）

\[
\tilde{M} = \{ \mu_x | \mu_x \text{ 为 } p \in M \text{ 处的一个定向} \},
\]
相应的投影为 \(\pi: \tilde{M} \to M, \pi(\mu_x) = p \). 显然，\(\pi^{-1}(p) = \{ \mu_x, \mu_x^{-1} \} \)，可以自然给出 \(\tilde{M} \) 的一个 \(C^\infty \) 流形构造，使得 \(\tilde{M} \) 与 \(M \) 是局部 \(C^\infty \) 同胚的。不难证明 \(\tilde{M} \) 是可定向的，并且 \(M \) 连通蕴涵着 \(\tilde{M} \) 也连通；\(M \) 紧致蕴含着 \(\tilde{M} \) 也紧致。显然，定理 4 中的 \(C^\infty \) 函数 \(f: M \to \mathbb{R} \) 自然定义了 \(\tilde{M} \) 上的 \(C^\infty \) 函数，仍记为 \(f: \tilde{M} \to \mathbb{R}, \) 使得 \(f(\mu_x) = f(\mu_x^{-1}) = f(p) \). 于是将定理 4 应用到定向流形 \(\tilde{M} \)，推出 \(f \) 在 \(\tilde{M} \) 上是常值函数，从而 \(f \) 在 \(M \) 上也是常值函数。

更进一步，还有

定理 5(E. Hopf, Bochner) 设 \((M, g) = (M, \langle , \rangle)\) 为 \(m \) 维 \(C^\infty \) 紧致连通 Riemann 流形（无边），\(f \in C^\infty(M) \) 为下（次）或上（超）调和
函数，即在 M 上处处有 $\Delta f \geq 0$ 或 $\Delta f \leq 0$，则 f 是常值函数（和 $\Delta f = 0$）。

证明 根据注 6，不失一般性，可假定 M 是定向流形。$\Delta f \geq 0$ 或 $\Delta f \leq 0$ 且

$$\int_M \Delta f \, dV = \int_M \text{div} \text{grad} f \, dV = 0$$

蕴涵着 $\Delta f = 0$，即 f 为调和函数，再由定理 4 知 f 是 M 上的常值函数。

Hopf-Bochner 定理成功地用于 Bochner, Lichnerowicz, Yano（参阅 [YB]）的研究工作中。

最后，证明 Green 第 1 和第 2 公式。

定理 6 设 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 为 m 维 C^∞ 定向 Riemann 流形，$M, \partial M$ 满足 Stokes 定理的条件，$f, h \in C^\infty(M \cup \partial M, \mathbb{R})$，$N$ 为沿 ∂M 的 C^∞ 单位法向量场，则

(1) (Green 第 1 公式)

$$\int_M f \Delta h \, dV + \int_M \langle \nabla f, \nabla h \rangle \, dV = \int_{\partial M} f \cdot i_{\text{grad} h} \, dV$$

$$= \int_{\partial M} f \frac{\partial h}{\partial N} i_N \, dV,$$

其中 $\nabla f = df, \langle \nabla f, \nabla h \rangle = \langle df, dh \rangle = \langle \text{grad} f, \text{grad} h \rangle$；

(2) (Green 第 2 公式)

$$\int_M (f \Delta h - h \Delta f) \, dV$$

$$= \int_{\partial M} (f \cdot i_{\text{grad} h} - h \cdot i_{\text{grad} f}) \, dV$$

$$= \int_{\partial M} (f \frac{\partial h}{\partial N} - h \frac{\partial f}{\partial N}) i_N \, dV,$$

其中 $\frac{\partial f}{\partial N} = Nf$。

特别地，如果(1) 和 (2) 中 $\partial M = \emptyset$，则
\[
\int_M fAh dV + \int_M \langle \nabla f, \nabla h \rangle dV = 0,
\]
\[
\int_M fAf dV + \int_M \| \nabla f \|^2 dV = 0.
\]

证明 因为
\[
d(f \cdot i_{\text{grad}} dV) = f \cdot d(i_{\text{grad}} dV) + df \wedge i_{\text{grad}} dV
\]
\[
= f(d(i_{\text{grad}}) dV) + df(\text{grad} h) dV
\]
\[
= f \text{div grad} h \cdot dV + \langle df, dh \rangle dV
\]
\[
= fAh \cdot dV + \langle \nabla f, \nabla h \rangle dV,
\]
其中 \(df(\text{grad} h) = \left(\sum_{i,j=1}^n g^{ij} \frac{\partial h}{\partial x^j} \frac{\partial}{\partial x^i} \right) f = \sum_{i,j=1}^n g^{ij} \frac{\partial f}{\partial x^j} \frac{\partial h}{\partial x^i} = \left(\sum_{i=1}^n \frac{\partial f}{\partial x^i}, \sum_{j=1}^n \frac{\partial h}{\partial x^j} \right)
\]
\[
= \langle df, dh \rangle = \langle \nabla f, \nabla h \rangle,
\]
\[
(d(i_{\text{grad}}) dV = (di_{\text{grad}} + i_{\text{grad}} df) dV
\]
\[
= I_{\text{grad}} dV = \text{div grad} h \cdot dV,
\]
所以，由 Stokes 定理得到 (1):
\[
\int_M fAh dV + \int_M \langle \nabla f, \nabla h \rangle dV
\]
\[
= \int_M d(f \cdot i_{\text{grad}} dV) = \int_M f \cdot i_{\text{grad}} dV
\]
和 (2):
\[
\int_M (fAh - hAf) dV
\]
\[
= \left[\int_M fAh dV + \int_M \langle \nabla f, \nabla h \rangle dV \right]
\]
\[
- \left[\int_M hAf dV + \int_M \langle \nabla f, \nabla h \rangle dV \right]
\]
\[
= \int_{\partial M} (f \cdot i_{\text{grad}} - h \cdot i_{\text{grad}}) dV
\]
\[
= \int_{\partial M} \left(f \frac{\partial h}{\partial N} - h \frac{\partial f}{\partial N} \right) i_N dV,
\]

108
这里 \(i_{grad}\omega^1(e_1, \ldots, e_{m-1}) = dV(\mathbf{grad}\omega, e_1, \ldots, e_{m-1}) = dV(\frac{\partial}{\partial N} N, e_1, \ldots, e_{m-1}) \) 为 \(M \) 上的局部 \(C^\infty \) 规范正交基向量场.

值得指出的是可以将对 \(C^\infty \) 函数 \(f \) 上定义的 Laplace 算子 \(\Delta \) 推广到对 \(C^\infty \) 微分形式上定义 Laplace 算子 \(\Delta : C^\infty(\Lambda^* T^* M) \to C^\infty(\Lambda^* T^* M) \). 而满足 \(\Delta \omega = 0 \) 的 \(\omega \) 称为调和形式. 关于调和形式及 de Rham 上同调群的关系有著名的 Hodge 理论, 本书第 4 章会对它作详细的论述.

1.6 \(C^\infty \) 浸入子流形的 Riemann 联络

设 \((\tilde{M}, \tilde{g}) = (\tilde{M}, (\cdot, \cdot)) \) 为 \(\tilde{m} \) 维 \(C^\infty \) Riemann 流形, \(\nabla \) 为其 Riemann 联络, \(f : M \to \tilde{M} \) 为 \(C^\infty \) 浸入, 则 \((M, f^* \tilde{g}) \) 为 \((\tilde{M}, \tilde{g}) \) 的 \(m \) 维 \(C^\infty \) Riemann 浸入子流形, 它的 Riemann 联络用 \(\nabla \) 表示. 如果 \(f \) 是 \(C^\infty \) 嵌入, 则称 \((M, g) = (M, f^* \tilde{g}) \) 为由 \((\tilde{M}, \tilde{g}) \) 的 \(C^\infty \) Riemann 正则子流形, 有时 \(f(M) \) 与 \(M \) 不加区别. 显然, \(C^\infty \) Riemann 浸入子流形是 \(C^\infty \) Riemann 正则子流形.

定理 1 设 \(M \subset \tilde{M}, (M, g) \) 为 \((\tilde{M}, \tilde{g}) \) 的 \(C^\infty \) 正则子流形, \(X, Y \in C^\infty(TM), \nabla x Y \) 和 \(h(X, Y) \) 为 \(\nabla x Y \) 的唯一的切分量和法分量:

\[
\nabla x Y = \nabla x Y + h(X, Y), \quad \text{(Gauss 公式)}
\]

则
(1) \(\nabla \) 为 \(TM \) 的 Riemann 联络;
(2) \(h \) 为 \(TM \) 上的对称 \((T\tilde{M} \) 上的) 向量值协变 \(C^\infty \) 张量场;
(3) \(\tilde{R}(X, Y)Z (X, Y, Z \in C^\infty(TM)) \) 唯一分解为切分量和法分量:

\[
\tilde{R}(X, Y)Z = (\tilde{R}(X, Y)Z)^\top + (\tilde{R}(X, Y)Z)^\perp,
\]

\[
(\tilde{R}(X, Y)Z)^\top
\]

\[
= R(X, Y)Z + \{\nabla x h(Y, Z) - \nabla y h(X, Z)\}^\top,
\]

109
（Gauss 曲率方程）

\[(\widetilde{\mathbf{R}}(X, Y) Z)^\perp = h(X, \nabla_Y Z) - h(Y, \nabla_X Z) - h([X, Y], Z)\]

\[+ \{ \nabla_x h(Y, Z) - \nabla_y h(X, Z) \}\perp,\]

（Codazzi-Mainardi 方程）

\[\nabla^\perp : C^\infty(TM) \times C^\infty(TM^\perp) \to C^\infty(TM^\perp),\]

\[(X, v) \mapsto \nabla^\perp_X v = (\widetilde{\nabla}_X v)^\perp\]

为 \(TM^\perp\) 上的线性联络，称为法（丛）联络，且

\[X\langle v, \mu \rangle = \langle \nabla^\perp_X v, \mu \rangle + \langle v, \nabla^\perp_X \mu \rangle,\]

\[X \in C^\infty(TM), v, \mu \in C^\infty(TM^\perp).\]

证明 因为 \(M\) 为 \(\tilde{M}\) 的 \(C^\infty\) 正则子流形，故对任意 \(X \in C^\infty(TM), p \in M\)，可选取 \(p\) 的关于 \(\tilde{M}\) 的特殊局部坐标系 \((U, \varphi),\{x^i\}\)，使得在 \(U \cap M\)，

\[X = \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i}, a^i\] 为 \(x^1, \cdots, x^n\) 的函数。再选取 \(p\) 的开邻域 \(U_1 \subseteq U\) 和 \(f \in C^\infty(\tilde{M}, \mathbb{R})\) 使 \(f|_{U_1} = 1, f|_{\tilde{M} - U_1} = 0\)，于是

\[\widetilde{X} = f \cdot \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i}\] 可视作 \(M\) 上的 \(C^\infty\) 向量场 (\(\widetilde{X}|_{\tilde{M} - U_1} = 0\)，且 \(\widetilde{X}|_{U_1 \cap M} = X\)。

为了证明 \(\nabla^\perp\) 在 \(M\) 上是 \(C^\infty\) 的，我们任取 \(p \in M\)，设 \((U, \varphi),\{x^i\}\) 为 \(p\) 的特殊坐标系， \{\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}\} 和 \{\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}\} 分别为 \(M\) 和 \(\tilde{M}\) 的局部坐标基向量场，而

\[\frac{\partial}{\partial x^1}|_{U \cap M} = \frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}|_{U \cap M} = \frac{\partial}{\partial x^n} .\]

由 1.3 中引理 3 可以得到 \(U\) 上的局部 \(C^\infty\) 规范正交基向量场 \(\tilde{Z}_1, \cdots, \tilde{Z}_n\)，

\[\tilde{Z}_1|_{U \cap M} = Z_1, \cdots, \tilde{Z}_n|_{U \cap M} = Z_n\] 为 \(U \cap M\) 上的相应的局部 \(C^\infty\) 规范正交基向量场，而 \(\tilde{Z}_{n+1}|_{U \cap M}, \cdots, \tilde{Z}_n|_{U \cap M}\) 为 \(T(U \cap M)^\perp\) 上的局部 \(C^\infty\) 规范正交基向量场。令

\[X = \sum_{i=1}^{n} \lambda^i Z_i, \quad Y = \sum_{j=1}^{n} \mu^j Z_j, \quad \tilde{\nabla}_{Z_i} Z_j = \sum_{k=1}^{n} \tilde{\eta}_k Z_k,\]

110
则
\[\nabla_x Y = \sum_{j=1}^{m} (X_\mu^j)Z_j + \sum_{i,j=1}^{m} \lambda^i \mu^j \eta_{ij} Z_k, \]
\[\nabla_x Y = \sum_{i=1}^{m} \{X_\mu^i + \sum_{i,j=1}^{m} \lambda^i \mu^j \eta_{ij} \} Z_k, \]
\[h(X, Y) = \sum_{k=m+1}^{\tilde{m}} (\sum_{i,j=1}^{m} \lambda^i \mu^j \eta_{ij}^k) Z_k. \]

从上面两式可看出 $\nabla_x Y$ 和 $h(X, Y)$ 在 $U \cap M$ 上是 C^∞ 的。

1. 因为
\[\nabla_{x_1 + x_2} Y + h(x_1 + x_2, Y) = \nabla_{x_1 + x_2} Y = \nabla_x Y + \nabla_{x_2} Y \]
\[= (\nabla_x Y + \nabla_{x_2} Y) + \{h(x_1, Y) + h(x_2, Y)\}, \]
\[\nabla_{f_X} Y + h(f_X Y, Y) = \nabla_{f_X} Y \]
\[= f(\nabla_x Y + h(X, Y)), \]
\[\nabla_x (Y_1 + Y_2) + h(x, Y_1 + Y_2) = \nabla_x (Y_1 + Y_2) \]
\[= \nabla_x Y_1 + \nabla_x Y_2 \]
\[= (\nabla_x Y_1 + \nabla_x Y_2) + \{h(x, Y_1) + h(x, Y_2)\}, \]
\[\nabla_x (fY) + h(x, fY) = \nabla_x (fY) = (f_X Y) + f \nabla_x Y \]
\[= \{(Xf)Y + f \nabla_x Y\} + fh(x, Y), \]

所以 ∇ 满足线性联络的 3 个条件，且 h 为向量值的 C^∞ 协变张量场。又因为在 $U \cap M$ 上有
\[[X, Y] = [\tilde{X}, \tilde{Y}] = \nabla_{\tilde{X}} \tilde{Y} - \nabla_{\tilde{Y}} \tilde{X} \]
\[= \tilde{\nabla}_x Y - \tilde{\nabla}_y X = (\nabla_x Y - \nabla_y X) + \{h(X, Y) - h(Y, X)\}. \]
故 $h(X, Y) = h(Y, X)$ （h 对称），且
\[T(X, Y) = \nabla_x Y - \nabla_y X - [X, Y] = 0. \]
\[Z \langle X, Y \rangle = Z \langle \tilde{X}, \tilde{Y} \rangle \]
\[\quad = \langle \tilde{\nabla}_2 \tilde{X}, \tilde{Y} \rangle + \langle \tilde{X}, \tilde{\nabla}_2 \tilde{Y} \rangle \]
\[= \langle \nabla_z X, Y \rangle + \langle X, \nabla_z Y \rangle \]
\[= \langle \nabla_z X + (\nabla_z X)^\perp, Y \rangle + \langle X, \nabla_z Y + (\nabla_z Y)^\perp \rangle \]
\[= \langle \nabla_z X, Y \rangle + \langle X, \nabla_z Y \rangle, \]

即 \(\nabla \) 满足 Riemann (Levi-Civita) 联络的条件 (4) 和 (5). 由 1.3 定理 5 中的唯一性, \(\nabla \) 就是 \((M, g)\) 的 Riemann 联络.

(3) 由
\[\tilde{R}(X, Y)Z = \nabla_x \nabla_y Z - \nabla_y \nabla_x Z - \nabla_{[x, y]} Z \]
\[= \nabla_x (\nabla_y Z + h(Y, Z)) - \nabla_y (\nabla_x Z + h(X, Z)) \]
\[- (\nabla_{[x, y]} Z + h([X, Y], Z)) \]
\[= \{ \nabla_x \nabla_y Z + h(X, \nabla_y Z) + \nabla_y h(Y, Z) \} \]
\[- \{ \nabla_y \nabla_x Z + h(Y, \nabla_x Z) + \nabla_y h(X, Z) \} \]
\[- \{ \nabla_{[x, y]} Z + h([X, Y], Z) \} \]
\[= R(X, Y)Z + \nabla_x h(Y, Z) - \nabla_y h(X, Z) + h(X, \nabla_y Z) \]
\[- h(Y, \nabla_x Z) - h([X, Y], Z) \]

推得
\[(\tilde{R}(X, Y)Z)^\top = R(X, Y)Z + \{ \nabla_x h(Y, Z) - \nabla_y h(X, Z) \}^\top, \]
\[(\tilde{R}(X, Y)Z)^\perp = \nabla_x h(Y, Z) - \nabla_y h(X, Z) - h([X, Y], Z) \]
\[+ \{ \nabla_x h(Y, Z) - \nabla_y h(X, Z) \}^\perp. \]

(4) \(\nabla^\perp \) 满足线性联络条件的 (1) 和 (2) 是明显的, 满足 (3) 是因为
\[\nabla_x^\perp (fv) = (\nabla_x (fv))^\perp = ((Xf)v + f \nabla_x v)^\perp \]
\[= (Xf)v + f(\nabla_x v)^\perp = (Xf)v + f \nabla_x^\perp v. \]

现证最后的等式,
\[\langle \nabla_x^\perp v, \mu \rangle + \langle v, \nabla_x^\perp \mu \rangle \]
\[= \langle (\nabla_x v)^\perp, \mu \rangle + \langle v, (\nabla_x \mu)^\perp \rangle \]

112
\[
= \langle \nabla_x v, \mu \rangle + \langle v, \nabla_x \mu \rangle \\
= X\langle v, \mu \rangle.
\]

定义 1 设 \((\tilde{M}, \tilde{g}) = (\tilde{M}, \langle , \rangle)\) 为 \(\tilde{m}\) 维 \(C^\infty\) Riemann 流形，包含映射 \(I: M \rightarrow \tilde{M}\) 为 \(C^\infty\) 嵌入，则 \(g = I^*\tilde{g}\) 称为 \(M\) 上的第 1 基本形式，

\(h\) 称为 \(M\) 关于 \(\tilde{M}\) 的第 2 基本形式，而 \((M, g)\) 为 \((\tilde{M}, \tilde{g})\) 的 \(C^\infty\) Riemann 正则子流形。

例 1 设 \(M\) 为 \(\tilde{M}\) 的 \(\tilde{m} - 1\) 维 \(C^\infty\) Riemann 正则子流形（超曲面，

\(\tilde{m} \geq 3\))，\(N\) 为 \(M\) 上的局部 \(C^\infty\) 单位法向量场，我们定义 Weingarten 映射

\[L = - A_N: T,M \rightarrow T,M, LX = - A_N(X) = \nabla_x N, X \in T,M.\]

因为 \(0 = X\langle N, N \rangle = 2\langle \nabla_x N, N \rangle\)，故 \(LX = \nabla_x N \in T,M.\) 容易看出，

\[L = - A_N\] 为切空间 \(T,M\) 上的线性变换。

如果 \(X, Y, N\) 都是局部 \(C^\infty\) 的，由于

\[\langle h(X,Y), N \rangle = \langle \nabla_x Y, N \rangle\]

\[= X\langle Y, N \rangle - \langle Y, \nabla_x N \rangle\]

\[= 0 - \langle Y, LX \rangle = - \langle LX, Y \rangle,\]

所以 \(h(X,Y) = - \langle LX, Y \rangle N.\) Gauss 公式成为

\[\nabla_x Y = \nabla X Y - \langle LX, Y \rangle N.\]

同时还可看出

\[h(X,Y) = h(Y,X) \Leftrightarrow \langle LX, Y \rangle = \langle X, LY \rangle,\]

即 \(L\) 为自共轭线性变换。此外，还有

\[\nabla_x h(Y,Z) = - \nabla_x (\langle LY, Z \rangle N)\]

\[= - X\langle LY, Z \rangle N - \langle LY, Z \rangle LX,\]

\[- \nabla_y h(X,Z) = \nabla_y (\langle LX, Z \rangle N)\]

\[= Y\langle LX, Z \rangle N + \langle LX, Z \rangle LY,\]

\[h(X, \nabla_y Z) = - \langle LX, \nabla_y Z \rangle N\]

\[= \langle \nabla_y LX, Z \rangle N - Y\langle LX, Z \rangle N,\]

\[- h(Y, \nabla_x Z) = \langle LY, \nabla_x Z \rangle N\]
\[\begin{align*}
&= -\langle \nabla_x L Y, Z \rangle N + X \langle L Y, Z \rangle N, - h([X, Y], Z) \\
&= \langle L[X, Y], Z \rangle N.
\end{align*} \]

于是，Gauss 曲率方程为

\[(\hat{R}(X, Y)Z) = R(X, Y)Z - \{\langle L Y, Z \rangle LX - \langle LX, Z \rangle LY \}. \]

Codazzi-Mainardi 方程为

\[(\hat{R}(X, Y)Z) = -\langle \nabla_x L Y - \nabla_y LX - L[X, Y], Z \rangle N. \]

设 \(X, Y \) 为 \(T_p M \) 中 2 维平面的规范正交基，\(\hat{R}_s(X \wedge Y) \) 和 \(\tilde{R}_s(X \wedge Y) \) 分别为 \(X \wedge Y \) 关于 \(M \) 和 \(\tilde{M} \) 的 Riemann 线曲率，则

\[\begin{align*}
\hat{R}_s(X \wedge Y) &= \langle X, \hat{R}(X \wedge Y) \rangle = \langle X, (\hat{R}(X \wedge Y))^T \rangle \\
&= \langle X, R(X \wedge Y) \rangle - \langle X, \langle L Y, Z \rangle LX \rangle + \langle X, \langle LX, Z \rangle LY \rangle \\
&= R_s(X \wedge Y) - \{\langle LX, X \rangle \langle L Y, Y \rangle - \langle LX, Y \rangle^2 \},
\end{align*} \]

即

\[\hat{R}_s(X \wedge Y) = R_s(X \wedge Y) - \{\langle LX, X \rangle \langle L Y, Y \rangle - \langle LX, Y \rangle^2 \}. \]

例 2 设 \((M, g) = (M, l^* \tilde{g}) \) 为 \((\tilde{M}, \tilde{g}) \) 的 \(\tilde{m} - k \) 维 \(C^\infty \) Riemann 正则子流形，\(N_1, \cdots, N_k \) 为 \(T M \) 上的局部 \(C^\infty \) 规范正交基向量场，我们定义 \(k \) 个 Weingarten 映射：

\[L_j X = - A_{N_j}(X) \]

\[= \nabla_x N_j - \sum_{s=1}^{k} \langle \nabla_x N_j, N_s \rangle N_s, \quad X \in T_p M, \quad j = 1, \cdots, k. \]

类似例 1 可看出 \(L_j \) 为切空间 \(T_p M \) 上的线性变换，且 Gauss 公式成为

\[\nabla_x Y = \nabla_x Y + h(X, Y) = \nabla_x Y - \sum_{j=1}^{k} \langle L_j X, Y \rangle N_j. \]

同时还可看出

\[h(X, Y) = h(Y, X) \iff \langle L_j X, Y \rangle = \langle X, L_j Y \rangle, \]

即 \(L_j \) 为自共轭线性变换，\(j = 1, \cdots, k \). 而 Gauss 曲率方程为

\[(\hat{R}(X, Y)Z) = R(X, Y)Z - \sum_{j=1}^{k} \{\langle L_j Y, Z \rangle L_j X - \langle L_j X, Z \rangle L_j Y \}, \]

Codazzi-Mainardi 方程为

114
\[
(\tilde{R}(X,Y)Z)^\perp = - \sum_{j=1}^{k} \langle \nabla x L_j Y - \nabla y L_j X - L_j [X,Y], Z \rangle N_j + \sum_{i,j=1}^{k} \{ \langle L_j X, Z \rangle \langle \nabla^2 N_j, N_i \rangle - \langle L_j Y, Z \rangle \langle \nabla^2 N_j, N_i \rangle \} N_i.
\]

Riemann 裁曲率 \(R_r(X \land Y) \) 与 \(\tilde{R}_r(X \land Y) \) 的关系为
\[
\tilde{R}_r(X \land Y) = R_r(X \land Y) - \sum_{j=1}^{k} \{ \langle L_j X, X \rangle \langle L_j Y, Y \rangle - \langle L_j X, Y \rangle^2 \},
\]
其中 \(X, Y \) 为 2 维平面 \(X \land Y \) 中的规范正交基。

例 3 在例 1 中，设 \(N \) 为 \(M \) 的 \(C^\infty \) 单位法向量场，\(\{ u^1, \ldots, u^n \} \) 为 \(M \) 的局部坐标系，其中 \(m = m - 1 \)。\(g_{ij} = \langle \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle, L_{ij} = \langle L \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle \)
\[
\frac{\partial}{\partial u^i} = \langle \nabla^2 \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle = \frac{\partial}{\partial u^i} \langle N, \frac{\partial}{\partial u^j} \rangle - \langle N, \nabla^2 \frac{\partial}{\partial u^i} \frac{\partial}{\partial u^j} \rangle = - \langle N, \nabla^2 \frac{\partial}{\partial u^i} \frac{\partial}{\partial u^j} \rangle.
\]
\[
\frac{\partial}{\partial u^i} = - \langle N, h \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right) \rangle \langle \text{如果记} \frac{\partial}{\partial u^i} = \frac{\partial x_i}{\partial u^i}, \nabla^2 \frac{\partial}{\partial u^i} \frac{\partial}{\partial u^j} = \frac{\partial^2 x_i}{\partial u^i \partial u^j} \rangle \text{则}
\]
\[
L_{ij} = - \langle N, \frac{\partial^2 x_i}{\partial u^i \partial u^j} \rangle. \text{ 此外，设}
\]
\[
L \frac{\partial}{\partial u^i} = \nabla^2 \frac{\partial}{\partial u^i} = \sum_{k=1}^{m} L_{k,i} \frac{\partial}{\partial u^i},
\]
\[
\nabla^2 \frac{\partial}{\partial u^i} = \sum_{k=1}^{m} \Gamma_{ij,k} \frac{\partial}{\partial u^i},
\]
则

(1) \[
\nabla^2 \frac{\partial}{\partial u^i} = \nabla^2 \frac{\partial}{\partial u^i} - \langle L \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle N = \sum_{k=1}^{m} \Gamma_{ij,k} \frac{\partial}{\partial u^i} - L_{ij} N;
\]

(2) \[
L_{ij} = \langle L \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle = \langle \sum_{k=1}^{m} L_{k,i} \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle = \sum_{k=1}^{m} L_{k,i} g_{kj},
\]

115
\[\sum_{j=1}^{m} L_{ij}g^{ij} = \sum_{j=1}^{m} L_{ij} L_{ij} = \sum_{i=1}^{m} L_{ii} \left(\sum_{j=1}^{m} g_{ij} g^{ij} \right) = \sum_{i=1}^{m} L_{ii} \delta_{ii} = L_i. \]

\[L_{ij} = \langle L \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle = \langle \frac{\partial}{\partial u^i}, L \frac{\partial}{\partial u^j} \rangle = L_{ji}. \]

(3) 在 \(p \in M \) 处，因为 \((L_{ij}) \) 为实对称矩阵，故线性变换 \(L: T,M \rightarrow T,M \) 的特征值 \(K_1, \cdots, K_m \) 都是实数。

(5) 称 \(K_o = K_1 \cdots K_m \) 为 \(M \) 在 \(p \) 点处的 Gauss 曲率，称 \(H = \frac{1}{m}(K_1 + \cdots + K_m) \) 为 \(M \) 在 \(p \) 点处的平均曲率，则

\[K_o = K_1 \cdots K_m = \det(L_i^j) = \det(\sum_{j=1}^{m} L_{ij}g^{ij}) = \det(L_{ij}) \cdot \det(g^{ij}) = \frac{\det(L_{ij})}{\det(g_{ij})}, \]

\[H = \frac{1}{m}(K_1 + \cdots + K_m) = \frac{1}{m} \text{trace}(L_i^j) = \frac{1}{m} \sum_{i=1}^{m} L_{ii}g^{ii}. \]

例 4 在例 3 中，设 \(\widetilde{M} = \mathbb{R}^n = \mathbb{R}^{n+1} \)，则 \(\widetilde{R} = 0. \)

(1) Gauss 曲率方程的坐标形式:

\[0 = R\left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right) \frac{\partial}{\partial u^k} - \left\{ \langle L_\mu \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle L_\nu \frac{\partial}{\partial u^k} - \langle L_\mu \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle L_\nu \frac{\partial}{\partial u^k} \right\} \]

\[= \sum_{i=1}^{m} R_{\mu ij} \frac{\partial}{\partial u^k} - \left(L_\mu \sum_{k=1}^{m} L^k_i \frac{\partial}{\partial u^k} - L_\nu \sum_{k=1}^{m} L^k_j \frac{\partial}{\partial u^k} \right) \]

\[= \sum_{i=1}^{m} \left(R_{\mu ij} - (L_\mu L^k_i - L_\nu L^k_j) \right) \frac{\partial}{\partial u^k}, \]

\[R_{\mu ij} = L_\mu L^k_i - L_\nu L^k_j \]

或

\[\frac{\partial F^j_{\mu i}}{\partial u^k} - \frac{\partial F^j_{\nu i}}{\partial u^k} + \sum_{s=1}^{m} (F^j_{\mu s} - F^j_{\nu s}) = L_\mu L^k_i - L_\nu L^k_i, \]
\(i, j, k, l = 1, \ldots, m.\)

(2) Codazzi-Mainardi 方程的坐标形式:

\[
0 = -\left\langle \nabla_v \frac{\partial}{\partial v}, L \frac{\partial}{\partial u} - \nabla_v L \frac{\partial}{\partial u}' - L \left[\frac{\partial}{\partial u}, L \frac{\partial}{\partial u}' \right], \frac{\partial}{\partial u}' \right\rangle N
\]

\[
= \left\{ -\frac{\partial}{\partial u} \left\langle L \frac{\partial}{\partial u}, \frac{\partial}{\partial u}' \right\rangle + \left\langle L \frac{\partial}{\partial u}, \nabla_v \frac{\partial}{\partial u}' \right\rangle \right. \\
+ \frac{\partial}{\partial u'} \left\langle L \frac{\partial}{\partial u}, \frac{\partial}{\partial u} \right\rangle - \left\langle L \frac{\partial}{\partial u}, \nabla_v \frac{\partial}{\partial u} \right\rangle \left\{ \right. N
\]

\[
= \left\{ -\frac{\partial L_{jl}}{\partial u} + \frac{\partial L_{il}}{\partial u} + \left\langle L \frac{\partial}{\partial u}, \sum_{k=1}^{m} \Gamma_\beta^k \frac{\partial}{\partial u} \right\rangle \\
- \left\langle L \frac{\partial}{\partial u}, \sum_{k=1}^{m} \Gamma_\beta^k \frac{\partial}{\partial u} \right\rangle \left\{ \right. N
\]

\[
= \left\{ -\frac{\partial L_{jl}}{\partial u} + \frac{\partial L_{il}}{\partial u} + \sum_{k=1}^{m} \Gamma_\beta^k L_{jk} - \sum_{k=1}^{m} \Gamma_\beta^k L_{ik} \right\} N,
\]

\[
\frac{\partial L_{jl}}{\partial u} - \frac{\partial L_{il}}{\partial u} - \sum_{k=1}^{m} \Gamma_\beta^k L_{jk} + \sum_{k=1}^{m} \Gamma_\beta^k L_{ik} = 0, \quad i, j, l = 1, \ldots, m.
\]

(3) \[\begin{vmatrix}
L_{ir} & L_{il} \\
L_{jr} & L_{jl}
\end{vmatrix} = L_{ir}L_{jl} - L_{il}L_{jr},\]

\[
= \sum_{k=1}^{m} g^{ir} (L_{jk} L_{il} - L_{ik} L_{jl}) = \sum_{k=1}^{m} g^{ir} R_{ikj}^{l} \\
= \sum_{k=1}^{m} g^{ir} \left(\frac{\partial \Gamma_{\beta}^k}{\partial u} - \frac{\partial \Gamma_{\beta}^k}{\partial u'} + \sum_{s=1}^{m} (\Gamma_{jk} \Gamma_{s} - \Gamma_{ik} \Gamma_{js}) \right).
\]

(4) \[\begin{vmatrix}
L_{i}^l & L_{j}^l \\
L_{i}^j & L_{j}^j
\end{vmatrix} = L_{i} L_{j} - L_{i} L_{i} \\
= \sum_{k=1}^{m} g^{kr} (L_{jk} L_{ik} - L_{ik} L_{jk}) = \sum_{k=1}^{m} g^{kr} R_{kis}^{l} \\
= \sum_{k=1}^{m} g^{kr} \left(\frac{\partial \Gamma_{\beta}^k}{\partial u} - \frac{\partial \Gamma_{\beta}^k}{\partial u'} + \sum_{s=1}^{m} (\Gamma_{jk} \Gamma_{is} - \Gamma_{ik} \Gamma_{js}) \right).
定理 2 (Gauss 绝妙定理) 设 M 为 $\bar{M} = \mathbb{R}^{n+1}$ 中的 $2n$ 维 C^∞ Riemann 正则子流形，则 M 的 Gauss 曲率 K_0 由 M 的第 1 基本形式完全确定，而与 M 相对于它的外周空间 \bar{M} 的第 2 基本形式无关。

证明 从表面看，$K_0 = \frac{\det(L_{ij})}{\det(g_{ij})}$ 既与 g_{ij}（第 1 基本形式）有关，又与 L_{ij}（第 2 基本形式）有关，但如果说应用行列式的 Laplace 展开就得到

$$\det(L_{ij}) = \sum \pm \begin{vmatrix} L_{ik} & L_{il} & \cdots & L_{im} \\ L_{jk} & L_{jl} & \cdots & L_{jm} \\ \vdots & \vdots & \ddots & \vdots \\ L_{nk} & L_{nl} & \cdots & L_{nm} \end{vmatrix}.$$

从例 4（3）知 $\begin{vmatrix} L_{ik} & L_{il} \\ L_{jk} & L_{jl} \end{vmatrix}$ 可用 g_{ij} 及其导数 (注意 I^*_i 可用 g_{ij} 及其导数) 表示，所以，K_0 由 M 的第 1 基本形式完全确定。

定理 3 设 M 为 $\bar{M} = \mathbb{R}^{n+1}$ 的 m 维 C^∞ Riemann 正则子流形，N 为 M 的 C^∞ 单位法向量场，即 $N: M \to S^n \subset \mathbb{R}^{n+1}$ 为 C^∞ 映射（称为 M 的 Gauss 映射），则

$$K_0 = \det N_*,$$

其中 $N_*: TM \to TS^n, T_xM \text{ 和 } T_{N(x)}S^n$ 视作相同的向量空间。

证明 设 $\{u^1, \cdots, u^n\}$ 为 M 的局部坐标系，则

$$\begin{vmatrix} \frac{\partial N}{\partial u^1} \\ \vdots \\ \frac{\partial N}{\partial u^n} \end{vmatrix} = \begin{vmatrix} \frac{\partial}{\partial u^1} \\ \vdots \\ \frac{\partial}{\partial u^n} \end{vmatrix} = \begin{vmatrix} L_{11} & \cdots & L_{1n} \\ \vdots & \ddots & \vdots \\ L_{n1} & \cdots & L_{nn} \end{vmatrix} = \begin{vmatrix} \frac{\partial}{\partial u^1} \\ \vdots \\ \frac{\partial}{\partial u^n} \end{vmatrix},$$

$$K_0 = \det(L^i) = \det N_*.$$

定理 4 设 M 是 \mathbb{R}^3 中的 2 维 C^∞ 紧致定向 Riemann 正则子流形，则存在 $p_0 \in M$，使得 $K_0(p_0) > 0$。

证明 令 $p \in M, \rho(p)$ 为 p 到定点 q 的距离，显然 ρ 为 M 上的连续函数。由于 M 紧致，所以必存在 $p_0 \in M$，使 $\rho_0 = \rho(p_0) = \max_{p \in M} \{\rho(p)\}$，于是在定点 q 为中心，$\rho_0 = \rho(p_0)$ 为半径的球面 \bar{M} 将 M 完全包含在内，且在 ρ_0 恰好相切。为简单，又不失一般性，取 $p_0 = 118$
0, xOy 平面为 M 和 \(\widetilde{M} \) 在 O 的切平面 (N = (0, 0, 1) 为法向) 且 M 和 \(\widetilde{M} \) 都在其上方。

设曲面 M 上的动点为 \(r(x, y) = (x, y, z(x, y)) \), 则 \(r' = (1, 0, z'), r'_x = (0, 1, z'), r''_x(0, 0) = (1, 0, 0), g_{11}(0, 0) = g_{22}(0, 0) = 1, g_{12}(0, 0) = g_{21}(0, 0) = 0 \)。同样曲面 \(\widetilde{M} \) 有 \(\tilde{r}(x, y) = (x, y, \tilde{z}(x, y)), \tilde{g}_{11}(0, 0) = \tilde{g}_{22}(0, 0) = 1, \tilde{g}_{12}(0, 0) = \tilde{g}_{21}(0, 0) = 0 \)。

因为 \(r(x, y) \) 到 (0, 0) 点的切平面的垂直距离为

\[
z(x, y) = [r(x, y) - r(0, 0)] \cdot N
\]

\[
= \{r'(0, 0)x + r'_y(0, 0)y + \frac{1}{2}[r''_{xx}(0, 0)x^2
\]
\[
+ 2r''_{xy}(0, 0)xy + r''_{yy}(0, 0)y^2] + o(x^2 + y^2)\} \cdot N
\]

\[
= \frac{1}{2} (L_{11}(0, 0)x^2 + 2L_{12}(0, 0)xy + L_{22}(0, 0)y^2) + o(x^2 + y^2).
\]

用反证法可证明: 存在 (0, 0) 在 xOy 平面上的开邻域 U，使得 \((x, y) \in U \) 有

\[
L_{11}(0, 0)x^2 + 2L_{12}(0, 0)xy + L_{22}(0, 0)y^2
\]

\[
\geq \tilde{L}_{11}(0, 0)x^2 + 2\tilde{L}_{12}(0, 0)xy + \tilde{L}_{22}(0, 0)y^2.
\]

显然, 对 \forall (x, y) \in \mathbb{R}^2, 上面不等式仍成立。由线性代数知, 上面两个二次型的最小特征值和最大特征值之间有如下关系: \(\lambda_\min, \lambda_\max \),

\[
\tilde{\lambda}_\min, \tilde{\lambda}_\max \geq 0, \text{ 且 } \lambda_\max \sim \lambda_\max, \tilde{\lambda}_\min \sim \tilde{\lambda}_\min.
\]

因此,

\[
K_\circ = \frac{\det(L_{ij})}{\det(g_{ij})} = \frac{\lambda_\min \lambda_\max}{\tilde{\lambda}_\min \tilde{\lambda}_\min} = \frac{\det(\tilde{L}_{ij})}{\det(\tilde{g}_{ij})}
\]

\[
= \frac{1}{\rho^2} > 0.
\]

定理 5 \(\tilde{M} = \mathbb{R}^3 \) 中的 2 维 \(C^\infty \) 定向 Riemann 正则子流形 M 的 Gauss 曲率 \(K_\circ \) 与它的 Riemann 截曲率相等。

证明 设 \(e_1, e_2 \) 为 \(TM \) 的局部 \(C^\infty \) 规范正交基向量场, \(L \) 为 Weingarten 映射，
\[
\begin{pmatrix}
L e_1 \\
L e_2
\end{pmatrix}
= \begin{pmatrix}
L_1 & L_2^2 \\
L_1^2 & L_2
\end{pmatrix}
\begin{pmatrix}
e_1 \\
e_2
\end{pmatrix}.
\]

\[
R(e_1 \wedge e_2) = \bar{R}(e_1 \wedge e_2) + \langle Le_1, e_1 \rangle \langle Le_2, e_2 \rangle - \langle Le_1, e_2 \rangle^2
= 0 + \langle L_1 e_1 + L_2^2 e_2, e_1 \rangle \langle L_2^2 e_1 + L_2^2 e_2, e_2 \rangle - \langle L_1 e_1 + L_2^2 e_2, e_2 \rangle^2
= L_1 L_2^2 - (L_2^2)^2 = \det \begin{pmatrix}
L_1 & L_2^2 \\
L_2 & L_2
\end{pmatrix} = K_0,
\]

其中 \(L_1 = L_2 \) 是因为 \(L_i = \langle \sum_{s=1}^2 L_i^s e_s, e_j \rangle = \langle Le_i, e_j \rangle = \langle e_i, Le_j \rangle = \langle e_i, e_j \rangle \)。

\[
\sum_{s=1}^2 L_i^s e_s \rangle = L_i.
\]

再给出两例子。

例 5 \(\bar{M} = R^{n+1}, M = s^n \left(\frac{1}{\sqrt{c}} \right) = \{ x = (x^1, \cdots, x^{n+1}) \in \right) \)

\[
R^{n+1} \bigg| \sum_{i=1}^{m+1} (x^i)^2 = \frac{1}{c} \bigg] \text{ 为} m \text{ 维球面, 则}
\]

\[
L X = \nabla_x N = \nabla_x \left(\sum_{i=1}^{n+1} \sqrt{c} x^i \frac{\partial}{\partial x^i} \right)
= \sqrt{c} \sum_{i=1}^{n+1} (x^i) \frac{\partial}{\partial x^i} + \sum_{i=1}^{n+1} \sqrt{c} x^i \nabla_x \frac{\partial}{\partial x^i} = \sqrt{c} X.
\]

取 \(X, Y \) 为 \(X \wedge Y \) 平面上的规范正交基, 则

\[
R_s (X \wedge Y) = \bar{R}_s (X \wedge Y) + \{ \langle LX, X \rangle \langle LY, Y \rangle - \langle LX, Y \rangle^2 \}
= 0 + \{ \langle \sqrt{c} X, X \rangle \langle \sqrt{c} Y, Y \rangle - \langle \sqrt{c} X, Y \rangle^2 \}
= c (\text{常 Riemann 萦曲率} c > 0).
\]

\[
K_0 = \det (L_i') = \det \begin{pmatrix}
\sqrt{c} & & \\
& \ddots & \\
& & \sqrt{c}
\end{pmatrix} = (\sqrt{c})^m = c^\frac{m}{2},
\]

\[
H = \frac{\text{trace} (L_i^s)}{m} = \frac{\sqrt{c} + \cdots + \sqrt{c}}{m} = \sqrt{c}.
\]

120
例 6 $\bar{M} = \mathbb{R}^{n+1}, M = \{x = (x^1, \cdots, x^{m+1}) \in \mathbb{R}^{m+1} | \sum_{i=1}^{m} (x^i)^2 = \frac{1}{c}\}$ 为 m 维圆柱面，则

$$
LX = \vec{\nabla}_x N = \vec{\nabla}_x \left(\sum_{i=1}^{m} \sqrt{c} x^i \frac{\partial}{\partial x^i} \right)
$$

$$
= \sqrt{c} \sum_{i=1}^{m} \left(Xx^i \right) \frac{\partial}{\partial x^i} = \sqrt{c} \sum_{i=1}^{m} a^i \frac{\partial}{\partial x^i},
$$

其中 $X = \sum_{i=1}^{m+1} a^i \frac{\partial}{\partial x^i}$.

取 TM 的局部 C^∞ 规范正交基向量场为 $e_1, \cdots, e_{m-1}, \frac{\partial}{\partial x^{m+1}}$，则

$$
\begin{pmatrix}
L e_1 \\
\vdots \\
L e_{m-1} \\
L \frac{\partial}{\partial x^{m+1}}
\end{pmatrix}
=
\begin{pmatrix}
\sqrt{c} & & & \\
& \ddots & & \\
& & \sqrt{c} & \\
& & & 0
\end{pmatrix}
\begin{pmatrix}
e_1 \\
\vdots \\
e_{m-1} \\
\frac{\partial}{\partial x^{m+1}}
\end{pmatrix},
$$

$$
K_\alpha = \det \begin{pmatrix}
\sqrt{c} & & & \\
& \ddots & & \\
& & \sqrt{c} & \\
& & & 0
\end{pmatrix} = 0,
$$

$$
H = \frac{\sqrt{c} + \cdots + \sqrt{c} + 0}{m} = \frac{m-1}{m} \sqrt{c}.
$$

注意，$M(m \geq 3)$ 不是常 Riemann 曲率的 C^∞ 流形，例如：

$$
R_x(e_1 \wedge e_2) = \tilde{R}_x(e_1 \wedge e_2) + \{\langle Le_1, e_1 \rangle \langle Le_2, e_2 \rangle - \langle Le_1, e_2 \rangle^2 \}
$$

$$
= 0 + \{\langle \sqrt{c} e_1, e_1 \rangle \langle \sqrt{c} e_2, e_2 \rangle - \langle \sqrt{c} e_1, e_2 \rangle^2 \}
$$

$$
= c > 0,
$$
\[R_\tau(e_1 \wedge \frac{\partial}{\partial x^{m+1}}) \]

\[= \bar{R}_\tau(e_1 \wedge \frac{\partial}{\partial x^{m+1}}) + \langle \langle L e_1, e_1 \rangle \langle L \frac{\partial}{\partial x^{m+1}}, \frac{\partial}{\partial x^{m+1}} \rangle - \langle \sqrt{c} e_1, e_1 \rangle \rangle \]

\[- \langle \sqrt{c} e_1, e_1 \rangle \rangle \]

\[= 0 + \langle \langle \sqrt{c} e_1, e_1 \rangle \langle 0, \frac{\partial}{\partial x^{m+1}} \rangle - \langle \sqrt{c} e_1, \frac{\partial}{\partial x^{m+1}} \rangle \rangle \]

\[= 0 \neq c = R_\tau(e_1 \wedge e_2). \]

最后，我们给出一个下面要用的公式。

定理 6 \((M, g) = (M, g^*)\) 是 \((\bar{M}, \bar{g})\) 的 \(C^\infty\) Riemann 正则子流形，则对 \(\forall X, Y, Z, W \in T_\tau M\)，有

\[
K(X, Y, Z, W) = \bar{K}(X, Y, Z, W) + \langle \langle h(X, Z), h(Y, W) \rangle \rangle
- \langle \langle h(X, W), h(Y, Z) \rangle \rangle.
\]

如果 \(X, Y\) 为平面 \(X \wedge Y\) 上的规范正交基，则

\[
R(X \wedge Y) = \bar{R}(X \wedge Y) + \langle \langle h(X, X), h(Y, Y) \rangle \rangle
- \langle \langle h(X, Y), h(X, Y) \rangle \rangle.
\]

特别当 \((\bar{M}, \bar{g})\) 具有常截曲率 \(c\) 时，得到

\[
K(X, Y, Z, W) = c \langle \langle X, Z \rangle \langle Y, W \rangle - \langle XW \rangle \langle Y, Z \rangle \rangle
+ \langle \langle h(X, Z), h(Y, W) \rangle \rangle - \langle \langle h(X, W), h(Y, Z) \rangle \rangle.
\]

如果 \(X, Y\) 为平面 \(X \wedge Y\) 上的规范正交基，则

\[
R(X \wedge Y) = c + \langle \langle h(X, X), h(Y, Y) \rangle \rangle - \langle \langle h(X, Y), h(X, Y) \rangle \rangle.
\]

证明 因为

\[
\bar{K}(X, Y, Z, W) = \langle X, \bar{R}(Z, W)Y \rangle
\]

\[
= \langle X, R(Z, W)Y + \nabla_Z h(W, Y) - \nabla_{\nu}(Z, Y) \rangle
+ h(Z, \nabla_{\nu}Y) - h(W, \nabla_Z Y) - h([Z, W], Y) \rangle
\]

\[
= K(X, Y, Z, W) - \langle \nabla_Z X, h(W, Y) \rangle + \langle \nabla_\nu X, h(Z, Y) \rangle
= K(X, Y, Z, W) - \langle h(X, Z), h(Y, W) \rangle + \langle h(X, W), h(Y, Z) \rangle,
\]

所以

122
\[K(X,Y,Z,W) = \mathcal{K}(X,Y,Z,W) + \{ \langle h(X,Z), h(Y,W) \rangle \]
\[- \langle h(X,W), h(Y,Z) \rangle \}. \]

注 1 设 \(\{e_1, \cdots, e_m \} \) 为 \(T_pM \) 的规范正交基，\(\{e_1, \cdots, e_m, e_{m+1}, \cdots, e_n \} \) 为 \(T_p\tilde{M} \) 的规范正交基，则

\[
K_{ijkl} = K(e_i, e_j, e_k, e_l)
= \mathcal{K}(e_i, e_j, e_k, e_l) + \{ \langle h(e_i, e_k), h(e_j, e_l) \rangle \}
- \langle h(e_i, e_k), h(e_j, e_l) \rangle
\]
\[= \mathcal{K}_{ijkl} + \left\{ \sum_{a=m+1}^{\tilde{m}} h^a_{\alpha} e_\alpha, \sum_{b=m+1}^{\tilde{m}} h^b_{\beta} e_\beta \right\}
- \left\{ \sum_{a=m+1}^{\tilde{m}} h^a_\alpha e_\alpha, \sum_{b=m+1}^{\tilde{m}} h^b_\beta e_\beta \right\}
\]
\[= \mathcal{K}_{ijkl} + \sum_{a=m+1}^{\tilde{m}} (h^a_\alpha h^a_\beta - h^a_\beta h^a_\alpha). \]

如果 \(\tilde{M} \) 是常截弧率 \(c \) 的流形，则

\[
K_{ijkl} = c(\delta_{i\alpha} \delta_{j\beta} - \delta_{i\beta} \delta_{j\alpha}) + \sum_{a=m+1}^{\tilde{m}} (h^a_\alpha h^a_\beta - h^a_\beta h^a_\alpha). \]

应用定理 6 立即得到

定理 7 设 \((M, g) = (M, I^* \tilde{g}) = (\tilde{M}, \langle \cdot, \cdot \rangle)\) 为 \((\tilde{M}, \tilde{g}) = (\tilde{M}, \langle \cdot, \cdot \rangle)\) 的 \(m \) 维 \(C^\infty \) Riemann 正则子流形，\((\tilde{M}, \tilde{g})\) 具有常 Riemann 截曲率 \(c \). \(\{e_1, \cdots, e_m\} \) 为 \((\tilde{M}, \tilde{g})\) 的局部 \(C^\infty \) 规范正交基，而 \(\{e_1, \cdots, e_m\} \) 为 \((M, g)\) 的局部 \(C^\infty \) 规范正交基，\(s \) 为 \((M, g)\) 的数量曲率，记

\[
h^a_{ij} = \langle h(e_i, e_j), e_a \rangle, i, j = 1, \cdots, m; a = m + 1, \cdots, \tilde{m}, \]

\[
\| h \|^2 = \sum_{a=m+1}^{\tilde{m}} \sum_{i,j=1}^{m} (h^a_{ij})^2, \| H \|^2 = \frac{1}{m^2} \sum_{a=m+1}^{\tilde{m}} (\sum_{j=1}^{m} h^a_{ij})^2
\]

(其中 \(H = H(x) \) 为平均曲率向量(参阅第 2 章 2.1)). 则

\[
s = m(m - 1)c + m^2 \| H \|^2 - \| h \|^2. \]

证明

\[
s = \sum_{i,j=1}^{m} R_{ij} = \sum_{i=1}^{m} \text{Ric}(e_i, e_i) = \sum_{i,j=1}^{m} \langle e_j, R(e_i, e_i)e_i \rangle
\]

123
\[
= \sum_{i,j=1}^{m} K(e_i, e_i, e_i, e_i)
= \sum_{i,j=1}^{m} \{ \tilde{K}_{ij} + \sum_{a=m+1}^{m} (h_i^a h_i^a - h_i^a h_i^a) \}
= \sum_{i,j=1}^{m} \{ c(\delta_{ij} h_i^a - \delta_{ij} h_i^a) + \sum_{a=m+1}^{m} (h_i^a h_i^a - h_i^a h_i^a) \}
= c(m^2 - m) + \sum_{a=m+1}^{m} \left(\sum_{i=1}^{m} (h_i^a)^2 \right) - \sum_{a=m+1}^{m} \sum_{i=1}^{m} (h_i^a)^2
= m(m - 1)c + m^2 \| H \|^2 - \| h \|^2.
\]

1.7 活动标架

本节主要介绍利用活动标架研究线性联络、Levi-Civita 联络、曲率和 \(C^\infty\) 正则子流形的局部几何。首先用另一方式定义联络和协变导数。

定义 1 \(M\) 为 \(m\) 维 \(C^\infty\) 流形，\(\xi = \{E, M, \pi, GL(n, \mathbb{R}), \mathbb{R}^n, \mathcal{S}\}\) 为阶 \(n\) 的 \(C^\infty\) 向量丛。如果线性算子
\[
\nabla : C^\infty(E) \rightarrow C^\infty(T^* M \otimes E)
\]
满足
\[
\nabla(fs) = df \otimes s + f \nabla s, s \in C^\infty(E), f \in C^\infty(M, \mathbb{R}),
\]
则称 \(\nabla\) 为 \(E\) 或 \(\xi\) 上的线性联络，称 \(\nabla s\) 为 \(s\) 的协变导数。

由定义和 1.1 引理 2(2) 的证明可知，线性联络 \(\nabla\) 为局部算子。那就是，如果 \(s|_v = 0\)，则 \(\nabla s|_v = 0\)。于是 \(\nabla\) 在 \(M\) 的开子集 \(U\) 上的限制 \(\nabla^U = \nabla|_U\) 是有意义的（为方便，有时仍记作 \(\nabla\)）。如果 \(E|_v\) 平凡，则 \(E|_v\) 的 \(C^\infty\) 标架场 \(\{s_1, \cdots, s_n\}\)（即 \(s_i \in C^\infty(E|_v)\)，且 \(\langle s_1(x), \cdots, s_n(x) \rangle\) 为 \(x \in U\) 处纤维 \(E_x\) 的基）称为 \(U\) 上的局部 \(C^\infty\) 标架场。

设 \(\{U_\alpha| \alpha \in \Gamma\}\) 为 \(M\) 的开覆叠，使得 \(E|_{U_\alpha}\) 是平凡的，则 \(E\) 上的线性联络 \(\nabla\) 由 \(\{\nabla^U|_v = \nabla|_v\}\) 唯一决定。令 \(\{s_1, \cdots, s_n\}\) 为 \(U_\alpha\) 上的局部标架场，则存在 \(U_\alpha\) 上的 \(C^\infty\) 实值 \(n \times n\) 矩阵 \(\omega = (\omega^j_i)\) (称
为联络 1 形式) 使得

$$\nabla s_i = \sum_{j=1}^{n} \omega^j \otimes s_j.$$

如果 \(\{ \tilde{s}_1, \cdots, \tilde{s}_n \} \) 为 \(U_\alpha \) 上另一局部标架场，

$$\nabla \tilde{s}_i = \sum_{j=1}^{n} \tilde{\omega}^j \otimes \tilde{s}_j, \quad \tilde{\omega} = (\tilde{\omega}^j).$$

记 \(\tilde{s}_i = \sum_{j=1}^{n} a_i^j s_j, A^{-1} = (b^i) \) 为 \(A = (a_i^j) \) 的逆矩阵。因此，\(s_i = \sum_{j=1}^{n} b_i^j \tilde{s}_j, \)

于是有

$$\sum_{j=1}^{n} \tilde{\omega}^j \otimes \tilde{s}_j = \nabla \tilde{s}_i = \nabla \left(\sum_{i=1}^{n} a_i^j s_i \right)$$

$$= \sum_{i=1}^{n} (da_i^j \otimes s_i + a_i^j \nabla s_i)$$

$$= \sum_{i=1}^{n} (da_i^j + \sum_{k=1}^{n} a_i^k \omega^k) \otimes s_i$$

$$= \sum_{i=1}^{n} (\sum_{j=1}^{n} da_i^j b^i_j + \sum_{k,l=1}^{n} a_i^k \omega^k b^l_j) \otimes s_j$$

有

$$\tilde{\omega} = dA \cdot A^{-1} + A \cdot \omega \cdot A^{-1} \quad \text{(联络方阵的变换公式).}$$

已给 \(M \) 的开覆盖 \(\{ U_\alpha | \alpha \in \Gamma \} \), \(U_\alpha \) 上局部 \(\infty \) 标架场 \(\{ s_i^\alpha \} \) 相应的 \(gl(n, R)(n \times n \) 实矩阵加群) 值 1 形式 \(\omega \). 如果 \(\alpha, \beta \in \Gamma, U_\alpha \cap U_\beta \neq \emptyset \),

则 \(E \) 上的线性联络由一套 \(U_\alpha \) 上的 \(gl(n, R) \) 值 1 形式 \(\omega_\alpha \) 定义，使得在 \(U_\alpha \cap U_\beta \) 上满足:

$$\omega_\alpha = dA_{\alpha\beta} \cdot A_{\alpha\beta}^{-1} + A_{\alpha\beta} \cdot \omega_\beta \cdot A_{\alpha\beta}^{-1}. \quad \text{(联络方阵的变换公式).}$$

设 \(s \in C^\infty(E), X, Y \in C^\infty(TM), f \in C^\infty(M, R), \nabla_x s = (\nabla s)(X), R(X, Y)s = (\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}s). \) 从 1.1 定义 4 和引理 1, 有
\[R(Y, X) = -R(X, Y), \]
\[R(fX, Y) = R(X, fY) = fR(X, Y), \]
\[R(X, Y)(fs) = fR(X, Y)s. \]

假定 \((s_1, \cdots, s_n)\) 为 \(M\) 的开集 \(U\) 上的局部 \(C^\infty\) 标架场，则存在 \(C^\infty\) 形式 \(\Omega_i\) (称为曲率 2 形式) 使得
\[R(s_i) = \sum_{j=1}^{n} \Omega_i \otimes s_j, \]
从
\[\sum_{j=1}^{n} \Omega_i^j(X, Y)s_j = R(s_i)(X, Y) \]
\[= R(X, Y)s_i = (\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X, Y]})s_i \]
\[= \nabla_X \left(\sum_{j=1}^{n} \omega_i^j(Y)s_j \right) - \nabla_Y \left(\sum_{j=1}^{n} \omega_i^j(X)s_j \right) - \sum_{j=1}^{n} \omega_i^j([X, Y])s_j \]
\[= \sum_{j=1}^{n} \left[X(\omega_i^j(Y)) - Y(\omega_i^j(X)) - \omega_i^j([X, Y]) \right]s_j \]
\[+ \sum_{j,k=1}^{n} \omega_i^j(Y)\omega_i^k(X) - \omega_i^k(X)\omega_i^j(Y) \]
\[s_j \]
\[= \sum_{j=1}^{n} (d\omega_i^j - \sum_{k=1}^{n} \omega_i^k \wedge \omega_i^j)(X, Y)s_j \]
有
\[\Omega_i^j = d\omega_i^j - \sum_{k=1}^{n} \omega_i^k \wedge \omega_i^j. \]

因此，\(R\) 局部可由 \(C^\infty\) 形式的 \(n \times n\) 矩阵 \(\Omega_i = (\Omega_i^j)\) 定义，它正如 \(\nabla\) 局部可由 \(C^\infty\) 形式的 \(n \times n\) 矩阵 \(\omega = (\omega_i^j)\) 定义一样，利用矩阵记号，有
\[\Omega = d\omega - \omega \wedge \omega \]（称为联络 \(\nabla\) 在 \(U\) 上的曲率方阵）。

定义 2 如果在 \(U\) 上 \(\nabla s = 0\)，则称 \(E|_v\) 的 \(C^\infty\) 截面 \(s\) 关于 \(\nabla\) 是平行的。

定义 3 如果曲率 \(R = 0\)（\(\Leftrightarrow\) 在任何局部有 \(\Omega = (\Omega_i^j) = 0\)），则称线性联络 \(\nabla\) 是平坦的。
定理 1 E 上的线性联络 \(\nabla \) 是平坦的 \(\iff \) 存在局部平行的 \(C^\infty \) 标架场.

证明 \((\Leftarrow)\) 设 \(\{s_1, \cdots, s_n\} \) 为开集 \(U \) 中的局部平行的 \(C^\infty \) 标架场，则 \(\nabla s_1 = 0, \nabla_x s_i = (\nabla s_i)(X) = 0, \nabla_Y \nabla_X s_i = 0. \) 如果 \(s_i \in C^\infty(E) \), 则局部有 \(s = \sum_{i=1}^{n} f^i s_i, f^i \in C^\infty(U, \mathbb{R}). \) 于是

\[
R(X, Y)s = R(X, Y)(\sum_{i=1}^{n} f^i s_i) = \sum_{i=1}^{n} f^i R(X, Y)s_i
\]

\[
= \sum_{i=1}^{n} f^i (\nabla_x \nabla_y - \nabla_y \nabla_x - \nabla_{[x,y]})s_i = 0,
\]

即 \(R = 0. \) 或者，从

\[0 = \nabla s_i = \sum_{j=1}^{n} \omega_i^j \otimes s_j\]

得到

\[\omega = (\omega_i^j) = 0\]

和

\[\Omega = d\omega - \omega \wedge \omega = 0,\]

因而 \(R = 0. \)

\((\Rightarrow)\) \(\nabla \) 是平坦的，即 \(R = 0 \) 或 \(\Omega = 0, \) 所以，\(\omega \) 满足 Maurer-Cartan 方程 \(d\omega = \omega \wedge \omega. \) 由 [PT], 1.4.7 Example, 局部存在一个 \(GL(n, \mathbb{R}) \) 值映射 \(B = (b^i) \) 使得

\[dB \cdot B^{-1} = \omega.\]

令 \(A = B^{-1} = (a^i) \) 及 \(\tilde{s}_i = \sum_{j=1}^{n} a^i_j s_j, \) 则 \(\nabla \tilde{s}_i = \sum_{j=1}^{n} \omega_i^j \otimes \tilde{s}_j, \) 且

\[
\tilde{\omega} = dA \cdot A^{-1} + A \cdot \omega \cdot A^{-1} = dB^{-1} \cdot B + B^{-1} \cdot \omega \cdot B
\]

\[
= -B^{-1}(dB)B^{-1}B + B^{-1}(dB)B^{-1}B
\]

\[= 0,
\]

即 \(\nabla \tilde{s}_i = 0, \tilde{s}_i \) 为局部 \(C^\infty \) 平行标架场.

定义 4 如果 \(m \) 维 \(C^\infty \) 流形 \(M \) 上存在整体的 \(C^\infty \) 平行标架场，则 \(E \) 上的线性联络 \(\nabla \) 称为整体平坦的.
例 1 设 \(E = M \times \mathbb{R}^s \) 为平坦 \(C^\infty \) 向量丛, \(s \in C^\infty(E), s(x) = (x, f(x)), \) 定义 \((\nabla s)_x = (x, df|_x) \), 则截面 \(s \) 平行 \(\iff df = 0 \iff f \) 为局部常值映射. 故 \(s(x) = (x, e_i)|_{e_i} = (0, \cdots, 0, 1, 0, \cdots, 0) \), 第 \(i \) 个坐标为 \(1, i = 1, \cdots, n \) 为整体 \(C^\infty \) 平行标架场, 即 \(\nabla \) 为整体平坦的.

引理 1 \(E \) 具有整体平坦的线性联络 \(\iff E \) 为平凡 \(C^\infty \) 向量丛.

等价地, \(E \) 不具有整体平坦的线性联络 \(\iff E \) 不是平凡的 \(C^\infty \) 向量丛.

证明 \((\Rightarrow) \) 因为 \(E \) 具有整体 \(C^\infty \) 平行标架场, 故 \(E \) 为平凡 \(C^\infty \) 向量丛.

\((\Leftarrow) \) 如果 \(E \) 为平凡 \(C^\infty \) 向量丛, 则 \(E \) 同构于积丛 \(M \times \mathbb{R}^s \), 由例 1, \(E \) 存在整体平坦的线性联络 \(\nabla \).

例 2 平坦线性联络不必是整体平坦的. 例如, \(M \) 为 \(\text{Mobius} \) 带 \([0, 1] \times \mathbb{R} \sim \), 其中 \((0, t) \sim (1, -t) \). 则 \([0, 1] \times \mathbb{R} \) 的 切丛的 平凡线性联络诱导了 \(TM \) 上的平坦线性联络 \(\nabla \). 但因 \(TM \) 不是平凡 \(C^\infty \) 向量丛 (否则 \(TM \) 有整体 \(C^\infty \) 标架场, 因而 \(M \) 可定向, 与 \(M \) 不可定向相矛盾), 故 \(\nabla \) 不是整体平坦的.

定理 2 (线性联络的存在性) 任何秩 \(n \) 的 \(C^\infty \) 向量丛 \(\xi = \{E, M, \pi, GL(n, \mathbb{R}), \mathbb{R}^s, \delta \} \) 上总存在线性联络.

证明 取 \(M \) 的局部有限的坐标邻域的开覆盖 \(\{U_\alpha | \alpha \in \Gamma \} \), 根据单位分解的存在性定理, 存在从属于 \(\{U_\alpha | \alpha \in \Gamma \} \) 的 \(C^\infty \) 单位分解 \(\{\rho_\alpha | \alpha \in \Gamma \} \), 使 \(\text{supp} \rho_\alpha = \{x \in M | \rho_\alpha(x) \neq 0 \} \subset U_\alpha \). 在每个 \(U_\alpha \) 上选局部 \(C^\infty \) 标架场 \(\{s_{\alpha}^1, \cdots, s_{\alpha}^s\} \) 和 \(n \times n \) 的 \(C^\infty \) 1 形式的矩阵 \(\varphi_\alpha \), 则存在 \(U_\beta \cap U_\beta \) 上的 \(C^\infty \) 函数所组成的非退化矩阵 \(A_{\sigma\beta} \), 使得

\[
S^\sigma = A_{\sigma\beta} S^\beta, \quad \text{det} A_{\sigma\beta} \neq 0,
\]

其中 \(S^\sigma = (s_{\alpha}^1, \cdots, s_{\alpha}^s)^T \), 即

\[
S^\sigma = \begin{pmatrix} s_{\alpha}^1 \\ \vdots \\ s_{\alpha}^s \end{pmatrix} = \begin{pmatrix} a_{1}^1 & \cdots & a_{1}^s \\ \vdots & \ddots & \vdots \\ a_{s}^1 & \cdots & a_{s}^s \end{pmatrix} \begin{pmatrix} s_{\beta}^1 \\ \vdots \\ s_{\beta}^s \end{pmatrix}.
\]
\[\omega_a = \sum_{\beta \in F} \rho_\beta (dA_{a_\beta} \cdot A_{a_\beta}^{-1} + A_{a_\beta} \cdot \varphi_\beta \cdot A_{a_\beta}^{-1}), \]

其中，当 \(U_a \cap U_\beta = \emptyset \) 时，和式中对应于 \(\beta \) 的项理解为 0，\(\omega_a \) 是 \(U_a \) 的 \(C^\infty \) 形式构成的矩阵。我们只需证明，当 \(U_a \cap U_\beta \neq \emptyset \) 时，有变换公式

\[\omega_a = dA_{a_\beta} \cdot A_{a_\beta}^{-1} + A_{a_\beta} \cdot \omega_\beta \cdot A_{a_\beta}^{-1}. \]

事实上，当 \(U_a \cap U_\beta \cap U_\gamma \neq \emptyset \) 时，在此交集上有

\[A_{a_\beta} \cdot A_{a_\gamma} = A_{a_\gamma}, \]

\[dA_{a_\beta} \cdot A_{a_\gamma} + A_{a_\beta} \cdot dA_{a_\gamma} = dA_{a_\gamma}. \]

因此，在 \(U_a \cap U_\beta \neq \emptyset \) 上，

\[A_{a_\beta} \cdot \omega_\beta \cdot A_{a_\beta}^{-1} \]

\[= \sum_{\gamma, \gamma \neq \emptyset} \rho_\gamma A_{a_\beta} \cdot (dA_{a_\gamma} \cdot A_{a_\gamma}^{-1} + A_{a_\gamma} \cdot \varphi_\gamma \cdot A_{a_\gamma}^{-1}) \cdot A_{a_\beta}^{-1} \]

\[= \sum_{\gamma, \gamma \neq \emptyset} \rho_\gamma \{ (-dA_{a_\beta} \cdot A_{a_\gamma} + dA_{a_\gamma}) A_{a_\gamma}^{-1} \cdot A_{a_\beta}^{-1} + A_{a_\gamma} \cdot \varphi_\gamma \cdot A_{a_\gamma}^{-1} \}
\]

\[= \sum_{\gamma, \gamma \neq \emptyset} \rho_\gamma \{ dA_{a_\gamma} \cdot A_{a_\gamma}^{-1} + A_{a_\gamma} \cdot \varphi_\gamma \cdot A_{a_\gamma}^{-1} \}
\]

\[- \sum_{\gamma, \gamma \neq \emptyset} \rho_\gamma \cdot dA_{a_\beta} \cdot A_{a_\beta}^{-1} \]

\[= \omega_a - dA_{a_\beta} \cdot A_{a_\beta}^{-1}. \]

即 \(\omega_a = dA_{a_\beta} \cdot A_{a_\beta}^{-1} + A_{a_\beta} \cdot \omega_\beta \cdot A_{a_\beta}^{-1}. \)

由 \(\varphi_\beta \) 任取可见，线性联络的确定有相当大的任意性，特别令
\[\varphi_\beta = 0, \]
则得 \(E \) 的一个线性联络 \(\nabla \)，它在 \(U_a \) 上的联络方阵是

\[\omega_a = \sum_\beta \rho_\beta \cdot dA_{a_\beta} \cdot A_{a_\beta}^{-1}. \]

设 \(s \) 为 \(E \) 的任一 \(C^\infty \) 截面，它在 \(U_a \) 上可表示为

\[s = a_\alpha \cdot S^\alpha = (a^{a_1}_\alpha, \cdots, a^{a_s}_\alpha) \left[\begin{array}{c} s_1^a \\ \vdots \\ s_s^a \end{array} \right], \]
则
\[\nabla s \big|_{U_a} = (da_a + a_a \cdot \omega_a) \otimes S^a. \]
如果 \(U_0 \cap U_\beta \neq \emptyset \), 则在 \(U_0 \cap U_\beta \) 上应有
\[a_0S^a = a_\beta S^\beta = a_\beta A_\beta S^a, \]
\[a_\alpha = a_\beta A_\beta, \]
\[da_\alpha = da_\beta \cdot A_\beta + a_\beta \cdot dA_\beta, \]
从而
\[(da_a + a_a \cdot \omega_a) \otimes S^a \]
\[= (da_\beta \cdot A_\beta + a_\beta \cdot dA_\beta + a_\beta A_\beta \cdot \omega_a) \otimes (A_\beta^{-1} S^\beta) \]
\[= [da_\beta + a_\beta \cdot dA_\beta \cdot A_\beta^{-1} + a_\beta A_\beta \cdot (A_\beta^{-1} \cdot \omega_\beta \cdot A_\beta) \]
\[- A_\beta^{-1} \cdot dA_\beta \cdot A_\beta^{-1}] \otimes S^\beta \]
\[= (da_\beta + a_\beta \cdot dA_\beta \cdot A_\beta^{-1} + a_\beta \omega_\beta - a_\beta \cdot dA_\beta \cdot A_\beta^{-1}) \otimes S^\beta \]
\[= (da_\beta + a_\beta \omega_\beta) \otimes S^\beta. \]
由此得到整体映射 \(\nabla : C^\infty(E) \to C^\infty(T^* M \otimes E) \). 容易验证, 由 \(\nabla s \big|_{U_a} = (da_a + a_a \cdot \omega_a) \otimes S^a \) 满足定义 1 的条件, 故 \(\nabla \) 为 \(E \) 上的一个线性联络. 显然 \(\nabla \) 在 \(U \) 上的联络方阵就是 \(\omega_a \).

从联络方阵的变换公式知联络方程为 0 不具有不变性. 但对于任意一个线性联络总可以找到一个局部标架场, 使其联络方阵在一点为 0. 这个性质在有关联络的计算中是有用的.

定理 3 设 \(\nabla \) 为秩 \(n \) 的 \(C^\infty \) 向量丛 \(\xi = \{ E, M, \pi, GL(n, \mathbb{R}), \mathbb{R}^*, \infty \} \) 上的一个线性联络, \(p \in M \), 则在 \(p \) 的一个局部坐标邻域上存在局部 \(C^\infty \) 标架场 \(S \), 使对应的联络方阵 \(\omega \) 在 \(p \) 点为 0.

证明 取 \(p \) 的局部坐标系 \((U, \varphi), \{x^i\}\), 使 \(x^i(p) = 0, 1 \leq i \leq m, m = \dim M \). \(\bar{S} \) 为 \(U \) 上的一个局部 \(C^\infty \) 标架场, 对应的联络方阵为 \(\bar{\omega} = (\bar{\omega}_a^b) \), 其中
\[\bar{\omega}_a^b = \sum_{i=1}^m \bar{T}_a^{(b)} dx^i, \]
\(\bar{T}_a^{(b)} \) 为 \(U \) 上的 \(C^\infty \) 函数. 令

130
\[a^p_a = \delta^p_a - \sum_{i=1}^{m} \tilde{T}^p_i(p) \cdot x^i, \]

则矩阵 \(A = (a^p_a) \) 在点 \(p \) 是单位矩阵. 因此, 存在 \(p \) 的一个邻域 \(V \subset U \), 使 \(A \) 在 \(V \) 上是非退化的, 所以

\[S = A\tilde{S} \]

为 \(V \) 上的局部标架. 因为

\[dA(p) = -\tilde{\omega}(p). \]

所以由联络方阵的变换公式得到

\[\omega(p) = (dA \cdot A^{-1} + A \cdot \tilde{\omega} \cdot A^{-1})(p) = -\tilde{\omega}(p) + \tilde{\omega}(p) = 0, \]

即 \(S \) 为所求的局部 \(C^\infty \) 标架.

关于曲率方程还有其变换公式。

引理 2 (曲率方阵的变换公式) \(\Omega = A \cdot \Omega \cdot A^{-1} \).

证明 对联络方阵的变换公式

\[\tilde{\omega} = dA \cdot A^{-1} + A \cdot \omega \cdot A^{-1}, \]

\[\tilde{\omega} \cdot A = dA + A\omega \]

求微分得

\[d\tilde{\omega} \cdot A - \tilde{\omega} \land dA = dA \land \omega + A \land d\omega, \]

再将 \(dA = \tilde{\omega} \cdot A - A\omega \) 代入上式就有

\[dA \land \omega + A \land d\omega = d\tilde{\omega} \cdot A - \tilde{\omega} \land (\tilde{\omega} \cdot A - A\omega) = (d\tilde{\omega} - \tilde{\omega} \land \tilde{\omega})A + (dA \cdot A^{-1} + A \cdot \omega \cdot A^{-1}) \land A \land \omega = (d\tilde{\omega} - \tilde{\omega} \land \tilde{\omega})A + dA \land \omega + A\omega \land \omega, \]

所以

\[\Omega A = (d\omega - \omega \land \omega) \cdot A = A(d\omega - \omega \land \omega) = A \cdot \Omega, \]

即 \(\Omega = A \cdot \Omega \cdot A^{-1} \).

值得注意的是, \(\Omega \) 的变换公式是齐次的, 而联络方阵 \(\omega \) 的变换公式不是齐次的. \(\Omega \) 包含很丰富信息, 特别是借助于 \(\Omega \) 可以构造 \(M \) 上大范围定义的微分形式. 此外, 从引理 2 的证明可得到启发:
见了等式就微分，也许微分后会带来意想不到的结果。

定理 4 在 1.2 定理 1 中，设 \(\theta = (\omega), \omega = (\omega^i) \),

\[
\Theta = \frac{1}{2} \sum_{j,k=1}^n T^j_{ik} \omega^j \wedge \omega^k, \quad \Theta^i = \frac{1}{2} \sum_{j,k=1}^n R^j_{ik} \omega^j \wedge \omega^k.
\]

则

(1) (Bianchi 第 1 恒等式) \(d\Theta + \Theta \wedge \omega - \theta \wedge \Omega = 0 \);
(2) (Bianchi 第 2 恒等式) \(d\Omega + \Omega \wedge \omega - \omega \wedge \Omega = 0 \).

证明 在 1.2 定理 1 中的 Cartan 结构方程：

\[
d\theta = \theta \wedge \omega + \Theta, \quad d\omega = \omega \wedge \omega + \Omega
\]

两边求外微分得到

\[
0 = d(d\theta) = d(\theta \wedge \omega + \Theta) = d\theta \wedge \omega - \theta \wedge d\omega + d\Theta
\]

\[
= (\theta \wedge \omega + \Theta) \wedge \omega - \theta \wedge (\omega \wedge \omega + \Omega) + d\Theta
\]

\[
= \Theta \wedge \omega - \theta \wedge \Omega + d\Theta.
\]

(2) 类似地，

\[
0 = d(d\omega) = d(\omega \wedge \omega + \Omega) = d\omega \wedge \omega - \omega \wedge d\omega + d\Omega
\]

\[
= (\omega \wedge \omega + \Omega) \wedge \omega - \omega \wedge (\omega \wedge \omega + \Omega) + d\Omega
\]

\[
= \Omega \wedge \omega - \omega \wedge \Omega + d\Omega.
\]

秩 \(n \) 的 \(C^\infty \) 向量丛 \(E \) 上的线性联络自然诱导了对偶丛 \(E^* \) 上的一个线性联络(仍记为 \(\nabla \)). 设 \(s \in C^\infty(E), s^* \in C^\infty(E^*) \), 为方便，记 \(\langle s^*, s \rangle = s^*(s) \). \(E^* \) 上的诱导线性联络 \(\nabla \) 由下式确定：

\[
d\langle s^*, s \rangle = \langle \nabla s^*, s \rangle + \langle s^*, \nabla s \rangle.
\]

下面，我们来求 \(E^* \) 上诱导线性联络的方阵。设 \(s_i (1 \leq i \leq n) \) 为 \(E \) 上的局部 \(C^\infty \) 标架场，\(s^*_{\cdot j} (1 \leq j \leq n) \) 为 \(E^* \) 的对偶局部 \(C^\infty \) 标架场，即

\[
\langle s^*_{\cdot j}, s_i \rangle = s^*_{\cdot j}(s_i) = \delta^i_j.
\]

令

\[
\nabla s^*_{\cdot j} = \sum_{k=1}^n \omega^k s^*_{\cdot k}.
\]

由

132
\[\omega^i = \langle s^*, \nabla s_i \rangle = - \langle \nabla s^*, s_i \rangle = - \langle \sum_{i=1}^n \omega^i \otimes s^*, s_i \rangle = - \omega^i \]

得到

\[\nabla s^* = - \sum_{i=1}^n \omega^i \otimes s^* \]

若 \(s^* \in C^\infty(E^*) \) 局部表示为 \(s^* = \sum_{i=1}^n \alpha_i s^* \), 则

\[\nabla s^* = \sum_{i=1}^n \alpha_i s^* \]

\[+ \sum_{i,j=1}^n \alpha_i \omega^j \otimes s^* \]

\[= \sum_{i=1}^n (d\alpha_i - \sum_{j=1}^n \alpha_j \omega_i) \otimes s^* \]

\[= (d\alpha - \alpha \omega) \otimes s^*, \quad \alpha = (\alpha_1, \ldots, \alpha_n). \]

定理 5 (Riemann 流形基本定理) 在 \(m \) 维 \(C^\infty \) Riemann 流形 \((M, g)\) 上存在唯一的线性联络 \(\nabla \), 使得 \(T = 0, \nabla \) 与 \(g \) 相容 (该联络就是 Riemann 联络或 Levi-Civita 联络)。

设 \(\{e_1, \ldots, e_m\} \) 为 \(TM \) 的局部 \(C^\infty \) 规范正交标架场, \(\{\omega^1, \ldots, \omega^m\} \) 是对偶于 \(\{e_1, \ldots, e_m\} \) 的局部 \(C^\infty \) 1 格式 (称为 余标架场). 则存在唯一性定理等价于 \(g \) 的 Levi-Civita 1 格式 \(\omega = (\omega^i) \) 由结构方程

\[d\omega^i = \sum_{j=1}^n \omega^j \wedge \omega_i, \quad \omega^i + \omega_i = 0 \]

唯一确定.

证明 (活动标架法) 设

\[\nabla e_i = \sum_{j=1}^n \omega^j \otimes e_j, \]

则 \(\nabla \) 与 \(g \) 相容, 即

\[X(g(Y, Z)) = g(\nabla_x Y, Z) + g(Y, \nabla_x Z) \]

\[\Leftrightarrow \]

\[0 = dg_{ij}(X) = Xg_{ij} = X(g(e_i, e_j)) \]

\[= g(\nabla x e_i, e_j) + g(e_i, \nabla x e_j) \]
\[
= (g(\nabla e_i, e_j) + g(e_i, \nabla e_j))(X)
\]
\[
= g(\sum_{i=1}^{m} \omega^i \otimes e_i, e_j) + g(e_i, \sum_{i=1}^{m} \omega^i \otimes e_i))(X)
\]
\[
= (\omega^i + \omega^j)(X)
\]
\[
\Leftrightarrow \omega^i + \omega^j = 0.
\]
此外，挠张量为 0，即
\[
0 = T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]
\]
\[
\Leftrightarrow [e_i, e_j] = \nabla_{e_i} e_j - \nabla_{e_j} e_i = (\nabla e_j)(e_i) - (\nabla e_i)(e_j)
\]
\[
= (\sum_{i=1}^{m} \omega^i \otimes e_i)(e_i) - (\sum_{i=1}^{m} \omega^i \otimes e_i)(e_j)
\]
\[
= \sum_{i=1}^{m} [\omega^i(e_i) - \omega^i(e_j)]e_i.
\]
于是，\[d\omega^i = \sum_{i=1}^{m} \omega^k \wedge \omega^i \]
\[
\Leftrightarrow -\omega^i([e_i, e_j]) = e_i \omega^j(e_j) - e_j \omega^i(e_i) - \omega^i([e_i, e_j])
\]
\[
= d\omega^i(e_i, e_j) = \sum_{i=1}^{m} \omega^k \wedge \omega^i(e_i, e_j)
\]
\[
= \sum_{i=1}^{m} [\omega^i(e_i) \delta^j_i - \omega^i(e_j) \delta^j_i]
\]
\[
= \omega^i(e_j) - \omega^i(e_i)
\]
\[
\Leftrightarrow [e_i, e_j] = \sum_{i=1}^{m} [\omega^i(e_i) - \omega^i(e_j)]e_i
\]
\[
\Leftrightarrow T = 0.
\]
设 \[e_i, e_j = \sum_{i=1}^{m} c_{ij} e_i, \omega^i = \sum_{i=1}^{m} h^i \omega^i, \]
\[
\omega^i + \omega^j = 0 \Leftrightarrow h^i + h^j = 0 \Leftrightarrow h^i = -h^j.
\]
\[
[e_i, e_j] = \sum_{i=1}^{m} [\omega^i(e_i) - \omega^i(e_j)]e_i \Leftrightarrow c_{ij} = h^i - h^j.
\]
如果 \[c_{ij} \] 作为已知，则 \[h^i \] 为上述线性方程组的解。

（唯一性） 如果 \((M, g)\) 上存在 Levi-Civita 联络 \(\nabla\) 或满足

134
Levi-Civita 形式 \(\omega^i = \sum_{j=1}^{m} h^i_j \omega^j \) 的结构方程:

\[
d \omega^i = \sum_{j=1}^{m} \omega^j \wedge \omega^i, \quad \omega^i + \omega^i = 0.
\]

则 \(h^i_l \) 满足线性方程组:

\[
\begin{cases}
h^i_l = - h^i_l, \\
\ell^i_j = h^i_j - h^j_i, \quad i, j, l = 1, \ldots, m.
\end{cases}
\]

从而必有

\[
\frac{1}{2} \left(c^i_l + c^i_l - c^i_j \right)
\]

\[
= \frac{1}{2} \left[h^i_j - h^i_j + h^l_l - h^l_l - h^l_l + h^l_l \right]
\]

\[
= \frac{1}{2} \left[- h^i_j + h^l_l + h^l_l - h^l_l + h^l_l \right]
\]

\[
= h^i_l,
\]

即解是唯一的。

（存在性）容易看出，由 \(c^i_j = - c^j_i \) 推出

\[
h^i_l = \frac{1}{2} \left(c^i_l + c^i_l - c^i_j \right)
\]

满足:

\[
\begin{cases}
h^i_l = - h^i_l \\
h^i_l = h^i_l = \frac{1}{2} \left(c^i_l + c^i_l - c^i_j \right) - \frac{1}{2} \left(c^i_l + c^i_l - c^i_l \right) = c^i_l,
\end{cases}
\]

即由 \(\omega^i = \sum_{l=1}^{m} h^i_l \omega^j \) 和 \(\nabla e_i = \sum_{j=1}^{m} \omega^i \otimes e_j \) 定义的 \(\nabla \) 满足 Levi-Civita 联络的条件。

注 1 由于

\[
\sum_{j=1}^{m} \Gamma^j_{le_j} = \nabla_e e_i = (\nabla e_i)(e_l)
\]

\[
= (\sum_{j=1}^{m} \omega^j \otimes e_j)(e_l) = \sum_{j=1}^{m} \omega^j(e_l)e_j,
\]

135
所以

$$\omega_i(e_t) = \Gamma_i^t,$$

$$\omega_i = \sum_{i=1}^{n} \Gamma_i^t \omega_t, \quad h^i_i = \Gamma_i^i.$$

设 $\omega = (\omega_t)$ 为 g 的 Levi-Civita 联络 1 形式, $\Omega = (\Omega_t)$ 为 Riemann 曲率 2 形式, $\Omega = d\omega - \omega \wedge \omega$ 为曲率方程. 记

$$\Omega_j = \frac{1}{2} \sum_{i,j,k=1}^{n} K_{ijk} \omega^i \wedge \omega^j, \quad K_{ijk} = - K_{kji}.$$

易见

$$K_{ijk} = \frac{1}{2} (K_{ijk} - K_{kji})$$

$$= \frac{1}{2} \sum_{s,t=1}^{n} K_{ijk} \omega^s \wedge \omega^t (e_s, e_t)$$

$$= \Omega_j^s (e_s, e_t)$$

$$= g(e_i, (\sum_{s=1}^{n} \Omega_j^s \otimes e_s) (e_s, e_t))$$

$$= g(e_i, R(e_j) (e_s, e_t))$$

$$= g(e_i, R(e_s, e_t) e_j),$$

因此, 这里的 K_{ijk} 就是 1.4 节中的 K_{ijk}.

对 $d\omega_j = \sum_{j=1}^{n} \omega^j \wedge \omega_j$ 两边求外微分, 并利用 $\Omega = d\omega - \omega \wedge \omega$ 得到

$$0 = d^2 \omega^j = \sum_{j=1}^{n} (d\omega^j \wedge \omega_j^j - \omega^j \wedge d\omega^j)$$

$$= \sum_{j=1}^{n} [d\omega^j \wedge \omega_j^j - \omega^j \wedge (\Omega^j_j + \sum_{k=1}^{n} \omega^j_k \wedge \omega_k)]$$

$$= \sum_{j,k=1}^{n} \omega^j \wedge \omega^k \wedge \omega_j^j - \sum_{j=1}^{n} \omega^j \wedge \Omega^j_j - \sum_{s,k=1}^{n} \omega^j \wedge \omega^s_k \wedge \omega_k.$$

136
\[
= - \sum_{j=1}^{m} \omega^j \wedge \Omega^j
\]
\[
= \frac{1}{2} \sum_{j,k,l=1}^{m} K_{ijkl} \omega^j \wedge \omega^k \wedge \omega^l.
\]
从而立即推出 Bianchi 第 1 恒等式
\[
\sum_{j,k,l=1}^{m} K_{ijkl} = K_{ijkl} + K_{iklj} + K_{jikl} = 0.
\]

最后，我们来研究 C^∞ 正则子流形的局部不变性：设 M 为 $\tilde{m} = m + k$ 维 C^∞ Riemann 流形 $(\tilde{M}, \tilde{g}) = (\tilde{M}, \langle , \rangle)$ 的 m 维 C^∞ 正则子流形, $\tilde{\nabla}$ 为 (\tilde{M}, \tilde{g}) 的 Livi-Civita 联络，$T_p M$ 为 $T_p M$ 在 $T_p \tilde{M}$ 中的正交补，$T_p M \perp$ 为 M 在 \tilde{M} 中的法丛, 即 $TM \perp \lvert_p = T_p M \perp$. 我们将给出 C^∞ 正则子流形的三个基本局部不变性：第 1、第 2 基本形式及诱导法联络，还将导出与它们有关的方程.

设 $v \in C^\infty(TM \perp), A_r : T_r M \to T_r M, A_r = - (\tilde{\nabla} v, \cdot)^T$ 表示线性映射，它是 $\tilde{\nabla} v |_p$ 到 $T_r M$ 的正交投影 (与 1.6 例 1 相比较，那里的 N 为局部 C^∞ 单位法向量场，而这里 v 不必是单位的). 因
\[
\tilde{\nabla}X (fv) = (Xf)v + f \tilde{\nabla}X v
\]
\[
= df(X) \cdot v + f \tilde{\nabla}X v, \quad f \in C^\infty(M, \mathbb{R}),
\]
而 $df(X)v$ 为法向量. 我们有
\[
A_r (X) = fA_r (X).
\]
特别地，如果 $v, \mu \in C^\infty(TM \perp), \nu(p) = \mu(p)$, 则对任何 $X \in T_r M$, 有
\[
A_r (X) - A_\mu (X) = A_r - \mu (X) = A_r \sum_{i=1}^{k} a^i \langle X, e^i \rangle |_{p},
\]
\[
= \sum_{i=1}^{k} a^i (p) A_{\epsilon_i} (X) |_{p}, = \sum_{i=1}^{k} 0 \cdot A_{\epsilon_i} (X) |_{p}, = 0,
\]
即 $A_r (X) = A_\epsilon (X)$, 其中 $\{e_1, \cdots, e_k\}$ 为 $TM \perp$ 在 p 的某个开邻域中的局部 C^∞ 基向量场. 因此，对每个法向量 $v_0 \in T_r M \perp$, 都有 $T_r M$ 上的一个线性算子 A_{v_0} 与之相对应, A_{v_0} 称为在法方向 v_0 上的 M 的形状算子.
引理 3 形状算子 $A_v: T_pM \to T_pM$ 是自共轭的，即对 $\forall \ u_1, u_2 \in T_pM$，有 $\tilde{g}(A_v(u_1), u_2) = \tilde{g}(u_1, A_v(u_2))$.

证明 设 ν 为 M 上定义在 p 的开邻域 U 上的 C^∞ 法向量场，使得 $\nu(p) = 0$，而 X_i 为 U 上的 C^∞ 切向量场，使 $X_i(p) = u_i, i = 1, 2$。记 $\tilde{g} = \langle \ , \rangle$，则

$$\langle A_v(X_1), X_2 \rangle = \langle - (\tilde{\nabla}_{X_i} \nu)^T, X_2 \rangle$$
$$= \langle - \tilde{\nabla}_{X_i} \nu, X_2 \rangle = - X_1 \langle \nu, X_2 \rangle + \langle \nu, \tilde{\nabla}_{X_i} X_2 \rangle$$
$$= \langle \nu, \tilde{\nabla}_{X_i} X_2 \rangle.$$

类似地，有

$$\langle A_v(X_2), X_1 \rangle = \langle \nu, \tilde{\nabla}_{X_2} X_1 \rangle.$$

故

$$\langle A_v(X_1), X_2 \rangle - \langle A_v(X_2), X_1 \rangle$$
$$= \langle \nu, \tilde{\nabla}_{X_1} X_2 \rangle - \langle \nu, \tilde{\nabla}_{X_2} X_1 \rangle$$
$$= \langle \nu, \tilde{\nabla}_{X_1} X_2 - \tilde{\nabla}_{X_2} X_1 \rangle$$
$$= \langle \nu, [X_1, X_2] \rangle = 0,$$

即

$$\langle A_v(X_1), X_2 \rangle = \langle X_1, A_v(X_2) \rangle,$$

$$\tilde{g}(A_v(u_1), u_2) = \tilde{g}(u_1, A_v(u_2)).$$

设 $I: M \to \tilde{M}$ 为包含映射。M 的第 1 基本形式是诱导度量 $g = I^* \tilde{g}$，即 T_pM 上的内积 $g_v = \tilde{g}_{|\tau_p \times \tau_p} = \langle I^* \tilde{g} \rangle, g_v(X, Y) = \langle I^* \tilde{g} \rangle, g_v(X, Y) = \tilde{g}_{|\tau_p \times \tau_p}(I_* X, I_* Y), X, Y \in T_pM$；$h$ 为第 2 基本形式。由 Gauss 公式

$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y)$$

和

$$\langle h(X, Y), \nu \rangle = \langle \tilde{\nabla}_X Y - \nabla_X Y, \nu \rangle.$$
得到 M 的第 2 基本形式 h 是 C^∞ 截面：

$$h : \quad M \rightarrow \mathcal{O}^sT^*M \otimes TM^\perp,$$

$$p \rightarrow h_p,$$

其中 \mathcal{O}^sT^*M 为 s 阶 C^∞ 对称协变张量丛, $h_p(X, Y) \in T_pM^\perp$.

M 的第 3 个不变量是 TM^\perp 上的诱导法联络 ∇^\perp, 由 $\nabla^\perp_X Y = (\nabla_X Y)^\perp$ 定义, 它是 $\nabla_X Y$ 到 TM^\perp 的正交投影. 于是,

$$\nabla_X Y = (\nabla_X Y)^\perp + (\nabla_X Y)^\perp = - A_s(X) + \nabla^\perp_X Y.$$

现在我们利用活动标架来叙述这三个局部不变量. 选取 $(\tilde{M}, $ $\tilde{\mathcal{g}}) = (\tilde{M}, \langle , , \rangle)$ 的一个局部 C^∞ 规范正交标架场 e_1, \cdots, e_{m+k}, 如果限制到 M, e_1, \cdots, e_m 切于 M, 即它是 $(\mathcal{M}, \mathcal{g}) = (\mathcal{M}, I^*\tilde{\mathcal{g}})$ 的局部 C^∞ 规范正交标架场 (\mathcal{M} 为 C^∞ 正则子流形, 对坐标标架场作 Gram-Schmidt 正交化而得到). 下面, 我们规定指数变化范围:

$$1 \leq A, B, C \leq m + k; \quad 1 \leq i, j, k \leq m;$$

$$m + 1 \leq \alpha, \beta, \nu \leq m + k.$$

设 $\{\omega^1, \cdots, \omega^{m+k}\}$ 为 \tilde{M} 上 $\{e_1, \cdots, e_{m+k}\}$ 的对偶基, 限制到 M 有

定理 6 (1) $g = \sum_{i=1}^{m} \omega^i \otimes \omega^i$;

(2) $\omega^i = \sum_{j=1}^{m} h^i_j \omega^j$;

(3) $A_{\omega}(e_i) = \sum_{j=1}^{m} h^i_j e_j , \quad h(e_i, e_j) = \sum_{\alpha=m+1}^{m+k} h_{\alpha}^i e_{\alpha}$;

(4) $h = \sum_{a=m+1}^{m+k} \sum_{i,j=1}^{m} h^i_j \omega^i \otimes \omega^j \otimes e_a = \sum_{a=m+1}^{m+k} \sum_{i,j=1}^{m} \omega^i \otimes \omega^j \otimes e_a$,
(5) \(\nabla e_a = \sum_{\beta=1}^{m+k} \omega^\beta \otimes e_\beta. \)

证明（1）因为

\[
\sum_{i=1}^{m} \omega^i \otimes \omega^i(X,Y) = \sum_{i=1}^{m} \omega^i(X) \omega^i(Y)
\]

\[= \sum_{i=1}^{m} \omega^i(\sum_{j=1}^{m} a^i e_j) \omega^i(\sum_{k=1}^{m} b^i e_k)\]

\[= \sum_{i,j,k=1}^{m} a^i b^j \delta_j^k \delta_k^i = \sum_{i=1}^{m} a^i b^i\]

\[= <\sum_{i=1}^{m} a^i e_i, \sum_{j=1}^{m} b^i e_j>\]

\[= <X,Y> = g<X,Y>,\]

所以 \(g = \sum_{i=1}^{m} \omega^i \otimes \omega^i. \)

（2）在注1中，限制

\[\omega^i = \sum_{A=1}^{m+k} I^a_A \omega^A\]

d到M, 就得

\[\omega^r = \sum_{j=1}^{m} I^a_j \omega^j = \sum_{j=1}^{m} h^a_j \omega^j.\]

（3）\(A_{e_a}(e_i) = -(\nabla e_a)^T = -(\nabla e_a)(e_i)^T\)

\[= -(\sum_{\beta=1}^{m+k} \omega^\beta \otimes e_\beta)(e_i))^T\]

\[= \left(\sum_{\beta=1}^{m+k} \omega^\beta(e_i) e_\beta \right)^T = \sum_{j=1}^{m} \omega^a_j(e_i) e_j\]

\[= \sum_{j=1}^{m} (\sum_{l=1}^{m} h^a_j \omega^j(e_i)) e_j\]

140
再由

\[\langle h(e_i, e_j), e_o \rangle = \langle A_{e_o}(e_i), e_j \rangle \]

\[= \langle \sum_{k=1}^{m} h_{o_k} e_k, e_j \rangle \]

\[= \sum_{k=1}^{m} h_{o_k} \delta_{k,j} \]

\[= h_{i,j}^{o} \]

立即推出

\[h(e_i, e_j) = \sum_{a=m+1}^{m+k} h_{i,j}^{o} e_a. \]

（4）由（3）得到

\[h = \sum_{i,j=1}^{m} \omega^i \otimes \omega^j \otimes h(e_i, e_j) \]

\[= \sum_{i,j=1}^{m} \omega^i \otimes \omega^j \otimes (\sum_{a=m+1}^{m+k} h_{i,j}^{o} e_a) \]

\[= \sum_{a=m+1}^{m+k} \sum_{i,j=1}^{m} h_{i,j}^{o} \omega^i \otimes \omega^j \otimes e_a \]

\[= \sum_{a=m+1}^{m+k} \sum_{i=1}^{m} \left(\sum_{j=1}^{m} h_{i,j}^{o} \omega^j \right) \otimes \omega^i \otimes e_a \]

\[= \sum_{a=m+1}^{m+k} \sum_{j=1}^{m} \omega_j^{o} \otimes \omega^i \otimes e_a. \]

（5）\n
\[\nabla_{e_a}(X) = \nabla_{X}^{e_a} = (\widetilde{\nabla}_{X} e_a)^{\perp} \]

\[= ((\widetilde{\nabla} e_a)(X))^{\perp} \]

\[= \left(\sum_{i=1}^{m+k} \omega_{i}^{e_a} \otimes e_a(X) \right)^{\perp} \]

141
\begin{equation}
\begin{aligned}
&= \left(\sum_{\beta=\text{m}+1}^{m+\text{k}} \omega^\beta \otimes e_\beta \right) (X), \nabla_\perp e_a \\
&= \sum_{\beta=\text{m}+1}^{m+\text{k}} \omega^\beta \otimes e_\beta.
\end{aligned}
\end{equation}

设 \((\bar{M}, \bar{g})\) 的结构方程为
\[
d\omega^A = \sum_B \omega^B \wedge \omega^A_B, \quad \omega^A_A + \omega^A_B = 0,
\]
曲率方程为
\[
\bar{\Omega}^A_A = d\omega^A - \sum_{C=1}^{m+\text{k}} \omega^C_A \wedge \omega^B_C
\]
\[
= -\frac{1}{2} \sum_{C,D=1}^{m+\text{k}} K_{ABCD} \omega^C \wedge \omega^D,
\]

其中 \(\omega^A\) 和 \(\bar{\omega}^A\) 分别为 \((\bar{M}, \bar{g})\) 的 Levi-Civita 联络和 Riemann 曲率张量．

限制 \((\bar{M}, \bar{g})\) 的结构方程到 \((M, I^* \bar{g}) = (M, g)\) 得到 \(\{\omega^i\}\) 为 \((M, g)\) 上的 Levi-Civita 联络 1 形式，\(\omega^i\) 的结构方程为 (注意 \(I^* \omega^a = 0\) 或 \(\omega^a|_M = 0\)，或甚至简记为 \(\omega^a = 0\)，但必须记住这是限制在 \(M\) 上！)
\[
d\omega^i = \sum_{i=1}^m \omega^i \wedge \omega^i, \quad \omega^i + \omega^i = 0.
\]
相应于法联络，有
\[
0 = d\omega^a = \sum_{i=1}^m \omega^i \wedge \omega^a, \quad \omega^a + \omega^a = 0.
\]
限制 \((\bar{M}, \bar{g})\) 的曲率方程
\[
\bar{\Omega}^i = d\omega^i - \sum_{i=1}^m \omega^i \wedge \omega^i - \sum_{a=\text{m}+1}^{m+\text{k}} \omega^a \wedge \omega^a_A
\]
\[
= \Omega^i - \sum_{a=\text{m}+1}^{m+\text{k}} \omega^a \wedge \omega^a_A, \quad \tag{1}
\]
到 \((M, g^*) = (M, g)\)，得到 \((M, g)\) 的 Levi-Civita 联络 \(\nabla\) 的曲率张量 \(\Omega\) 和法联络 \(\Omega^\perp\) 分别为

\[
\Omega_i^\perp = \Omega_i^\perp + \sum_{\sigma = m + 1}^{m+k} \omega_\sigma^i \wedge \omega_\sigma^i
\]

（4）

和

\[
\Omega^{\perp, \perp}_\alpha = \Omega^{\perp, \perp}_\alpha + \sum_{k = 1}^{m} \omega_k^\alpha \wedge \omega_k^\alpha.
\]

（5）

方程（1）、（2）和（3）分别称为 \(C^\infty\) 正则子流形 \((M, g)\) 的 Gauss、Codazzi 和 Ricci 方程。

注 2 空间形式（例如：Euclid 空间、球面和双曲空间）的 \(C^\infty\) 正则子流形 \(M\) 的第 1 和第 2 基本形式以及法联络（满足 Gauss、Codazzi 和 Ricci 方程）在相差一个空间形式的等距映射下，它完全确定了 \(M\)。参阅 [PT], chapter 2.

如果外围空间 \((\tilde{M}, \tilde{g}) = (\tilde{M}, \tilde{g})\) 为常截曲率 \(c\) 的 \(\tilde{m}\) 维 \(C^\infty\) Riemann 流形，根据下面的定理 6, 7, 有

\[
\Omega_\alpha^\beta = c \omega_\alpha \wedge \omega^\beta.
\]

因此，子流形 \(M\) 的 Gauss, Codazzi 和 Ricci 方程（1）、（2）、（3）成为

\[
c \omega^i \wedge \omega^j = d \omega^i - \sum_{k = 1}^{m} \omega_k^i \wedge \omega_k^j - \sum_{\sigma = m + 1}^{m+k} \omega_\sigma^i \wedge \omega_\sigma^j
\]

\[
= \Omega_i^\perp - \sum_{\sigma = m + 1}^{m+k} \omega_\sigma^i \wedge \omega_\sigma^j,
\]

\[
0 = c \omega^\sigma \wedge \omega^\rho,
\]

\[
= d \omega_\sigma^\rho - \sum_{k = 1}^{m} \omega_k^\rho \wedge \omega_k^\sigma - \sum_{\beta = m + 1}^{m+k} \omega_\beta^\rho \wedge \omega_\beta^\sigma,
\]

\[\text{143}\]
\[0 = c \omega^g \wedge \omega^p \]
\[= d \omega^g - \sum_{\gamma = m+1}^{m+k} \omega^g \wedge \omega^\gamma - \sum_{k = 1}^{m} \omega^g \wedge \omega^k \]
\[= \Omega^g - \sum_{k = 1}^{m} \omega^g \wedge \omega^k. \]

而（4）和（5）成为
\[\Omega_i = c \omega^i \wedge \omega^i + \sum_{a = m+1}^{m+k} \omega^a \wedge \omega^a \]
和
\[\Omega^g = \sum_{k = 1}^{m} \omega^g \wedge \omega^k. \]

定理 7 设 \((M, g)\) 为 \(m\) 维 \(C^\infty\) Riemann 流形，它的 Riemann 截曲率只与 \(M\) 上的点有关，与该点的切空间中的 2 维平面无关。即截曲率 \(c(p)\) 为 \(p \in M\) 的函数 \(\Leftrightarrow\) 对任何局部 \(C^\infty\) 正交基 \(\{e_i\}\) 及其对偶基 \(\{\omega^j\}\) 有
\[\Omega_i = c \omega^i \wedge \omega^i. \]

证明 \((\Rightarrow)\) 由 1.4 定理 4(F. Schur)
\[K(W, Z, X, Y) = c(p) K_1(W, Z, X, Y), \]
故
\[\Omega_i = -\frac{1}{2} \sum_{k, l = 1}^{m} K_{ijkl} \omega^k \wedge \omega^l \]
\[= -\frac{1}{2} c(p) \sum_{k, l = 1}^{m} K_1(e_i, e_j, e_k, e_l) \omega^k \wedge \omega^l \]
\[= -\frac{1}{2} c(p) \sum_{k, l = 1}^{m} (\delta_{il} \delta_{kl} - \delta_{ik} \delta_{jl}) \omega^k \wedge \omega^l \]
\[= -\frac{1}{2} c(p) [\omega^i \wedge \omega^i - \omega^j \wedge \omega^j] \]
\[= c(p) \omega^i \wedge \omega^i. \]

\((\Leftarrow)\) 对 \(p\) 点的切空间中的任何 2 维平面 \(\pi\)，它由 \(e_1, e_2\) 张成，其中 \(\|e_1\| = \|e_2\| = 1, \langle e_1, e_2 \rangle = 0\)。将 \(\{e_1, e_2\}\) 扩张为局部 \(C^\infty\) 规范
正交基\(\{e_1, e_2, \cdots, e_n\}\)，则

\[
K_{ij} \omega^j \wedge \omega^i
= - \frac{1}{2} K_{ij} \omega^j \wedge \omega^i - \frac{1}{2} K_{ij} \omega^i \wedge \omega^j
= - \frac{1}{2} \sum_{k=1}^{n} K_{ij} \omega^k \wedge \omega^i = \Omega_i
= c \omega^i \wedge \omega^j,
\]

且截曲率为

\[
R_s(e_1 \wedge e_2) = K_{1212} = c(p).
\]

这就证明了截曲率\(c(p)\) 只与点 \(p \in M\) 有关，而与 \(p\) 点处切空间中的 2 维平面无关。

定理 8 (F. Schur) 设 \((M, g) = (M, \langle, \rangle)\) 为连通的 Riemann 流形，\(\dim M = m \geq 3\)，如果切空间中平面 \(X \wedge Y\) 在 \(p \in M\) 的截曲率仅依赖于点 \(p\) 而与 \(X \wedge Y\) 选取无关，即\(R_s(X \wedge Y) = c(p)\)，则 \((M, g)\) 为常截曲率的流形。

证明（活动标架法）由定理 7 和定理 4 得到

\[
\Omega_i = c \omega^i \wedge \omega^j,
\]

\[
d \Omega_i = \sum_{k=1}^{n} \omega^k \wedge \Omega_i - \sum_{k=1}^{n} \omega^k \wedge \omega^j.
\]

两边取外微分，并应用 \(d \omega^i = \sum_{j=1}^{n} \omega^j \wedge \omega^i\)，立即推出

\[
(d \omega^i \wedge \omega^i + c \sum_{k=1}^{n} \omega^k \wedge \omega^i \wedge \omega^i - c \sum_{k=1}^{n} \omega^i \wedge \omega^k \wedge \omega^i
= (d \omega^i \wedge \omega^i + c \omega^i \wedge \omega^i - c \omega^j \wedge d \omega^j
= d \Omega_i = \sum_{k=1}^{n} \omega^k \wedge \Omega_i - \sum_{k=1}^{n} \Omega_i \wedge \omega^k
= c \sum_{k=1}^{n} \omega^k \wedge \omega^i \wedge \omega^i - c \sum_{k=1}^{n} \omega^k \wedge \omega^i \wedge \omega^i.
\]
$$= - c \sum_{i=1}^{n} \omega^i \wedge \omega^j \wedge \omega^l + c \sum_{i=1}^{n} \omega^i \wedge \omega^j \wedge \omega^i.$$

即

$$(dc) \wedge \omega^j \wedge \omega^i = 0, \quad \forall \ i, j = 1, \ldots, m.$$

设 $dc = \sum_{i=1}^{m} a_i \omega^i$. 因为 $m \geq 3$, 故可取 $1 \leq i < j < k \leq m$, 因此有

$$a_i \omega^k \wedge \omega^j \wedge \omega^k + \cdots = dc \wedge \omega^k \wedge \omega^j = 0,$$

$$a_i = 0, \quad dc = 0,$$

c 为 M 上的局部常值函数。再由 M 连通知 c 为 M 上的常值函数。

第 1 章习题

1. 设 MC^∞ 等距浸入到 \tilde{M} 中, $\gamma: [a, b] \rightarrow M$ 为 M 中的 C^∞ 曲线, 它是 \tilde{M} 中的测地线 (因而在也是 M 中的测地线), 则对所有的 2 维平面 $P \subset T_{\gamma(t)}M (\gamma'(t) \in P), R(P)$ 和 $\tilde{R}(P)$ 分别为 M 和 \tilde{M} 中的 Riemann 轨曲率, 有

$$R(P) \leq \tilde{R}(P).$$

特别地, 如果 M 是 2 维曲面, 则

$$R(T_{\gamma(t)}M) \leq \tilde{R}(T_{\gamma(t)}M).$$

此外, 在该情形中, 对所有 t 等式成立 $\iff T_{\gamma(t)}M$ 关于 \tilde{M} 沿 $\gamma(t)$ 平行。

2. 如果在一个 C^∞ 线性联络的流形 M 中, 存在一个局部坐标系 $\{x^i\}$, 使得它的联络系数 Γ^k_{ij} 为 0, 则称此流形是局部平坦的或局部伪射的. 证明: M 局部平坦 \iff 挠张量 $T = 0$ 和曲率张量 $R = 0$.

（充分性参阅 [Go], p49, E. Local flatness, 和 [Cher],）

3. C^∞ Riemann 流形 (M, g) 是局部平坦的 $\iff R = 0 \iff$ 对 $\forall \ p \in M$, 存在 p 的局部坐标系 $\{x^i\}$, 使得 $\left(\frac{\partial}{\partial x^i} \right)$ 为规范正交基.

4. 设 g 为 m 维 C^∞ 流形 M 上的对称非退化的 $(0, 2)$ 型 C^∞ 张量场, 则 g 称为 M 上的伪 Riemann 度量张量. 这样的流形 M 称为伪
Riemann 流形, 仍记作 \((M, g)\). 证明：在 \(M\) 上存在唯一的 Riemann 联
络 \(\nabla\), 也就是 \(\nabla\) 为无挠的度量联络, 即对任意 \(X, Y, Z \in C^\infty(TM)\),

\[
T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]
\]

\[
= 0
\]

\[
\nabla_x g(Y, Z) = g(\nabla_x Y, Z) + g(Y, \nabla_x Z).
\]

5. (1) 设 \(a_1, \cdots, a_m, b\) 为 \(m + 1(m > 1)\) 个实数, 它们满足不等
式

\[
(\sum_{i=1}^{m} a_i)^2 \geq (m - 1) \sum_{i=1}^{m} a_i^2 + b \quad (\text{或者} \geq).
\]

则对 \(\forall i \neq j\), 有

\[
2a_i a_j \geq \frac{b}{m-1} \quad (\text{或者} \geq).
\]

(2) (Chen-Okumura, 1973) 设 \((M, g)\) 为常 Riemann 荡曲率 \(c\) 的
流形 \((\mathcal{M}, \tilde{g})\) 的 \(m\) 维 \(C^\infty\) 正则子流形. 如果 \(M\) 的数量曲率 \(s\) 满足: 对
某个数 \(k\), 在点 \(p \in M\), 有

\[
s \geq (m - 2) \| h \|^2 + (m - 2)(m - 1)c
\]

\[
+ 2(m - 1)k \quad (\text{或者} \geq).
\]

则在点 \(p, M\) 的 Riemann 荡曲率 \(\geq k\)(或 \(\geq k\)).

（参阅[Chen], p55–57, Lemma 4.1, Theorem 4.1)

6. 在 \(B^3\) 中应用球面坐标 \((r, \varphi, \theta)\) 证明双曲度量

\[
g = \frac{4}{1 - \sum_{i=1}^{3} x_i^2} \sum_{i=1}^{3} dx_i \otimes dx_i.
\]

在 \(B^3 - \{0\}\) 中可表示为

\[
\frac{4}{(1 - r^2)^2} (dr \otimes dr + r^2 d\theta \otimes d\theta + r^2 \cos^2 \theta d\varphi \otimes d\varphi),
\]

且

\[
X_1 = \frac{1 - r^2}{2} \frac{\partial}{\partial r}.
\]
\[X_2 = \frac{1 - r^2}{2r} \frac{\partial}{\partial \theta}, \]
\[X_3 = \frac{1 - r^2}{2r \cos \theta} \frac{\partial}{\partial \varphi}. \]

为规范正交基以及
\[
[X_1, X_2] = -\frac{1 + r^2}{2r} X_2,
\]
\[
[X_2, X_3] = -\frac{1 - r^2}{2r} \tan \theta X_3,
\]
\[
[X_1, X_3] = -\frac{1 + r^2}{2r} X_3.
\]

再应用 1.3 定理 1 和 1.4 的定理 3(4)，分别得到
\[R(X_1, X_2, X_3, X_4) = -(\delta_{ij} \delta_{kl} - \delta_{ik} \delta_{jl}) \]
和 \(B^3 \) 的 Riemann 截曲率为 \(-1\).

7. 证明 1.4 定理 1'(2) 中证明 2 的最后一个等式.

8. 在 1.6 定理 6 中，设 \(\{e_1, \cdots, e_m\} \) 为 \((m, g) = (M, I^* \tilde{g})\) 的局部 \(C^\infty \) 规范正交基向量场，\(\{e_1, \cdots, e_m, e_{m+1}, \cdots, e_{\tilde{m}}\} \) 为 \((\tilde{M}, \tilde{g})\) 的局部 \(C^\infty \) 规范正交基向量场。由

\[
h(X, Y) = \sum_a \langle h(X, Y), e_a \rangle
\]

\[
= \sum_a h^a(X, Y) e_a
\]

证明
\[\langle h(X, Y), e_a \rangle = \langle A_a(X), Y \rangle, \]

\[K(X, Y, Z, W) \]

\[= \tilde{K}(X, Y, Z, W) + \sum_{a = m+1}^{\tilde{m}} \left[h^a(X, Z) h^a(Y, W) \right. \]

\[- h^a(X, W) h^a(Y, Z) \]

\[= \tilde{K}(X, Y, Z, W) + \sum_{a = m+1}^{\tilde{m}} \left[\langle A_a(X), Z \rangle \langle A_a(Y), W \rangle \right. \]

\[- \langle A_a(X), W \rangle \langle A_a(Y), Z \rangle. \]
如果 X, Y 为平面 $X \wedge Y$ 上的规范正交基，则

$$
R(X \wedge Y) = \tilde{R}(X \wedge Y) + \sum_{n=m+1}^{\infty} \left[h^a(X, X) h^a(Y, Y) \\
- h^a(X, Y) h^a(Y, X) \right]
$$

$$
= \tilde{R}(X \wedge Y) + \sum_{n=m+1}^{\infty} \left[\langle A_{\omega}(X), X \rangle \langle A_{\omega}(Y), Y \rangle \\
- \langle A_{\omega}(X), Y \rangle \langle A_{\omega}(X), Y \rangle \right].
$$
第 2 章 子流形几何

子流形几何是 Riemann 几何中的重要部分，这一章详细介绍
了全测地、极小、全胚子流形的概念及其重要的性质。证明了空间
形式 $\mathbb{R}^{n+1}(c)$ 的 C^∞ 连通全胚子流形 M^n 或者在 $\mathbb{R}^{n+1}(c)$ 中是全测地
的或者包含在 $\mathbb{R}^{n+1}(c)$ 的一个 $m + 1$ 维全测地子空间的超球面中。

C^∞ 等距浸入 $\psi: M^n \to \mathbb{R}^{n+1}$ 是极小的充分条件是 $\Delta \psi = 0$，即 ψ 是
调和的。因此，不存在紧致 C^∞ Riemann 流形 M^n 使得 $\psi: M^n \to \mathbb{R}^{n+1}$
是 C^∞ 极小等距浸入。C^∞ 等距浸入 $\psi: M^n \to S^r(\tau) \subset \mathbb{R}^{n+1}$ 是极小的
充要条件是 $\Delta \psi = -\frac{m}{\tau^2} \psi$。这是一类既简单又重要的极小子流形。

第二类重要的极小子流形是 Kähler 流形的复子流形的类。我们列举了大量 Kähler 流形的实例，并证明了 Wirtinger 不等式，以及紧致复 m 维 Kähler 流形 M 的实系数上同调群 $H^k(M; \mathbb{R}) \neq 0$, $k = 0, \cdots, m$。

S. T. Yau 证明了：如果平均曲率向量场 H 是平行的（即 $\nabla^\bot H = 0$）和 C^∞ 浸入 $M^n \to S^{n+1}$ 的第 2 基本形式的长度平方

$$S \leq m/(\sqrt{m} + 3 - \frac{1}{p - 1}),$$

则 M^n 躺在 S^{n+1} 的一个 C^∞ 全测地子流形 S^{n+1}。接着，Simons 证明了，如果极小子流形 M^n 处处满足 $S \leq m/(2 - \frac{1}{p})$，则或者 $S = 0$（即 M^n 为全测地的）或者 $S \equiv m/(2 - \frac{1}{p})$。较后，S. S. Chern 等确定了满足 $S \equiv m/(2 - \frac{1}{p})$ 的所有极小子流形。于是，如果 M^n 是极

150
小的和 $S \leq m(2 - \frac{1}{p})$，则 M^n 或者是全测地的，或者是 Clifford 环面或者是 S^t 中的 Veronese 曲面。在此基础上，我们应用子流形几何的知识、方法和技巧改进了上述的 Pinching 常数。

2.1 全测地、极小和全脐子流形

设 (M^n, g) 和 $(\tilde{M}^{n+1}, \tilde{g})$ 分别是 m 维和 $m + k$ 维 C^∞ Riemann 流形，∇ 和 $\tilde{\nabla}$ 分别为 M^n 和 \tilde{M}^{n+1} 相应的 Levi – Civita 联络，$f: M^n \to \tilde{M}^{n+1}$ 为 C^∞ 等距浸入，$g = f^* \tilde{g}$。对于已给 C^∞ 向量场 $X, Y \in C^\infty(TM)$，有 Gauss 公式

$$\tilde{\nabla}X Y = (\tilde{\nabla} X Y)^T + (\tilde{\nabla} X Y)^\perp = \nabla X Y + h(X, Y),$$

其中 $h: TM \times TM \to TM^\perp$ 为 f 的第 2 基本形式。设 $e_1, \cdots, e_m, e_{m+1}, \cdots, e_{m+k} \in T_x \tilde{M}$ 为规范正交基，其对偶基为 $\omega^1, \cdots, \omega^m, \omega^{m+1}, \cdots, \omega^{m+k}$，而 $e_1, \cdots, e_m \in T_x M, e_{m+1}, \cdots, e_{m+k} \in T_x M^\perp$。于是

$$h = \sum_{a=m+1}^{m+k} h^a_i e_i \otimes \omega^a \otimes e_a,$$

其中 (记 $\tilde{g} = \langle \cdot, \cdot \rangle$)

$$h^a_i = \langle h(e_i, e_j), e_a \rangle, h(e_i, e_j) = \sum_{a=m+1}^{m+k} h^a_i e_a.$$

定义 1 如果 $h = 0$ 或 $h^a_i = 0, i,j = 1, \cdots, m; \alpha = m + 1, \cdots, m + k$，则称 f 在点 $x \in M^n$ 是全测地的；如果 f 在每个点 $x \in M^n$ 是全测地的，则称 f 为全测地浸入，M^n 为 \tilde{M}^{n+1} 的全测地子流形。

显然，$h = 0 \Rightarrow h(X, Y) = 0, \forall X, Y \in C^\infty(TM) \Rightarrow h(X, X) = 0, \forall X \in C^\infty(TM) \Leftrightarrow \tilde{\nabla} X X = \nabla X X + h(X, X) = \nabla X X, X \in C^\infty(TM) \Leftrightarrow$ 任何躺在 M^n 中的测地线必为 \tilde{M}^{n+1} 中的测地线。

如果记 $S = \sum_{a=1}^{m+k} (h^a_i)^2$ 为第 2 基本形式长度的平方，容易验证，它不依赖于规范正交基 $e_1, \cdots, e_m, e_{m+1}, \cdots, e_{m+k}$ 的选取，因此，$h = 0 \Rightarrow S = 0$. 151
我们称

\[H(x) = \frac{1}{m} \sum_{j=1}^{m} (\nabla_j e_j)^{-1} = \frac{1}{m} \sum_{j=1}^{m} h(e_j, e_j) \]

\[= \frac{1}{m} \sum_{\alpha, j} h_{ij} e_\alpha = \sum_{\alpha} \left(\frac{1}{m} \sum_{j=1}^{m} h_{ij}^\alpha \right) e_\alpha \]

\[= \sum_{\alpha} \frac{1}{m} \text{trace} H_{\alpha} e_\alpha = \frac{1}{m} \sum_{\alpha=m+1}^{m+k} (\text{trace} A_{\alpha}) e_\alpha \]

为点 \(x \in M^n \) 处的平均曲率向量，其中 \(H_{\alpha} = (h_{ij}^\alpha) \)。在超曲面的特殊情形下，\(H(x) = \frac{1}{m} \text{trace} H_{m+1} e_{m+1} = \frac{1}{m} \sum_{j} h_{ij}^{m+1} e_{m+1} \)。容易证明 \(H(x) \) 与规范正交基的选取无关。

如果 \(H(x) = 0 \)，则称等距浸入 \(f \) 在 \(x \in M^n \) 是极小的；如果 \(f \) 在每个点 \(x \in M^n \) 是极小的（即 \(H(x) = 0 \)），则称 \(f \) 为极小浸入，而 \(M^n \)（或 \(f(M^n) \)）称为 \(M^{n+1} \) 的极小子流形。显然，

\[H(x) = 0 \]

\[\iff \frac{1}{m} \sum_{j=1}^{m} h_{ij}^\alpha = 0, \quad \alpha = m + 1, \ldots, m + k \]

\[\iff \text{trace} H_{\alpha} = 0, \quad \alpha = m + 1, \ldots, m + k. \]

如果 \(\nabla H(x) = (\nabla H(x))^\perp = 0 (\iff \nabla H(x) = 0, X \in C_c (TM)) \)，则称 \(M^n \) 具有平行平均曲率向量，此即 \(H(x) \) 在法丛 \(TM^\perp \) 中（或关于法联络 \(\nabla^\perp \)）是平行的。

\[
\| H(x) \| = \sqrt{\frac{1}{m^2} \sum_{\alpha} (\text{trace} H_{\alpha})^2} = \frac{1}{m} \sqrt{\sum_{\alpha} (\text{trace} H_{\alpha})^2} = \frac{1}{m} \sqrt{\sum_{\alpha} \left(\sum_{j} h_{ij}^\alpha \right)^2}
\]

为平均曲率向量 \(H(x) \) 的长度，称之为平均曲率（注意，它与超曲面中定义的 \(\frac{1}{m} \sum_{j} h_{ij}^{m+1} \) 可能相差一个符号）。因此，\(M^n \) 为极小子流形 \(H(x) = 0 \) \(\iff \| H(x) \| = 0 \)。引理 1（1）\(H(x) = 0 \) \(\iff \| H(x) \| = 0 \) \(\Rightarrow \nabla H(x) = 0 \)，即

152
极小子流形必具有平行平均曲率向量.

(2) 设 M^n 是连通的，$\nabla^\perp H(x) = 0 \Rightarrow \| H(x) \| = \text{常值}.$

证 (1) $\forall X \in C^\infty(TM), \\nabla^\perp_H = (\nabla^\perp_x H(x)) = (\nabla^\perp_x 0) = 0 \perp = 0,$
故 $\nabla^\perp H(x) = 0.$

(2) $\forall X \in C^\infty(TM), \\nabla^\perp X H(x) = H(x) = 2(\nabla^\perp_x H(x), H(x)) = 0.$
故 $\frac{\partial}{\partial x} \| H(x) \|^2 = 0, \| H(x) \|$ 为局部常值，再由 M^n 连通知 $\| H(x) \|$ = 常值.

定义 2 设 ξ 为 C^∞ 法向量场，如果
$$\langle h(X, Y), \xi \rangle = \lambda(x) \langle X, Y \rangle, \quad X, Y \in C^\infty(TM),$$
其中 $\lambda(\xi)$ 依赖于 ξ 为 M^n 上的 C^∞ 函数，则称 M^n 关于 ξ 是脐点的.

注 1 容易看出 $\langle h(X, Y), \xi \rangle = \lambda(x) \langle X, Y \rangle$ 在点 x 的值只与 $X(x), Y(x), \xi(x)$ 有关，此时称 x 为关于 $\xi(x)$ 的脐点.

如果关于任何局部 C^∞ 法向量场是脐点的（下面引理 2 指出，它等价于关于任何 C^∞ 法向量场是脐点的），则称 M^n 是全脐点子流形.

如果 M^n 关于平均曲率向量场 $H(x)$ 是脐点的，即
$$\langle h(X, Y), H(x) \rangle = \lambda(x) \langle X, Y \rangle, \quad X, Y \in T, M,$$
则称 M^n 是脐点子流形.

如果 $\| h(X, X) \| = \lambda(x), X \in C^\infty(TM), \| X \| = 1,$ 则称 M^n 是 λ 定义的（简称定义的）.

引理 2 如果 M^n 关于 C^∞ 法向量场 $\xi = \xi(x)$ 是脐点的，则
$$\lambda(x) = \| H(x), \xi \|^2.$$

特别地，当 M^n 是脐点时，$\lambda(x) = \langle H(x), H(x) \rangle = \| H(x) \|^2.$

证明 由 $\langle h(X, Y), \xi \rangle = \lambda(x) \langle X, Y \rangle$ 得到
\[\langle H(x), \xi \rangle = \frac{1}{m} \sum_{j=1}^{m} h(e_j, e_j), \xi \rangle \]

\[= \frac{1}{m} \sum_{j=1}^{m} \langle h(e_j, e_j), \xi \rangle \]

\[= \frac{1}{m} \sum_{j=1}^{m} \lambda(x) \langle e_j, e_j \rangle = \lambda(x). \]

引理 3 （1）\(M^a \) 是全脐的

\[\iff (2) \] \(M^a \) 关于任何 \(C^\infty \) 法向量场是脐点的

\[\iff (3) \] \(h(X, Y) = H(x)\langle X, Y \rangle, X, Y \in C^\infty(TM) \)

\[\iff (4) \] \(h_i^a = H\delta_{ij}, i, j = 1, \cdots, m, a = m + 1, \cdots, m + k, \) 其中 \(H^a \) 为 \(H(x) \) 关于 \(e_a \) 的分量。

\[\iff (5) \] \(h(u, u) = H(x), \) 其中 \(u \) 为 \(M^m \) 上的局部 \(C^\infty \) 单位向量场。

\[\iff (6) \] \(f(x) \equiv 0, \) 其中 \(f(x) = \max_{u, v \in T_xM} \| h(u, u) - h(v, v) \|^2, \)

\[T_1M = \{ u \in T_xM | \| u \| = 1 \}. \]

证明 （1）\(\iff (2) \) 因为 \(C^\infty \) 法向量场必是局部 \(C^\infty \) 法向量场。

（1）\(\iff (2) \) 对任何局部 \(C^\infty \) 法向量场 \(\xi \) 及其定义域中的点 \(x_0, \)

取 \(C^\infty \) 的包函数 \(\psi, \) 使得在 \(x_0 \) 的某开邻域 \(U \) 中 \(\psi|_U \equiv 1, \psi|_{M^m} = 0, \)

其中开集 \(V \supset U. \) 于是，\(\psi|_U \) 自然扩张为 \(M^m \) 上的一个 \(C^\infty \) 向量场，且

\[\psi|_V = \psi \]。由此，从引理 2，对任何 \(X, Y \in C^\infty(TM) \) 有

\[\langle h(X, Y), \psi \rangle = \langle h(X, Y), \psi \psi \rangle \]

\[= \langle h(X, Y), \psi \psi \rangle \psi \psi \]

\[= \langle H(x), \psi \psi \rangle \langle X, Y \rangle. \]

所以，\(\langle h(X, Y), \xi \rangle = \langle H(x), \xi \rangle \langle X, Y \rangle, \) 即 \(M^a \) 关于 \(\xi \) 是脐点的，从而 \(M^m \) 是全脐点的。

（1）\(\iff (3) \) 对任何局部 \(C^\infty \) 法向量场 \(\xi \)，有

\[\langle h(X, Y), \xi \rangle = \langle H(x) \langle X, Y \rangle, \xi \rangle \]

\[= \langle H(x), \xi \rangle \langle X, Y \rangle = \lambda(x) \langle X, Y \rangle. \]
因此，M^n关于局部C^∞法向量场ξ是脐点的，即M^n是全脐点的.

(1)\Rightarrow(3) 对于局部C^∞法向量场e_a和$X, Y \in C^\infty(TM)$，根据引理2，

$$
\langle h(X,Y), e_a \rangle = \langle H(x), e_a \rangle \langle X,Y \rangle,
$$

因此

$$
h(X,Y) = \sum_a \langle h(X,Y), e_a \rangle e_a = \sum_a \langle H(x), e_a \rangle \langle X,Y \rangle e_a = \langle \sum_a \langle H(x), e_a \rangle e_a \rangle \langle X,Y \rangle = H(x) \langle X,Y \rangle.
$$

(3)\Leftrightarrow(4) 显然。

(3)\Rightarrow(5) 对M^n上的局部C^∞单位切向量场u，

$$
h(u,u) = H(x) \langle u, u \rangle = H(x).
$$

(3)\Leftarrow(5) 对任意的$X, Y \in C^\infty(TM)$，有

$$
h(X,X) = \begin{cases}
 h\left(\frac{X}{\|X\|}, \frac{X}{\|X\|} \right) \|X\|^2 = H(x) \|X\|^2, & X \neq 0, \\
 0, & X = 0
\end{cases}
$$

因此，$h(X,Y) = \frac{1}{2} \left[h(X+Y, X+Y) - h(X,X) - h(Y,Y) \right] = \frac{H(x)}{2} \left(\|X+Y\|^2 - \|X\|^2 - \|Y\|^2 \right) = H(x) \langle X,Y \rangle$.

(5)\Leftarrow(6) $f(x) = \max_{v \in TM, u \in N_x} \| h(u,u) - h(v,v) \|^2 = 0$

$\Leftrightarrow h(u,u) = $ 常值（只与x有关）。

于是，对任意M^n上的局部C^∞单位切向量u，

$$
h(u,u) = \frac{1}{m} \sum_{j=1}^{n} h(e_j, e_j) = H(x).
$$

(5)\Rightarrow(6) 显然。

引理4 (1) 全测地子流形\Leftrightarrow全脐和极小子流形.

155
(2) 全脐子流形必为 H 速向和伪脐子流形.

证明 (1) $h = 0 ⇔ h_{ij} = 0, i, j = 1, \cdots, m,$

$$a = m + 1, \cdots, m + k$$

$$H(x) = \sum_a \text{trace} H^a \cdot e_a = \sum_a (\frac{1}{m} \sum_{j=1}^m h_{ij}) e_a = 0$$

$$\Leftrightarrow \begin{cases}
\text{(即 } \| H(x) \| = \sum_a (H^a)^2 = 0) \\
\forall h(X, Y) = H(x) \langle X, Y \rangle, \quad X, Y \in C^\infty(TM)
\end{cases}$$

$\Leftrightarrow M^n$ 是全脐和极小子流形.

(2) 因 M^n 全脐，故对任何 C^∞ 法向量场 ξ，特别对 $\xi = H(x)$ 是脐点，即对任何 $X, Y \in C^\infty(TM)$，

$$\langle h(X, Y), H(x) \rangle = \langle H(x), H(x) \rangle \langle X, Y \rangle$$

$$= \| H(x) \|^2 \langle X, Y \rangle.$$

即 M^n 是伪脐子流形.

由

$$\| h(X, X) \| = \| H(x) \|^2 \langle X, X \rangle$$

$$= \| H(x) \|^2, \quad \forall X \in C^\infty(TM), \| X \| = 1,$$

立知 M^n 是 $\lambda(x) = \| H(x) \|^2$ 速向的.

引理 5 设 \tilde{M}^{n+1} 为常数曲率 c 的流形，$M^n \subset \tilde{M}^{n+1}$ 为 $(m \geq 2)$

连通全脐点子流形，则 $\nabla^\perp H(x) = 0$ (从引理 1(2) 知，$\| H(x) \| = \lambda$ (常值) 和 $R^\perp = 0$).

证 1 如果 $\| H(x) \| \equiv 0$，则 $H(x) \equiv 0$ 和 $\nabla^\perp H(x) = 0$.

如果 $\| H(x) \| \not\equiv 0$，对任何 $x_0 \in M, H(x_0) \not\equiv 0$，存在 x_0 的开邻域 U_{x_0}，使得 $H(x) \not\equiv 0, x \in U_{x_0}$。选取 $e_{m+1} = H(x)/\| H(x) \|$, 则

$$H^a = \begin{cases}
\| H(x) \|, & a = m + 1, \\
0, & a > m + 1.
\end{cases}$$

于是，M^n 是全脐子流形 $\Leftrightarrow h_{ij} = H^a \delta_{ij}, i, j = 1, \cdots, m; a = m + 1, \cdots, m + k.$

156
\[\omega_\alpha = \sum_j k_{ij} \omega_j = \begin{cases} \| H(x) \| \omega_j, & \alpha = m + 1, \\ 0, & \alpha > m + 1. \end{cases} \]

所以
\[d \| H(x) \| \wedge \omega_j + \| H(x) \| \sum_j \omega_j \wedge \omega_j = d \| H(x) \| \omega_j + d(\| H(x) \| \omega_j) = d \omega^{m+1} = \overline{\omega}_m^{m+1} + \sum \omega_j \wedge \omega_j^{m+1} \]
\[= \sum_j \omega_j \wedge \omega_j^{m+1} = \sum_j \| H(x) \| \omega_j \wedge \omega_j \]
（因为 \(\overline{M}^{m+1} \) 是常曲率流形，故 \(K_{out} = \langle \overline{R}(e, e_i e_i), e_a \rangle \approx \langle c[\langle e, e_i e_i \rangle], e_a \rangle = 0 \) 而 \(\overline{\omega}_i = 0 \)）
\[d \| H(x) \| \wedge \omega_i = 0, \quad i = 1, \ldots, m. \]

由于 \(m \geq 2 \)，它等价于 \(d \| H(x) \| = 0 \)，即
\[\| H(x) \| = \text{常值} (\text{因为} M^n \text{连通}). \]

如果 \(\alpha \neq m + 1 \)，则由 \(\omega_\alpha = 0, \alpha > m + 1 \) 有
\[0 = d\omega_\alpha = \sum_{\alpha=1}^{m+k} \omega_\alpha \wedge \omega_\alpha = \omega_\alpha^{m+1} \wedge \omega_\alpha^{m+1} = H(x) \omega_j \wedge \omega_j^{m+1}, \quad i = 1, \ldots, m, \]
再从 \(H(x) \neq 0 \) 得到
\[\omega_\alpha^{m+1} = - \omega_\alpha^{m+1} = 0 \]

及
\[\nabla H(x) = \nabla H(x) \| e_{m+1} = \left[\overline{\nabla} \| H(x) \| e_{m+1} \right] \]
\[= (d \| H(x) \| e_{m+1} + \| H(x) \| \nabla e_{m+1} \]
\[= \| H(x) \| \sum_{\alpha=m+1}^{m+k} \omega_\alpha^{m+1} e_\alpha = 0, \]
其中 \(\omega_\alpha^{m+1} = \langle \overline{\nabla} e_{m+1}, e_{m+1} \rangle = \frac{1}{2} \overline{\nabla} \langle e_{m+1}, e_{m+1} \rangle = \frac{1}{2} \overline{\nabla} (1) = 0 \)（注意从 \(M^n \) 连通，\(H(x_0) \neq 0 \) 和 \(\| H(x) \| = \text{常值} \)，知道 \(H(x) \) 处处不为 0）.

157
记 $R^\perp(X,Y)\xi = \nabla_x^\perp \nabla_x^\perp \xi - \nabla_y^\perp \nabla_y^\perp \xi - \nabla_{[X,Y]}^\perp \xi$ 为法联络 ∇^\perp 的曲率张量，应用习题 3，有

$$0 = \left[c(\langle Y, \xi \rangle X - \langle X, \xi \rangle Y) \right]^\perp = (\tilde{R}(X,Y)\xi)^\perp$$

$$= R^\perp(X,Y)\xi + h(A_{\xi}(X),Y) - h(x,A_{\xi}(Y))$$

$$= R^\perp(X,Y)\xi + \langle A_{\xi}(X),Y \rangle H - \langle X,A_{\xi}(Y) \rangle H$$

$$= R^\perp(X,Y)\xi + \langle h(X,Y),\xi \rangle H - \langle h(X,Y),\xi \rangle H$$

$$= R^\perp(X,Y)\xi, \quad \forall \ X,Y \in TM, \forall \ \xi \in TM^\perp.$$

因此，$R^\perp = 0$.

证 2 从第 1 章 1.6 定理 1(3)，

\begin{align*}
\tilde{R}(X,Y)Z &= K(X,Y)Z + h(x,\nabla_xZ) - h(y,\nabla_yZ) \\
&= h([X,Y],Z) + \tilde{\nabla}_x(h(Y,Z)) - \tilde{\nabla}_y(h(X,Z)) \\
&= K(X,Y)Z + H(x)\langle X,\nabla_xZ \rangle - H(y)\langle Y,\nabla_yZ \rangle \\
&\quad - H(x)\langle [X,Y],Z \rangle + \tilde{\nabla}_x(H(x)\langle Y,Z \rangle) - \tilde{\nabla}_y(H(y)\langle Y,Z \rangle) \\
&= K(X,Y)Z + H(x)\langle X,\nabla_xZ \rangle - \langle Y,\nabla_yZ \rangle - \langle [X,Y],Z \rangle \\
&\quad + \langle X,Y,Z \rangle - \langle Y,X,Z \rangle \\
&= K(X,Y)Z + \langle \tilde{\nabla}_xH(x)\langle Y,Z \rangle \rangle - \langle \tilde{\nabla}_yH(x)\langle X,Z \rangle \rangle \\
&= K(X,Y)Z + \langle \tilde{\nabla}_xH(x)\langle Y,Z \rangle \rangle - \langle \tilde{\nabla}_yH(x)\langle X,Z \rangle \rangle \\
&= K(X,Y)Z = c\langle (Z,Y)X - \langle Z,X \rangle Y \rangle \text{ 得到}
\end{align*}

$$0 = (\tilde{R}(X,Y)Z)^\perp = (\nabla_x^\perp H(X)\langle Y,Z \rangle) - (\nabla_y^\perp H(x)\langle X,Z \rangle).$$

于是，取 $X \perp Z, Y = Z, \|X\| = \|Y\| = \|Z\| = 1, \text{ 有 } \nabla_x^\perp H(x) = 0$, 由此推出 $\nabla_y^\perp H(x) = 0$.

引理 6 设 A_{ξ} 为关于 $\xi \in T_xM^\perp$ 的形状算子，则 $x \in M^\perp$ 为关于 ξ 脐点 \iff 在点 x 有

$$A_{\xi} = \rho \text{Id}_{T_xM}, \text{ 其中 } \rho = \langle H(x),\xi \rangle.$$

158
证明 \((\Leftarrow)\) 设 \(A_\xi = \rho \text{Id}_{\tau_* M}\)，则由

\[
\tilde{\nabla}_x \xi = \nabla^T_x \xi + \nabla^\perp_x \xi = - A_\xi(X) + \nabla^\perp_x \xi
\]

得到

\[
\langle h(X, Y), \xi \rangle = \langle \nabla_x Y + h(X, Y), \xi \rangle
\]

\[
= \langle \tilde{\nabla}_x Y, \xi \rangle - X \langle Y, \xi \rangle = \langle Y, - \tilde{\nabla}_x \xi \rangle
\]

\[
= \langle Y, - \nabla^\perp_x \xi \rangle = \langle Y, A_\xi(X) \rangle = \langle Y, \rho \text{Id}_{\tau_* M}(X) \rangle
\]

\[
= \rho \langle X, Y \rangle,
\]

由引理 2 知，\(\rho = \langle H(x), \xi \rangle\)．

\((\Rightarrow)\) 如果 \(x \in M^n\) 为关于 \(\xi\) 的脐点，则

\[
\langle A_\xi(X), Y \rangle = \langle h(X, Y), \xi \rangle
\]

\[
= \langle H(x)X, Y, \xi \rangle = \langle H(x), \xi \rangle X, Y \rangle.
\]

所以 \(\langle (A_\xi - \langle H(x), \xi \rangle \text{Id}_{\tau_* M}) (X), Y \rangle = 0\)，若在式中取 \(Y = (A_\xi - \langle H(x), \xi \rangle \text{Id}_{\tau_* M})(X)\)，立即得到

\[
(A_\xi - \langle H(x), \xi \rangle \text{Id}_{\tau_* M})(X) = 0.
\]

再由 \(X\) 的任意性知

\[
A_\xi = \langle H(x), \xi \rangle \text{Id}_{\tau_* M}.
\]

定理 1 常截曲率 \(c\) 的 \(C^\infty\) Riemann 流形 \(\tilde{M}^{n+1}\) 的连通全脐子流形 \(M^n (m \geq 2)\) 也是常截曲率 \(c + \| H(x) \|^2\) 的（其中 \(\| H(x) \|\) 为常值）．

证明 因为 \(M^n\) 为 \(\tilde{M}^{n+1}\) 的全脐子流形，故

\[
h(X, Y) = H(x)X, Y \rangle.
\]

再由 \(\tilde{M}^{n+1}\) 是常截曲率 \(c\) 的 \(C^\infty\) Riemann 流形得到

\[
K(X, Y, Z, W)
\]

\[
= c \{ \langle X, Z \rangle \langle Y, W \rangle - \langle X, W \rangle \langle Y, Z \rangle \}
\]

\[
+ \langle h(X, Z), h(Y, W) \rangle - \langle h(X, W), h(Y, Z) \rangle
\]

\[
= (c + \| H(x) \|^2) \{ \langle X, Z \rangle \langle Y, W \rangle - \langle X, W \rangle \langle Y, Z \rangle \}.
\]

由引理 1 和 5，\(\| H(x) \|^2\) 为常值，再由第 1 章 1.4 定理 3，\(M^n\) 为常截曲率 \(c + \| H(x) \|^2\) 的 \(m\) 维 \(C^\infty\) Riemann 流形．
注 2 对 $m > 2$, 也可不应用引理 1 和 5 以及第 1 章 1.4 定理 3, 而直接应用第 1 章 1.4 定理 4 推得定理 1 中的 M^n 为常截曲率 $c + \| H(x) \|^2$ 的 m 维 C^∞ Riemann 流形.

定理 2 标准空间形式 $\mathbb{R}^{n+k}(c)$ 的 C^∞ 连通全脐子流形 M^n 或者在 $\mathbb{R}^{n+k}(c)$ 中是全测地的或者包含在 $\mathbb{R}^{n+k}(c)$ 的一个 $m+1$ 维全测地子空间的超球面中.

证明 从引理 5 或定理 1 可以看到，如果 M^n 是常截曲率 c 的空间形式 $\mathbb{R}^{n+k}(c)$ 中的 C^∞ 完脐子流形，则 $\| H(x) \| = \text{常值}.$

若 $\| H(x) \| = 0$, 根据引理 4(1), 推得 M^n 在 $\mathbb{R}^{n+k}(c)$ 中是全测地的.

若 $\| H(x) \| = \neq 0$, 可选择 k 个规范正交的局部 C^∞ 法向量场 $e_\alpha (\alpha = m + 1, \ldots, m + k)$, 使得

$$H(x) = \| H(x) \| e_{m+1}.$$

因为 M^n 在 $\mathbb{R}^{n+k}(c)$ 中是全脐点的, 则

$$\langle A_\alpha (X), Y \rangle = \langle k(X, Y), e_\alpha \rangle = \langle H(x), e_\alpha \rangle \langle X, Y \rangle$$

$$= 0, \quad A_\alpha = 0, \quad \alpha = m + 2, \ldots, m + k.$$

从引理 5 可知, 对 M^n 中的任何 C^∞ 切向量场 X, 有 $\nabla_X^H H(x) = 0$ 和 $\nabla_X^\perp e_{m+1} = 0$, 即 $H(x)$ 和 e_{m+1} 在法丛 TM^\perp 中是平行的. 因此, 可以看到由 e_{m+2}, \ldots, e_{m+k} 张成的法空间在空间形式 $\mathbb{R}^{n+k}(c)$ 的联络 $\tilde{\nabla}$ 的平移下是不变的, 那么, 对 M^n 中的任何 C^∞ 切向量场 X (读者自证 $\tilde{\nabla}_X e_\alpha = \sum_{\beta \neq m+2} \langle \tilde{\nabla}_X e_\alpha, e_\beta \rangle e_\beta$),

$$\tilde{\nabla}_X (e_{m+2} \wedge \cdots \wedge e_{m+k})$$

$$= \sum_{\alpha = m+2}^{m+k} e_{m+2} \wedge \cdots \wedge \tilde{\nabla}_X e_\alpha \wedge \cdots \wedge e_{m+k}$$

$$= \sum_{\alpha = m+2}^{m+k} e_{m+2} \wedge \cdots \wedge \sum_{\beta \geq m+2}^{m+k} \langle \tilde{\nabla}_X e_\alpha, e_\beta \rangle e_\beta \wedge \cdots \wedge e_{m+k}$$
\[
= \sum_{\alpha = m+2}^{m+k} \sum_{\beta \geq m+2}^{m+k} e_{m+2} \wedge \cdots \wedge e_{\alpha-1} \wedge e_\beta \wedge \cdots \wedge e_{m+k}
\]

\[
= 0.
\]

现在分别考虑 \(c = 0, c > 0 \) 及 \(c < 0 \) 三种情形。

情形 1 \(c = 0, R^{m+1}(0) = R^{m+k} \) 有整体平行性和所有的切空间可以与 \(R^{m+k} \) 叠合。方程 \(\nabla_x(e_{m+2} \wedge \cdots \wedge e_{m+k}) = 0 \) 蕴涵着由 \(e_{m+2}, \cdots, e_{m+k} \) 张成的法空间与点 \(p \in M^n \) 的选取无关。因此，由切空间 \(T_pM \) 和平均曲率向量 \(H(p) \) 张成的 \(R^{m+k} \) 的线性子空间是 \(R^{m+k} \) 中的固定的 \(m + 1 \) 维线性子空间，记作 \(R^{m+k} \)。由此并利用连通 \(C^\infty \) 流形 \(M^n \) 中单参数曲线的积分可证得 \(M^n \) 必含于 \(R^{m+k} \) 的 \(m + 1 \) 维仿射子空间中。

另一方面，设

\[
\tilde{x} = (x^1, \cdots, x^{m+k})
\]

是 \(R^{m+k} \) 的位置向量，其中 \(x^1, \cdots, x^{m+k} \) 是标准直角坐标。则对 \(M^n \) 中的 \(C^\infty \) 切向量场 \(Y \) 有

\[
\nabla_y(\tilde{x} + \frac{e_{m+k}}{\|H(x)\|}) = \nabla_y \tilde{x} + \nabla_y \frac{e_{m+k}}{\|H(x)\|}
\]

\[
= \nabla_y \tilde{x} - \frac{1}{\|H(x)\|} A_{m+1}(Y) + \nabla_y \frac{e_{m+k}}{\|H(x)\|}
\]

\[
= Y - \frac{1}{\|H(x)\|} \|H(x)\| Y + 0
\]

\[
= Y - Y = 0.
\]

这就证明了，限制到 \(M^n, C^\infty \) 向量场

\[
\tilde{x} + \frac{e_{m+k}}{\|H(x)\|} = a
\]

为 \(R^{m+k} \) 中的常向量。因此，\(M^n \) 包含在 \(R^{m+k} \) 中的中心在 \(a \)，半径为 \(1/\|H(x)\| \) 的超球面 \(S^{m+k-1}(1/\|H(x)\|) \) 中。综合上述，\(M^n \) 必须包含在 \(R^{m+k} \) 的 \(m + 1 \) 维全测地仿射子空间的超球面中。

情形 2 为简单起见，只考虑 \(c = 1 \)(或情形 3, \(c = -1 \)。将
$\mathbf{R}^{n+1}(1)$ (或 $\mathbf{R}^{n+1}(-1)$) 视作第 1 章 1.4 例 3 (或例 4) 给出的椭圆空间形式 (或双曲空间形式). 取 \mathbf{R}^{n+1}_{*+1} 中 $\mathbf{R}^{n+1}(1)$ (或 $\mathbf{R}^{n+1}(-1)$) 关于中心在 $(0, \cdots, 0, 1)$ (或 $(0, \cdots, 0, -1)$) 的位置向量 \mathbf{x}. 则 $\eta = \mathbf{X}$ 是 $\mathbf{R}^{n+1}(1)$ (或 $\mathbf{R}^{n+1}(-1)$) 在 \mathbf{R}^{n+1}_{*+1} 中关于 Riemann 度量 $g^* = (dx)^2 + \cdots + (dx)^2 + (dx^{n+1})^2$ (或伪 Riemann 度量 $g^* = (dx)^2 + \cdots + (dx)^2 - (dx^{n+1})^2$) 的单位法向量场. 容易验证, 对 $\mathbf{R}^{n+1}(1)$ (或 $\mathbf{R}^{n+1}(-1)$) 中任何 C^∞ 切向量场 W, $\nabla^* \eta = W$, 其中 ∇^* 是 Riemann 度量 g^* 诱导的 Riemann 联络, 它是通常的 Euclid 联络. 此外, 对于 $\mathbf{R}^{n+1}(c), c = \pm 1$ 中的 C^∞ 切向量场 U 和 V, 有

$$\nabla^* V = \tilde{\nabla} V + \text{sgnc} \cdot g^* (\nabla^* V, \eta) \eta$$

$$= \tilde{\nabla} V - \text{sgnc} \cdot g^* (V, \nabla^* \eta) \eta$$

$$= \tilde{\nabla} V - \text{sgnc} \cdot g^* (U, V) \eta.$$特别地, 对 M^n 上的 C^∞ 切向量场 X 有 $g^* (X, e_a) = 0$ 和

$$\nabla^* e_a = \tilde{\nabla} e_a - \text{sgnc} \cdot g^* (X, e_a) \eta$$

$$= \tilde{\nabla} e_a, \quad a = m + 1, \cdots, m + k.$$因此, 对 M^n 在 \mathbf{R}^{n+1}_{*+1} 中关于 g^* 的 C^∞ 法向量场 $\xi = \xi + \lambda \eta$ (其中 ξ 为 M^n 在 $\mathbf{R}^{n+1}(c)$ 中的 C^∞ 法向量场), 有

$$\nabla^* \xi = \tilde{\nabla} \xi \left(\sum_{a=m+1}^{m+k} \lambda_a e_a \right) = \sum_{a=m+1}^{m+k} (X \lambda_a) e_a + \sum_{a=m+1}^{m+k} \lambda_a \nabla^* e_a$$

$$= \sum_{a=m+1}^{m+k} (X \lambda_a) e_a + \sum_{a=m+1}^{m+k} \lambda_a \tilde{\nabla} e_a = \tilde{\nabla} \xi ^\xi,$

$$\nabla^* \xi = \nabla^* (\xi + \lambda \eta) = \nabla^* \xi + \lambda \nabla^* \eta + (X \lambda) \eta$$

$$= \tilde{\nabla} \xi ^\xi + \lambda X + (X \lambda) \eta,$$

$$A^* (X) = (\nabla^* \xi) ^T = (\tilde{\nabla} \xi ^\xi)^T + \lambda X = - \tilde{\lambda} (X) + \lambda X,$

$$A^* (X) = \tilde{\lambda} (X) - \lambda X = e X.$$根据引理 6, M^n 也为 \mathbf{R}^{n+1}_{*+1} 中的全胚子流形. 下设 M^n 不是全测地的.
选择 \(R^{n+k}(c) \) 上的规范正交基 \(\{e_1, \cdots, e_m, e_{m+1}, \cdots, e_{m+k}\} \) 使 \(\{e_1, \cdots, e_m\} \) 与 \(M^n \) 相切，且 \(e_{m+1} = \frac{H(x)}{\|H(x)\|} \)，其中 \(H(x) \) 为 \(M^n \) 在 \(R^{n+k}(c) \) 中的平均曲率向量。从

\[
\nabla_x(e_{m+2} \wedge \cdots \wedge e_{m+k}) = 0, \quad X \in C^\infty(TM)
\]

和

\[
\nabla^*_x e_\alpha = \nabla_x e_\alpha, \quad \alpha = m + 1, \cdots, m + k
\]

立即有

\[
\nabla^*_x (e_{m+2} \wedge \cdots \wedge e_{m+k}) = 0.
\]

从 \(e_{m+2} \wedge \cdots \wedge e_{m+k} \) 为 \(R^{n+k+1} \) 中的 \(k-1 \) 维不变线性子空间，与它正交的（\(g^* \) 度量下）线性子空间 \(e_1 \wedge \cdots \wedge e_m \wedge H(x) \wedge \tilde{x} \) 也是 \(R^{n+k+1} \) 中的 \(m+2 \) 维不变线性子空间（当 \(c = -1 \) 时，为得出上述结论，只须将 \(e_{m+2} \wedge \cdots \wedge e_{m+k} \) 中的向量的最后一个分量反符号，得到另一不变线性子空间，它在 Euclid 意义下与 \(e_1 \wedge \cdots \wedge e_m \wedge H(x) \wedge \tilde{x} \) 正交），\(M^n \) 就含在此线性子空间中。记

\[
E_1 = e_1 \wedge \cdots \wedge e_m \wedge H(x) \wedge \tilde{x}, \quad E_2 = e_{m+2} \wedge \cdots \wedge e_{m+k}.
\]

于是，

\[
R^{n+k+1} = E_1 \oplus \tilde{E}_2,
\]

其中 \(\tilde{E}_2 \) 是由 \(E_2 \) 中向量的最后一个分量乘以 \(c \) 而得到。令

\[
\varphi: R^{n+k+1} \to R^{n+k+1}
\]

\[
(v_1, \tilde{v}_2) \to (v_1, -\tilde{v}_2), \quad v_1 \in E_1, \tilde{v}_2 \in \tilde{E}_2,
\]

则 \(\varphi \) 是 \(R^{n+k+1} \) 中的线性等距变换（参阅第 5 章 5.2 定义 1）。容易看出，\(\varphi \) 限制到 \(R^{n+k}(c) \) 上也是等距变换，根据下面的定理 3，\(\varphi \) 在 \(R^{n+k}(c) \) 上的不动点集 \(E_1 \cap R^{n+k}(c) \) 为 \(R^{n+k}(c) \) 的全测地子流形。从而 \(M^n \) 就含在 \(E_1 \cap R^{n+k}(c) \) 这个 \(m+1 \) 维全测地子流形中。此外，从

\[
\nabla^*_x (\tilde{x} + \frac{e_{m+1}}{\|H(x)\|})
\]

\[
= \nabla^*_x \tilde{x} + \nabla^*_x (\frac{e_{m+1}}{\|H(x)\|}) + \nabla^*_x (\frac{e_{m+1}}{\|H(x)\|})
\]

163
\[Y - \frac{1}{\| H(x) \|} A_{n+1}(Y) = Y - Y = 0, \]

得到 \(z + \frac{e_{n+1}}{\| H(x) \|} \) 为常向量，即 \(M^* \) 含于一超球面中。

定理 3 一个 \(C^\infty \) 等距变换 \(\varphi: \tilde{M} \to \tilde{M} \) 的不动点集 \(M = \{ y \in \tilde{M} | \varphi(y) = y \} \) 是一个 \(C^\infty \) 全测地子流形（不一定连通）。

证明 设 \(x \in M \)，令

\[B(\delta) = \{ v \in T_x \tilde{M} \mid \| v \| < \delta \}, \quad B_\delta = \{ y \in \tilde{M} \mid \rho(x, y) < \delta \}, \]

其中 \(\rho \) 为由 \(\tilde{M} \) 上的 Riemann 度量诱导的距离函数。根据第 3 章 3.1 引理 3(3)，可以假设 \(\delta \) 足够小，以至使得

\[\exp_x: B(\delta) \to B_\delta \]

为 \(C^\infty \) 微分同胚。显然

\[\mathcal{F} = \{ v \in T_x \tilde{M} \mid d\varphi(v) = v \} \]

为 \(T_x \tilde{M} \) 中的一个子向量空间。可以断言：

\[M \cap B_\delta = \exp_x(\mathcal{F} \cap B(\delta)). \]

因为 \(\exp_x(\mathcal{F} \cap B(\delta)) \) 是 \(\tilde{M} \) 的 \(C^\infty \) 正则子流形，故 \(M \) 的每个连通分支也为 \(\tilde{M} \) 的 \(C^\infty \) 正则子流形（注意 \(M \) 的每个连通分支的维数不必相同）。

因为等距变换必须把一条局局部长度极小（或临界）化的曲线变为一条局局部长度极小（或临界）化的曲线，根据第 3 章 3.1 定理 1（或 3.3 定理 3），\(C^\infty \) 等距变换必将测地线变为测地线。设

\[\gamma: (a, b) \to M = \{ y \in \tilde{M} \mid \varphi(y) = y \} \]

为 \(M \) 的测地线。固定 \(s_0 \in (a, b) \)，设 \(\xi \) 为 \(\tilde{M} \) 中的一条使 \(\xi(s_0) = \dot{y}(s_0) \) 的测地线。因为 \(d\varphi(\xi(s_0)) = d\varphi(\dot{y}(s_0)) = \dot{y}(s_0) = \xi(s_0) \)，所以 \(\xi \) 和 \(\varphi(\xi) \) 同时为 \(\tilde{M} \) 的测地线，且有相同的初始条件

\[\xi(s_0) = d\varphi(\xi(s_0)) = \varphi(\xi)(s_0) = \dot{y}(s_0). \]

由唯一性，\(\varphi(\xi) = \xi \)，故 \(\xi \subset \{ y \in \tilde{M} \mid \varphi(y) = y \} = M \)。显然，\(\tilde{M} \) 中的测地线必为 \(M \) 中的测地线，从而在 \(s_0 \) 附近，\(\xi = y \)。由于 \(s_0 \in (a, b) \) 是任取的，故在 \((a, b) \) 上必有 \(\xi = y \)。由此推出 \(y \) 必为 \(\tilde{M} \) 中的测地线。这就证明了 \(M \) 为 \(\tilde{M} \) 的 \(C^\infty \) 全测地子流形。
最后来证明 $M \cap B_{\delta} = \exp(\mathcal{H} \cap B(\delta))$.

设 $y \in M \cap B_{\delta}, v \in B(\delta)$, 满足 $\exp_v y = y$, 且设 $y: [0, 1] \to \tilde{M}$ 为唯一的最短动线 $\gamma(t) = \exp_{\gamma(t)}$, 它连接 x 和 y (参阅第 3 章定理 1). 因为 $x, y \in M$, 而 φ 是 C^∞ 等距变换，所以，$\varphi(y)$ 也是一条连接 $\varphi(x) = x$ 和 $\varphi(y) = y$ 的最短动线。由唯一性知 $\varphi(y) = y$. 特别地，$d\varphi(\dot{\gamma}(0)) = \dot{y}(0)$, 即 $d\varphi(v) = v$, 于是 $v \in \mathcal{H}$. 这蕴含着 $y = \exp_v y = \exp(\mathcal{H} \cap B(\delta))$. 这就证明了 $M \cap B_{\delta} \subset \exp(\mathcal{H} \cap B(\delta))$. 反之，设 $y = \exp_v y, v \in \mathcal{H} \cap B(\delta), y: [0, 1] \to \tilde{M}$ 为测地线，$\gamma(t) = \exp_{\gamma(t)}$. 因为 $d\varphi(v) = v$, 就有 $d\varphi(\dot{\gamma}(0)) = \dot{y}(0)$. 由前面类似的理由知 $\varphi(y) = y$, 且特别有 $\varphi(y) = \varphi(y(1)) = y(1) = y$, 即 $y \in M \cap B_{\delta}$. 这就证明了 $\exp(\mathcal{H} \cap B(\delta)) \subset M \cap B_{\delta}$.

大家知道，全测地子流形的例子是十分稀少的。但是，定理 3 指出，当 C^∞ Riemann 流形具有一个非平凡的等距变换时，此等距变换的不动点集提供了全测地子流形的例子。

定理 2 指出，空间形式 $\mathbb{R}^{n+1}(c)$ 中的 C^∞ 全脐子流形的分类可简化为 $\mathbb{R}^{n+1}(c)$ 中的全脐超曲面的分类。对于 Euclid 空间 $\mathbb{R}^{n+1}(0) = \mathbb{R}^{n+1}$ 的情形，下面的定理，我们直接加以证明。

定理 4 设 $f: M^n \to \mathbb{R}^{n+1}$ 为从 C^∞ 连通 Riemann 流形 M^n 到 \mathbb{R}^{n+1} 中的全脐等距浸入，则 $f(M)$ 为 \mathbb{R}^{n+1} 中的仿射超平面的开子集或为超平面的开子集。

证明 因为 M^n 是全脐点的，故 $\|H(x)\|$ 为常值，从而在连通开集 $U \subset M^n$ 上可选 C^∞ 单位法向量场 ξ, 使得

$$A_x = \rho d\nu,$$

其中

$$\rho = \langle H(x), \xi \rangle = \left\{\begin{array}{ll}
0, & \|H(x)\| = 0, \\
\langle H(x), \frac{H(x)}{\|H(x)\|} \rangle = \|H(x)\|, & \|H(x)\| \neq 0.
\end{array}\right.$$ 为常值。对于 U 上的 C^∞ 切向量场 Y, 根据 Weingarten 公式，有

165
\[
\widetilde{\nabla}_y \xi = - A_\xi(Y) + \langle \widetilde{\nabla}_y \xi, \xi \rangle \xi \\
= - A_\xi(Y) + \frac{1}{2} Y \langle \xi, \xi \rangle \xi = - A_\xi(Y) = - \rho Y,
\]

其中 $\widetilde{\nabla}$ 为 R^{n+1} 中的 Riemann 联络。

如果 $\rho = 0$，则 $\widetilde{\nabla}_y \xi = 0, \xi$ 为 U 上的常向量场。设 $x_0 \in U$ 为一固定点，对任意 $x \in M^n$ 和 M^n 上的 C^∞ 切向量场 Y，有

\[
\langle \widetilde{\nabla}_y (f(x) - f(x_0), \xi) = \langle \widetilde{\nabla}_y f(x), \xi \rangle = \langle Y, \xi \rangle = 0,
\]

所以，$\langle f(x) - f(x_0), \xi \rangle \equiv \langle f(x_0) - f(x_0), \xi \rangle = 0$，即 $f(U)$ 包含在通过 $f(x_0)$ 的正交于 ξ 的超平面 π 中。由于 $U \subseteq M^n$ 是 m 维 C^∞ 流形，显然 $f(U)$ 为上述超平面 π 中的开子集。

如果在 U 中 $\rho \neq 0$，则对 U 中的任何 C^∞ 切向量场 Y，有

\[
\widetilde{\nabla}_y (f + \rho^{-1} \xi) = \widetilde{\nabla}_y f + \rho^{-1} \widetilde{\nabla}_y \xi \\
= Y - \rho^{-1} A_\xi(Y) = Y - \rho^{-1} \rho Y = Y - Y = 0.
\]

于是，存在点 $c \in R^{n+1}$，使得

\[
f(x) + \rho^{-1} \xi(x) = c.
\]

换言之，$f(U)$ 包含在以 c 为中心和 ρ^{-1} 为半径的超球面 $S^n(c, \rho^{-1})$ 中。

易见，当 $\rho = 0$ 时，集合 $\{ x \in M^n \mid f(x) \in \pi \}$ 在 M^n 中既开又闭。根据题设 M^n 连通，立即推出 $\{ x \in M^n \mid f(x) \in \pi \} = M^n$，即 M^n 为超平面 π 中的开集。类似可证，当 $\rho \neq 0$ 时，M^n 为超球面 $S^n(c, \rho^{-1})$ 中的开集。

引理 7 设 $f : M^n \to R^{n+1}$ 为从 m 维 C^∞ 紧致 Riemann 流形 M^n 到 $m + k$ 维 Euclid 空间 R^{n+1} 中的 C^∞ 等距浸入，则存在点 $x_0 \in M^n$ 和法向量 $\xi \in T_{x_0} M^n$，使得关于 ξ 的第 2 基本形式 h 或形状算子 A_ξ 是正定的。

证明 设 $\varphi : M \to R, \varphi(x) = \frac{1}{2} \| f(x) \|^2 = \frac{1}{2} \langle f(x), f(x) \rangle$，则 φ 是 C^∞ 的。因为 M^n 紧致，必有 $x_0 \in M^n$，使 φ 在 x_0 达到最大值。由于

166
\[0 = (X\varphi)(x_0) = X\left(\frac{1}{2} \langle f, f \rangle\right)(x_0) \]
\[= \langle \nabla_x f, f \rangle(x_0) = \langle X, f(x_0) \rangle, \quad \forall X \in T_{x_0}M, \]
故 \(f(x_0) \perp T_{x_0}M \). 更进一步，从 \(\varphi(x_0) \) 达到最大值可推得
\[0 \geq \langle XX\varphi(x_0) = X\langle X, f \rangle(x_0) \]
\[= \langle \tilde{\nabla}_X X, f(x_0) \rangle + \langle X, \tilde{\nabla}_X f \rangle(x_0) \]
\[= \langle h(X, X), f(x_0) \rangle + \langle X, X \rangle \]
\[= \langle h(X, X), f(x_0) \rangle + \| X \|^2 \]
（其中 \(X \) 可理解为延拓后的 \(C^\infty \) 局部切向量场）。取 \(\xi = -f(x_0) \)，就有
\[0 \geq \langle h(X, X), -\xi \rangle + \| X \|^2 = -\langle A_\xi(X), X \rangle + \| X \|^2, \]
\[\langle h(X, X), \xi \rangle = \langle A_\xi(X), X \rangle \geq \| X \|^2, \quad \forall X \in T_{x_0}M, \]
即关于 \(\xi \) 第 2 基本形式 \(h \) 或 \(A_\xi \) 是正定的。

定理 5 Euclid 空间 \(\mathbb{R}^{n+1} \) 中不存在极小紧致 \(C^\infty \)Riemann 子流形。

证明 （反证）假设 \(\mathbb{R}^{n+1} \) 中存在极小紧致 \(C^\infty \)Riemann 子流形 \(M^n \)，则由引理 7，存在点 \(x_0 \in M^n \) 和法向量 \(\xi \in T_{x_0}M \perp \)，使得关于 \(\xi \) 的第 2 基本形式 \(h \) 或 \(A_\xi \) 是正定的。选取 \(e_1, \cdots, e_m \) 为 \(T_{x_0}M \) 的规范正交基。因为 \(M^n \) 是极小的，故 \(H(x_0) = 0 \)。于是，
\[0 = \langle 0, \xi \rangle = \langle H(x_0), \xi \rangle = \langle \frac{1}{m} \sum_{i=1}^m h(e_i, e_i), \xi \rangle \]
\[= \frac{1}{m} \sum_{i=1}^m \langle h(e_i, e_i), \xi \rangle = \frac{1}{m} \sum_{i=1}^m \langle A_\xi(e_i), e_i \rangle > 0, \]
矛盾。

回想 \(C^\infty \)Riemann 流形 \(M^n \) 的 Ricci 张量是由
\[\text{Ric}(X, Y) = \text{trace}(Z \to R(Z, X)Y), \quad \forall X, Y \in TM \]
所定义，而在单位向量 \(X \in TM \) 方向的 Ricci 曲率是
\[\text{Ric}(X) = \frac{1}{m-1}\text{Ric}(X, X). \]
167
关于它, 有下面的定理.

定理 6 假设 \tilde{M}^{n+1} 为 $m + k$ 维 C^∞ 常截曲率 c 的 Riemann 流形，
$f: M^n \to \tilde{M}^{n+1}$ 在 $x_0 \in M^n$ 是等距极小浸入, 则对每个单位向量 $X \in T_{x_0}M$,

$$\text{Ric}(X) \leq c.$$ 且对 $\forall X \in T_{x_0}M$, 等式均成立的充要条件是 f 在 x_0 是全测地的.

证明 令 $X_1 = X, X_2, \ldots, X_m \in T_{x_0}M^n$ 为规范正交基. 由 Gauss 方程和 $H(x_0) = 0$ (f 在 $x_0 \in M^n$ 是极小浸入), 得

$$\text{Ric}(X) = \frac{1}{m-1} \text{Ric}(X, X)$$

$$= \frac{1}{m-1} \sum_{j=1}^{m} \langle R(X, X)X, X \rangle$$

$$= \frac{1}{m-1} \sum_{j=2}^{m} \langle R(X, X)X, X \rangle$$

$$= \frac{1}{m-1} \sum_{j=2}^{m} \left[c + \langle h(X, X), h(X, X) \rangle - \| h(X, X) \|^2 \right]$$

$$= c + \frac{1}{m-1} \langle \sum_{j=2}^{m} h(X, X), h(X, X) \rangle$$

$$- \frac{1}{m-1} \sum_{j=2}^{m} \| h(X, X) \|^2$$

$$= c + \frac{m}{m-1} \langle \frac{1}{m} \sum_{j=1}^{m} h(X, X), h(X, X) \rangle$$

$$- \frac{1}{m-1} \sum_{j=1}^{m} \| h(X, X) \|^2$$

$$= c + \frac{m}{m-1} \langle H, h(X, X) \rangle - \frac{1}{m-1} \sum_{j=1}^{m} \| h(X, X) \|^2$$

$$= c - \frac{1}{m-1} \sum_{j=1}^{m} \| h(X, X) \|^2 \leq c.$$
此外，对任何单位向量 \(X \in T_{x_0}M \)，上面等式成立 \(\iff h(X, X_j) = 0, j = 1, \cdots, m; h(X, Y) = 0, \forall Y \in T_{x_0}M; h = 0 \)，即 \(f \) 在 \(x_0 \) 是全测地的。

定理 7 如果 \(f : M^n \to \overline{M}^{n+1} \) 在 \(x_0 \in M^n \) 是等距极小的，则

(1) \(c \leq \tilde{c} \);

(2) \(c = \tilde{c} \iff f \) 在 \(x_0 \) 是全测地的。

证明 (1) 由 \(M^n \) 和 \(\overline{M}^{n+1} \) 是常截曲率的 \(C^\infty \) Riemann 流形和定理 6，

\[
c = \frac{1}{m-1} \sum_{j=1}^{m} \langle R(X_j, X)X, X_j \rangle = \text{Ric}(X) \leq \tilde{c}.
\]

(2) 由定理 6 的后半部分的结论，有

\[c = \tilde{c} \iff f \text{ 在 } x_0 \text{ 是全测地的}.
\]

例 1 在 \(\mathbb{R}^{n+k} \) 中，\(E \) 为 \(m \) 维 \(C^\infty \) 完备连通全测地子流形 \(\iff E \) 为 \(\mathbb{R}^{n+k} \) 中的 \(m \) 维仿射子空间。

(\(\iff \)) 在 \(m \) 维仿射子空间 \(E \) 的切丛 \(TE \) 中选平行规范正交基向量场 \(e_1, \cdots, e_m \)，则 \(E \) 关于原点的位置向量 \(\tilde{x} = x_0 + \sum_{i=1}^{m} \lambda_i e_i \)，其中 \(\tilde{x}_0 \in E \) 为一固定点。\(TE \) 中的任两 \(C^\infty \) 切向量场 \(X \) 和 \(Y \) 可分别表示为

\[
X = \sum_{i=1}^{m} \alpha^i e_i, \quad Y = \sum_{j=1}^{m} \beta^j e_j.
\]

于是，

\[
\nabla_X Y + h(X, Y) = \nabla_{\tilde{x}} Y
\]

\[
= \nabla_{\tilde{x}} (\sum_{j=1}^{m} \beta^j e_j) = \sum_{j=1}^{m} (X \beta^j) e_j \in TE.
\]

这就证明了 \(h = 0, E \) 为 \(\mathbb{R}^{n+k} \) 中的 \(m \) 维 \(C^\infty \) 全测地子流形。

(\(\iff \)) 设 \(E \) 为 \(m \) 维 \(C^\infty \) 全测地子流形，\(x_0 \in E \) 为固定点，\(e_1, \cdots, e_m \) 为 \(T_{x_0}E \) 的一个规范正交基，\(\gamma \) 为过点 \(x_0 \) 关于方向 \(e = \sum_{i=1}^{m} \lambda^i e_i \) 的测地线，\(\gamma \) 也为 \(\mathbb{R}^{n+k} \) 中的测地线，即直线。由于 \(E \) 是完备连通的，这种测地线恰好形成了 \(E \)，从而 \(E \) 为 \(\mathbb{R}^{n+k} \) 中过 \(x_0 \) 由 \(e_1, \cdots, e_m \) 张成的 \(m \)
维仿射空间.

设 $S^m_0(r)$ 为 \mathbb{R}^{m+1} 中以 x_0 为中心，r 为半径的球面，则 $e_{m+1}(x) = \frac{x - x_0}{r}$ 为 $S^m_0(r)$ 上的 C^∞ 单位法向量场. 设 $g = l^* \tilde{g}, \tilde{g}$ 分别为 $S^m_0(r)$ 和 \mathbb{R}^{m+1} 中的 Riemann 度量，则从

$$
\langle h(X,Y), e_{m+1} \rangle = \langle \tilde{\nabla}_x X, e_{m+1} \rangle = - \langle Y, \tilde{\nabla}_x e_{m+1} \rangle,
$$

$$
= - \frac{1}{r} \langle Y, X \rangle = - \frac{1}{r} \langle X, Y \rangle,
$$

$$
h = - \frac{1}{r} e_{m+1} g, \quad H(x) = - \frac{1}{r^2} e_{m+1},
$$

得到 $S^m_0(r)$ 为 \mathbb{R}^{m+1} 中的 m 维 C^∞ 全胚子流形. 根据定理 1，它具有常截曲率 $0 + \| H(x) \|^2 = \frac{1}{r^2}$.

例 2 设 E 为 \mathbb{R}^{m+2} 中的仿射超平面（即 $m + 1$ 维仿射子空间），v_0 为 E 的单位法向量，$\cos \theta$ 为原点到 E 的距离，$M = S^{m+1} \cap E$（其中 $S^{m+1} = S^m_0(1)$），$e_{m+1} = -\cot \theta x + \csc \theta v_0$ 为 M 在 S^{m+1} 中的 C^∞ 单位法向量场，其中 x 为位置向量. 在 S^{m+1} 中，从

$$
\langle h(X,Y), e_{m+1} \rangle = \langle \tilde{\nabla}_x Y, e_{m+1} \rangle
$$

$$
= - \langle Y, \tilde{\nabla}_x e_{m+1} \rangle = - \langle Y, \tilde{\nabla}_x (-\cot \theta x + \csc \theta v_0) \rangle
$$

$$
= - \langle Y, -\cot \theta \tilde{\nabla}_x x \rangle = - \langle Y, -\cot \theta X \rangle = \cot \theta \langle X, Y \rangle
$$

得到 $h = \cot \theta e_{m+1} g, H(x) = \cot \theta e_{m+1}$ (其中 \tilde{g} 是由 \mathbb{R}^{m+2} 中通常的 Riemann 度量 $g^* = (dx_1)^2 + \cdots + (dx^{m+2})^2$ 诱导的 Riemann 度量). 因此，M 为 S^{m+1} 中的 m 维 C^∞ 全胚子流形. 根据定理 1，M 为常截曲率 $1 + \| H(x) \|^2 = 1 + \cot^2 \theta = \csc^2 \theta$ 的 m 维 C^∞ Riemann 流形. 如果 $\cot \theta = 0$，则 $h = 0$，从而 M 为 S^{m+1} 中的全测地子流形（此时，E 为 \mathbb{R}^{m+2} 中过原点的 $m + 1$ 维线性超平面）.

例 3 设 v_0 为 Lorentz 空间 $\mathbb{R}^{m+1,1} = \mathbb{R}^{m+2}$ 中的非零向量，

$$
M = \{ x \in \mathbb{R}^{m+1,1} \mid \langle x, x \rangle = -1, \langle x, v_0 \rangle = 0 \},
$$

则 $M \subset \mathbb{R}^{m+1}(-1) \subset \mathbb{R}^{m+1,1}$. 取 $e_1, \cdots, e_m, e_{m+1}, e_{m+2} = x$ 为 C^∞ 局部
基向量场，使得 e_1, \cdots, e_m 切于 M，而 e_{m+1} 切于 $\mathbb{R}^{n+1}(-1)$ 和法于 M，
并且
\[g^*(e_i, e_j) = \varepsilon i\delta_{ij}, \varepsilon_1 = \cdots = \varepsilon_m = \varepsilon_{m+1} = - \varepsilon_{m+2} = 1, \]
其中 $g^* = (dx^1)^2 + \cdots + (dx^{m+1})^2 - (dx^{m+2})^2$ 为 $\mathbb{R}^{n+1,1}$ 中的伪 Riemann 度量（因 g^* 不同于 \mathbb{R}^{n+2} 中通常的 Riemann 度量，故记 \mathbb{R}^{n+2} 为 $\mathbb{R}^{n+1,1}$）。

如果 $x(t)$ 是 M 上的任一 C^∞ 曲线，则
\[0 = \frac{1}{2} \frac{d}{dt} \langle x(t), x(t) \rangle = \langle x'(t), x(t) \rangle, \]
\[0 = \frac{d}{dt} \langle x(t), v_0 \rangle = \langle x'(t), v_0 \rangle, \]

如果 v_0 与 x 线性无关，则
\[e_{m+1} = \alpha x + \beta v_0, \]

且
\[\langle h(X, Y), e_{m+1} \rangle = \langle \nabla_x Y, e_{m+1} \rangle \]
\[= - \langle Y, \nabla_x e_{m+1} \rangle = - \langle Y, \nabla_x (\alpha x + \beta v_0) \rangle \]
\[= - \langle Y, \alpha \nabla_x x \rangle = - \alpha \langle Y, X \rangle = - \alpha \langle X, Y \rangle, \]
\[h = - a e_{m+1} \text{g}, H(x) = - a e_{m+1}, \]

其中 \tilde{g} 和 ∇ 分别为 $\mathbb{R}^{n+1}(-1)$ 中的 C^∞ Riemann 度量和 Riemann 联络，而 $g = I^*\tilde{g}$ 为 M 的 Riemann 度量。由此看出 M 为 $\mathbb{R}^{n+1}(-1)$ 中的 m 维 C^∞ 全胚子流形。

下面作简单的计算。
\[a = \langle x, v_0 \rangle = \langle x, \frac{1}{\beta} (e_{m+1} - \alpha x) \rangle \]
\[= - \frac{\alpha}{\beta} \langle x, x \rangle = \frac{\alpha}{\beta}, \]
\[\langle v_0, v_0 \rangle = \langle \frac{1}{\beta} (e_{m+1} - \alpha x), \frac{1}{\beta} (e_{m+1} - \alpha x) \rangle \]

171
\[
\frac{1}{\beta^2}(1 - a^2) = \frac{1}{\beta^2} - \left(\frac{a}{\beta} \right)^2 = \frac{1}{\beta^2} - a^2.
\]

(i) 如果 \(0 = \langle v_0, v_0 \rangle = \frac{1}{\beta^2} - a^2 \)，则 \(\beta^2 = \frac{1}{a^2}, \alpha^2 = a^2\beta^2 = 1, \)

\[
h = \pm e_{m+1} g, \quad H(x) = \pm e_{m+1}.
\]

根据定理 1，它具有常曲率 \(-1 + \| H(x) \|^2 = -1 + a^2 = 0.\)

(ii) 如果 \(1 = \langle v_0, v_0 \rangle = \frac{1}{\beta^2} - a^2 \)，则 \(\beta^2 = \frac{1}{1 + a^2}, \alpha^2 = a^2\beta^2 = \frac{a^2}{1 + a^2}, \)

\[
h = \pm \frac{a}{\sqrt{1 + a^2}} e_{m+1} g, \quad H(x) = \pm \frac{a}{\sqrt{1 + a^2}} e_{m+1}.
\]

根据定理 1，它具有常曲率 \(-1 + \| H(x) \|^2 = -1 + \frac{a^2}{1 + a^2} = -1.\)

(iii) 如果 \(-1 = \langle v_0, v_0 \rangle = \frac{1}{\beta^2} - a^2 \)，则 \(\beta^2 = \frac{1}{a^2 - 1}, \alpha^2 = a^2\beta^2 = \frac{a^2}{a^2 - 1}, \)

\[
h = \pm \frac{a}{\sqrt{a^2 - 1}} e_{m+1} g, \quad H(x) = \pm \frac{a}{\sqrt{a^2 - 1}} e_{m+1}.
\]

再根据定理 1，它具有常曲率 \(-1 + \| H(x) \|^2 = -1 + \frac{a^2}{a^2 - 1} = \frac{1}{a^2 - 1}.\)

2.2 Euclid 空间和 Euclid 球面中

的极小子流形

设 \(\mathbb{R}^{m+k} \) 为 \(m + k \) 维实 Euclid 空间，\((x^1, \cdots, x^{m+k}) \) 为通常的整体直角坐标系，\(g = (dx^1)^2 + \cdots + (dx^{m+k})^2 \) 为其 Riemann 度量。

定理 1 设 \(\psi = (\psi_1, \cdots, \psi_{m+k}) : M^n \to \mathbb{R}^{m+k} \) 为 \(C^\infty \) 等距浸入，

\(H(x) \) 为平均曲率向量场，\(\Delta \) 为 \(M^n \) 的 Laplace-Beltrami 算子，则
\[\Delta \psi = mH, \]

其中 \(\Delta \psi = (\Delta \psi_1, \cdots, \Delta \psi_{m+k}) \).

证明 设 \(e_1, \cdots, e_n \) 为 \(M^n \) 的局部规范正交基，则 \(e_i \psi = (e_i \psi_1, \cdots, e_i \psi_{m+k}) = e_i (\nabla ^* e_i) = d \psi (e_i) = \psi_*(e_i), e_i e_i \psi = \nabla ^* e_i, i = 1, \cdots, m \)，其中 \(\nabla ^* \) 为 Euclid 空间中关于 \(\bar{g} \) 的 Riemann 联络。因此

\[
\Delta \psi = \sum_{i=1}^{n} \{ e_i \psi_i - (\nabla ^* e_i) \psi \} \\
= \sum_{i=1}^{n} \{ \nabla ^* e_i - \nabla ^* e_i \} \psi \\
= \sum_{i=1}^{n} \{ \nabla ^* e_i \} = \sum_{i=1}^{m} h(e_i, e_i) = mH.
\]

从定理 1, 立即有 (参阅 [Ta])

定理 2 (Takahashi, 1966) 设 \(\psi : M^n \to \mathbb{R}^{n+k} \) 为等距浸入。则 \(\psi \) 是极小的 \(\iff \Delta \psi = 0 \)，即 \(\psi \) 是调和的。

证明 由定理 1，\(\psi \) 是极小的，即 \(H = 0 \iff \Delta \psi = mH = 0 \)。

定理 3 在紧致 \(C^\infty \) Riemann 流形 \(M^n \) 上，不存在 \(C^\infty \) 极小等距浸入 \(\psi = (\psi_1, \cdots, \psi_{m+k}) : M^n \to \mathbb{R}^{n+k} \)。

证明 (反证) 假设存在 \(C^\infty \) 极小等距浸入 \(\psi : M^n \to \mathbb{R}^{n+k} \)，由定理 2，\(\Delta \psi = 0 \)，即 \(\psi_j \) 为 \(M^n \) 上的调和函数，\(j = 1, \cdots, m+k \)。再根据第 1 章 1.5 定理 4 和注 6，在 \(M^n \) 的每个连通分支上，\(\psi_j \) 为常值函数，从而 \(\psi \) 为常值映射，这与 \(\psi \) 为浸入相矛盾。

注 1 这是 2.1 定理 5 的另一证法。

现在来讨论 Euclid 球面中的极小浸入子流形。设 \(\tilde{M} \subset \mathbb{R}^s \) 为 \(C^\infty \) 嵌入子流形，对于 \(p \in \tilde{M} \) 和 \(X \in T, \mathbb{R}^s, X^T \) 表示 \(X \) 到 \(T, \tilde{M} \) 上的正交投影。

设 \(\psi : M^n \to \tilde{M} \subset \mathbb{R}^s \) 为 \(C^\infty \) 浸入，\(H \) 和 \(H^* \) 分别为 \(M^n \) 关于 \(\tilde{M} \) 和 \(\mathbb{R}^s \) 的平均曲率向量场。则
\[H = \frac{1}{m} \sum_{i=1}^{m} (\nabla^* e_i) \perp_{\mathcal{N}} \]
\[= \frac{1}{m} \sum_{i=1}^{m} (\nabla^* e_i)^T \mathcal{N} \]
\[= \left(\left(\frac{1}{m} \sum_{i=1}^{m} \nabla^* e_i \right) \perp_{\mathcal{N}} \right)^T \mathcal{N} \]
\[= (H^*)^T \mathcal{N} = \left(\frac{1}{m} \Delta \psi \right)^T \mathcal{N} \]

（1）

其中 \(\nabla^* \) 和 \(\nabla^* \) 分别为 \(\mathcal{M} \) 和 \(\mathbf{R}^n \) 上的 Riemann 联络。对于 \(r > 0 \)，令 \(\mathcal{M} = S^*(r) = \{ x \in \mathbf{R}^{n+1} | \| x \| = r \} \)，则有

定理 4 设 \(M^m \) 为 \(m \) 维 \(C^\infty \) Riemann 流形，\(\psi : M^m \to \mathcal{M} = S^*(r) \subset \mathbf{R}^{n+1} \) 为 \(C^\infty \) 等距浸入，则 \(\psi \) 是极小的 \(\Leftrightarrow \Delta \psi = -\frac{m}{r^2} \psi \).

证明 由(1)式，可以知道 \(\psi \) 是极小的 \(\Leftrightarrow \)

\[0 = H = (H^*)^T = \left(\frac{1}{m} \Delta \psi \right)^T = \left(\frac{1}{m} \Delta \psi \right)^T, \]

即 \(\Delta \psi \) 平行于 \(S^*(r) \) 的法向量场 \(\Leftrightarrow \Delta \psi = \lambda \psi \)，其中 \(\lambda \in C^\infty(M) \)。此外，从 \(\| \psi \|^2 = r^2 \) 和第 1 章 1.5 引理 7，如果 \(\Delta \psi = \lambda \psi \)，则

\[0 = \frac{1}{2} \Delta(r^2) = \frac{1}{2} \Delta(\| \psi \|^2) = \langle \psi, \Delta \psi \rangle + \| \nabla \psi \|^2 \]
\[= \langle \psi, \lambda \psi \rangle + \| \nabla \psi \|^2 = \lambda r^2 + \| \nabla \psi \|^2, \]

因此

\[\lambda r^2 = -\| \nabla \psi \|^2 = -\| \nabla \psi \|^2 = -\sum_{i=1}^{m} \langle e_i \psi, e_i \psi \rangle \]
\[= -\sum_{i=1}^{m} \| \psi \perp (e_i) \|^2 = -\sum_{i=1}^{m} 1 = -m, \]

其中，\(e_i \) 为 \(M^m \) 上的 \(C^\infty \) 局部规范正交基，这就证明了 \(\Delta \psi = -\frac{m}{r^2} \psi \).

进一步，我们有下面的

定理 5 (Takahashi, 1966) 设 \(M^m \) 为 \(m \) 维 \(C^\infty \) Riemann 流形，\(\psi \):

174
$M^n \to \mathbb{R}^{n+1}$ 为 C^∞ 等距浸入使得
\[\Delta \psi = - \lambda \psi, \]
其中 $\lambda \neq 0$ 为常数。则

(1) $\lambda > 0$；

(2) $\psi(M^n) \subset S^*(r)$, 这里 $r^2 = \frac{m}{\lambda}$；

(3) 浸入 $\psi; M^n \to S^*(r)$ 是极小的。

证明 由定理 1, 我们有
\[mH^* = \Delta \psi = - \lambda \psi, \]

\[\psi = - \frac{m}{\lambda} H^*. \]

因此, 对 M^n 上的任何 C^∞ 切向量场 X, 有
\[X(\psi, \psi) = 2 \langle X(\psi), \psi \rangle = 2 \langle \psi, X(\psi) \rangle = 2 \langle X, \psi \rangle = 0, \]
由此得到
\[\| \psi \|^2 = r^2 \quad (\text{常数 } r \geq 0), \]
即 $\psi(M^n) \subset S^*(r)$, 再从 ψ 为浸入知 $r > 0$。

由于 ψ 为 C^∞ 等距浸入, 故对 M^n 的规范正交基 $e_k, k = 1, \cdots, m$
有 $\| \psi(e_k) \| = \| e_k \| = 1$, 从而
\[0 = \frac{1}{2} \lambda(r^2) = \frac{1}{2} \lambda(\| \psi \|^2) \]
\[= \langle \psi, \Delta \psi \rangle + \| \nabla \psi \|^2 = \langle \psi, - \lambda \psi \rangle + \sum_{k=1}^{m} \| \psi(e_k) \|^2 \]
\[= - \lambda r^2 + \sum_{k=1}^{m} 1 = - \lambda r^2 + m, \]

$\lambda \neq 0, r^2 = \frac{m}{\lambda}$。

类似定理 4 证明, 有
\[H = (H^*)^T = \left(\frac{1}{m} \Delta \psi \right)^T = - \left(\frac{\lambda}{m} \psi \right)^T = 0, \]
即 $\psi; M^n \to S^*(r)$ 是极小的。

例 1 设 M^n 为 \mathbb{R}^{n+1} 中的 C^∞ 超曲面, (u^1, \cdots, u^n) 为 M^n 上的局
部坐标系，记 M^n 关于原点的位置向量为 $x(u^1, \cdots, u^m)$，则局部坐标基向量场为 $\frac{\partial}{\partial u^i} = x^{i'}$ 和 $\nabla_{\frac{\partial}{\partial u^i}} \frac{\partial}{\partial u^j} = x^{s''}$，其中 ∇ 为 \mathbb{R}^{n+1} 中的 Riemann 轮流。再设 $e_i, i = 1, \cdots, m$ 为 M^n 上的局部 C^∞ 规范正交基向量场，则 $e_i = \sum_{j=1}^{m} a_{ij}^i \frac{\partial}{\partial u^i}$，则

$$\delta_{ij} = \langle e_i, e_j \rangle = \left\langle \sum_{i=1}^{m} a_{ij}^i \frac{\partial}{\partial u^i}, \sum_{i=1}^{m} a_{ij}^i \frac{\partial}{\partial u^i} \right\rangle$$

$$= \sum_{i,s=1}^{m} a_{ij}^i a_{js}^s \left\langle \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right\rangle = \sum_{i,s=1}^{m} a_{ij}^i a_{js}^s g_{is},$$

$$AGA^T = I,$$

$$G^{-1} = A^T A,$$

即 $g^i = \sum_{j=1}^{m} a_{ji}^i$。于是 M^n 的平均曲率向量场

$$H(x) = \frac{1}{m} \sum_{i=1}^{m} h_i = \frac{1}{m} \sum_{i=1}^{m} h(e_i, e_i)$$

$$= \frac{1}{m} \sum_{i=1}^{m} h \left(\sum_{i=1}^{m} a_{ij}^i \frac{\partial}{\partial u^i}, \sum_{s=1}^{m} a_{js}^s \frac{\partial}{\partial u^j} \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \sum_{s=1}^{m} a_{ij}^i a_{js}^s h \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right)$$

$$= \frac{1}{m} \sum_{i,s=1}^{m} \left(\sum_{i=1}^{m} a_{ij}^i a_{js}^s \right) L_{is} e_{m+1}$$

$$= \left(\frac{1}{m} \sum_{i,s=1}^{m} g^{is} L_{is} \right) e_{m+1},$$

其中 e_{m+1} 为局部 C^∞ 单位法向量场，而

$$L_{is} = \left\langle h \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right), e_{m+1} \right\rangle$$

$$= \left\langle \nabla_{\frac{\partial}{\partial u^i}} \frac{\partial}{\partial u^j}, e_{m+1} \right\rangle = \left\langle x^{s''}, e_{m+1} \right\rangle.$$

例 2 \mathbb{R}^3 中旋转曲面 M^2 为 C^∞ 类的极小曲面的充要条件是它
为悬链面。

(⇐) 设旋转曲面 M^2 的方程为

$$(x^1, x^2, x^3) = x(u, v) = (f(v)\cos u, f(v)\sin u, v),$$

其中 $-\infty < v < +\infty, 0 \leq u < 2\pi, f \in C^\infty(M^2),$, 且 $f > 0$. 通过简单计算，有

$$\frac{\partial}{\partial u} = x'_u = (-f(v)\sin u, f(v)\cos u, 0),$$

$$\frac{\partial}{\partial v} = x'_v = (f'(v)\cos u, f'(v)\sin u, 1),$$

$$g_{11} = g\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right) = f^2(v),$$

$$g_{21} = g_{12} = g\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right) = 0,$$

$$g_{22} = g\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right) = 1 + [f'(v)]^2.$$ 选 C^∞ 单位法向量场

$$e_3 = \frac{\frac{\partial}{\partial u} \times \frac{\partial}{\partial v}}{\left\| \frac{\partial}{\partial u} \times \frac{\partial}{\partial v} \right\|} = \frac{(f(v)\cos u, f(v)\sin u, -f(v)f'(v))}{f(v)\sqrt{1 + [f'(v)]^2}}$$

$$= \frac{1}{\sqrt{1 + [f'(v)]^2}}(\cos u, \sin u, -f'(v)),$$

则

$$\nabla_3 \frac{\partial}{\partial u} = x''_{uu} = (-f(v)\cos u, -f(v)\sin u, 0),$$

$$\nabla_3 \frac{\partial}{\partial v} = \nabla_3 \frac{\partial}{\partial \nu} = x''_{uv} = (-f'(v)\sin u, f'(v)\cos u, 0),$$

$$\nabla_3 \frac{\partial}{\partial \nu} = x''_{vv} = (f''(v)\cos u, f''(v)\sin u, 0),$$

$$L_{11} = \langle \frac{\partial}{\partial u}, \frac{\partial}{\partial u}, e_3 \rangle = \langle \nabla_3 \frac{\partial}{\partial u}, e_3 \rangle$$
\[\langle x''_{uv}, e_3 \rangle = -\frac{f(v)}{\sqrt{1 + [f'(v)]^2}}, \]

\[L_{21} = L_{12} = \langle h\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v} \right), e_3 \rangle = \langle \tilde{\nabla} \frac{\partial}{\partial v}, e_3 \rangle = \langle x''_{uv}, e_3 \rangle = 0, \]

\[L_{22} = \langle h\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v} \right), e_3 \rangle = \langle \tilde{\nabla} \frac{\partial}{\partial v}, e_3 \rangle = \langle x''_{uv}, e_3 \rangle = \frac{f''(v)}{\sqrt{1 + [f'(v)]^2}}. \]

显然，\(M^2 \) 为极小曲面，即

\[H(x) = \left(\frac{1}{2} \sum_{i, r=1} S_i \right) g^{\mu \nu} L_{\mu \nu} e_3 = \frac{1}{2} g_{22} L_{11} - 2 g_{12} L_{12} + g_{11} L_{22} e_3 = 0 \]

\[\Rightarrow g_{22} L_{11} - 2 g_{12} L_{12} + g_{11} L_{22} = 0, \]

即

\[[1 + (f')^2] \left[-\frac{f}{\sqrt{1 + (f')^2}} \right] - 0 + f^2 \frac{f''}{\sqrt{1 + (f')^2}} = 0 \]

\[\Rightarrow (1 + f')^2 = ff'', \] 于是

\[\frac{f'}{f} = \frac{f'f''}{1 + (f')^2}, \]

\[\ln f = \frac{1}{2} \ln [1 + (f')^2] + \ln a, \quad a > 0 \text{ 为常数,} \]

\[f = a \sqrt{1 + (f')^2}, \]

\[\frac{df}{dv} = f' = \pm \sqrt{\left(\frac{f}{a} \right)^2 - 1}, \]

\[\pm \frac{d\left(\frac{f}{a} \right)}{\sqrt{\left(\frac{f}{a} \right)^2 - 1}} = d\left(\frac{v}{a} \right), \]

两边积分后得到

\[\pm \text{ch}^{-1} \frac{f}{a} = \frac{v}{a} + b, \quad b \text{ 为常数}, \]

178
即 \(f(v) = a \, \text{ch}(\frac{v}{a} + b) \), 从而该旋转面

\[
x(u,v) = (a \, \text{ch}(\frac{v}{a} + b)\cos u, a \, \text{ch}(\frac{v}{a} + b)\sin u, v)
\]

为悬链面．

\((\Leftarrow)\) 由于 \(f(v) = a \, \text{ch}(\frac{v}{a} + b) \) 确为方程 \(1 + (f')^2 = f'' \) 的解，从而看出悬链面必为极小曲面．

类似似于例 2 的证明，我们有

例 3 正螺旋面

\[
x(u,v) = (ucosv, usinv, bv), \quad b \neq 0
\]

和 Enneper 曲面

\[
x(u,v) = (3u(1 + v^2) - u^3, 3v(1 + u^2) - v^3, 3(u^2 - v^2))
\]

都是 \(\mathbb{R}^3 \) 中的极小曲面．

例 4 Veronese 曲面．

设 \(S^2(\sqrt{3}) = \{(x,y,z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 3\}, \psi: S^2(\sqrt{3}) \rightarrow S^4(1) \),

\[
u = (u^1, u^2, u^3, u^4, u^5) = \psi(x,y,z)
\]

\[
= (\frac{1}{\sqrt{3}}xy, \frac{1}{\sqrt{3}}xz, \frac{1}{\sqrt{3}}yz, \frac{1}{2\sqrt{3}}(x^2 - y^2), \frac{1}{6}(x^2 + y^2 - 2z^2)).
\]

这是一个 \(C^\infty \) 极小浸入．事实上，因为

\[
\sum_{i=1}^{5} (u^i)^2
\]

\[
= \frac{1}{3} x^2y^2 + \frac{1}{3} x^2z^2 + \frac{1}{3} y^2z^2 + \frac{1}{12} (x^2 - y^2)^2 + \frac{1}{36} (x^2 + y^2 - 2z^2)^2
\]

\[
= \frac{1}{9} (x^2 + y^2 + z^2)^2 = \frac{1}{9} \cdot 3^2 = 1,
\]

所以 \(\psi(S^2(\sqrt{3})) \subset S^4(1) \), 再由
就知 ψ 为 C^{∞} 有理.
再来证明 ψ 为极小的．在下面的计算中，不失一般性，取 x, y 为 $S^2(\sqrt{3})$ 的 C^{∞} 局部坐标（此时 $z \neq 0$），而 $S^2(\sqrt{3})$ 的位置向量为 $r = (x, y, z)$，则

$$
u'_z = \left(\frac{1}{\sqrt{3}} y, \frac{x^2 - y^2}{\sqrt{3} z}, -\frac{xy}{3} \right),$$

$$
u'_r = \left(\frac{1}{\sqrt{3}} x, -\frac{xy}{\sqrt{3} z}, \frac{x^2 - y^2}{3z^2} - \frac{1}{3} y, y \right),$$

$$	ilde{g}_{11} = \tilde{g}((\nu'_z, \nu'_z)) = \frac{1}{3} y^2 + \frac{1}{3} \left(\frac{x^2 - y^2}{z^2} \right)^2 + \frac{x^2 y^2}{3z^2} + \frac{x^2}{3} + x^2$$

$$= \frac{x^2 + z^2}{z^2} = g(r'_z, r'_z) = g_{11},$$

$$	ilde{g}_{21} = \tilde{g}_{12} = \tilde{g}((\nu'_z, \nu'_r)) = \frac{1}{3} xy - \frac{xy(z^2 - x^2)}{3z^2} - \frac{xy(z^2 - y^2)}{3z^2} - \frac{1}{3} xy + xy$$

$$= \frac{xy}{z^2} = g(r'_z, r'_r) = g_{12} = g_{21},$$

$$	ilde{g}_{22} = \tilde{g}((\nu'_r, \nu'_r)) = \frac{1}{3} x^2 + \frac{x^2 y^2}{3z^2} + \frac{(z^2 - y^2)^2}{3z^2} + \frac{1}{3} y^2 + y^2$$

180
\[= \frac{(x^2 + y^2 + z^2)(y^2 + z^2)}{3z^2} = 1 + \frac{y^2}{z^2} = g(r', r') = g_{22},\]

这说明 \(\psi\) 是等距的（另一证法见习题 1）。

设 \(f\) 为 \(M^2 = S^2(\sqrt{3})\) 上的 \(C^\infty\) 函数，由

\[
\begin{pmatrix}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{pmatrix} = \begin{pmatrix}
1 + \frac{x^2}{z^2} & \frac{xy}{z^2} \\
\frac{xy}{z^2} & 1 + \frac{y^2}{z^2}
\end{pmatrix}
\]

\[\text{det}(g_{ij}) = \frac{3}{z^2},\]

\[
\begin{pmatrix}
g^{11} & g^{12} \\
g^{21} & g^{22}
\end{pmatrix} = \frac{1}{3} \begin{pmatrix}
1 + \frac{x^2}{z^2} & -\frac{xy}{z^2} \\
-\frac{xy}{z^2} & 1 + \frac{y^2}{z^2}
\end{pmatrix} = \frac{1}{3} \begin{pmatrix}
y^2 + z^2 & -xy \\
-xy & x^2 + z^2
\end{pmatrix}
\]

\[\frac{\partial g^{11}}{\partial x} = \frac{1}{3} \cdot 2z \cdot -\frac{x}{z} = -\frac{2}{3}x, \quad \frac{\partial g^{12}}{\partial y} = -\frac{x}{3}, \quad \frac{\partial g^{21}}{\partial x} = -\frac{y}{3}, \quad \frac{\partial g^{22}}{\partial y} = -\frac{2}{3}y
\]

\[\frac{\partial (\text{det}(g_{ij}))}{\partial x} = \frac{6x}{z^4}, \quad \frac{\partial (\text{det}(g_{ij}))}{\partial y} = \frac{6y}{z^4},\]

并根据第 1 章 1.5 引理 4 中的公式

\[\Delta f = \frac{1}{\sqrt{\text{det}(g_{ij})}} \sum_{i,j=1}^2 \frac{\partial}{\partial x^i} (\sqrt{\text{det}(g_{ij})} g^{ij} \frac{\partial f}{\partial x^j})\]

\[= \sum_{i,j=1}^2 g^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j} + \sum_{i,j=1}^2 (\frac{\partial g^{ij}}{\partial x^i} + \frac{1}{2} g^{ij} \frac{\partial \ln \text{det}(g_{ij})}{\partial x^i}) \frac{\partial f}{\partial x^j},\]

就可以得到

\[\Delta f = \frac{1}{3} \left\{ (y^2 + z^2) \frac{\partial f}{\partial x^2} - 2xy \frac{\partial f}{\partial x} + (x^2 + z^2) \frac{\partial f}{\partial y^2} \right\}

- 2x \frac{\partial f}{\partial x} - 2y \frac{\partial f}{\partial y},\]

最后，将 \(C^\infty\) 函数 \(\psi_1 = \frac{1}{\sqrt{3}} xy, \psi_2 = \frac{1}{\sqrt{3}} xz, \psi_3 = \frac{1}{\sqrt{3}} yz, \psi_4 = \)
\[
\frac{1}{2 \sqrt{3}} (x^2 - y^2) \quad \text{和} \quad \psi_3 = \frac{1}{6} (x^2 + y^2 - 2z^2)
\]
分别代入上式，立即有

\[
\Delta \psi_j = -2\psi_j, \quad j = 1, \ldots, 5,
\]
从而 \(\Delta \psi = -2\psi\)，这就证明了 \(C^\infty\) 混入

\[
\psi : S^2(\sqrt{3}) \to S^4(1)
\]
是极小的。

容易验证，\(\psi(x, y, z) = \psi(\tilde{x}, \tilde{y}, \tilde{z}) \Leftrightarrow (\tilde{x}, \tilde{y}, \tilde{z}) = (-x, -y, -z)\)。因此，\(\psi\) 自然诱导了一个截曲率为 \(\frac{1}{3}\) 的实射影平面到 \(S^4(1)\) 中的 \(C^\infty\) 等距极小嵌入，并称它为 Veronese 曲面。

是否用这种方式给出的 \(C^\infty\) 嵌入 \(S^m(r) \to S^N(1)\) 是仅有的 \(C^\infty\) 等距极小嵌入？这个问题的理论问题已由 M. P. do Carmo 和 N. R. Wallach（参见 [CW]）作了研究。

例 5 设 \(S^q(r)\) 为 \(q + 1\) 维 Euclid 空间 \(R^{q+1}\) 中以原点为中心，
\(r\) 为半径的 \(q\) 维欧氏面。对自然数 \(m\) 和 \(p, p < m\)，定义 \(m\) 维 \(C^\infty\)Riemann 积流形

\[
M_{*, m-} = S^q(\sqrt{\frac{p}{m}}) \times S^{m-1}(\sqrt{\frac{m-p}{m}}).
\]

设 \(x = (x_1, x_2) \in M_{*, m-}\)，则 \(\|x\|^2 = \|x_1\|^2 + \|x_2\|^2 = (\sqrt{\frac{p}{m}})^2 + (\sqrt{\frac{m-p}{m}})^2 = 1\) 及 \(M_{*, m-} \subset S^{m+1}(1) \subset R^{m+2} = R^{q+1} \times R^{m-q+1}\)。下面我们将证明 \(M_{*, m-}\) 为 \(S^{m+1}(1)\) 中的 \(C^\infty\) 极小超曲面，称其为 Clifford 极小超曲面。特别地，如果 \(m = 2, p = 1, M_{1,1}\) 是 \(S^3(1)\) 中的平坦极小曲面，称其为 Clifford 环面。

分别记 \(\nabla\) 和 \(\nabla^*\) 为 \(S^{m+1}(1)\) 和 \(R^{m+2}\) 上的 \(C^\infty\)Riemann 联络，\(e_1, \ldots, e_m\) 为 \(S^q(\sqrt{\frac{p}{m}})\) 上的 \(C^\infty\) 局部规范正交基，\(e_{+1}, \ldots, e_m\) 为 \(S^{m-1}(\sqrt{\frac{m-p}{m}})\) 上的 \(C^\infty\) 局部规范正交基，而 \(h\) 和 \(H(x)\) 分别为 \(M_{*, m-}\) 关于 \(S^{m+1}(1)\) 的第 2 基本形式和平均曲率向量场。不难看
对 $1 \leq i \leq p$，有

$$\langle \nabla_{e_i}^* e_i, x_1 \rangle = - \langle e_i, \nabla_{e_i}^* x_1 \rangle = - \langle e_i, e_i \rangle = - 1,$$

$$\langle h(e_i, e_i), x_1 \rangle = \langle \tilde{\nabla}_{e_i} e_i, x_1 \rangle$$

$$= \langle \nabla_{e_i}^* e_i - \langle \nabla_{e_i}^* e_i, x \rangle x, x_1 \rangle$$

$$= \langle \nabla_{e_i}^* e_i, x_1 \rangle - \langle \nabla_{e_i}^* e_i, x \rangle x \langle x, x_1 \rangle$$

$$= - 1 + \frac{p}{m} = - \frac{m - p}{m},$$

$$\langle h(e_i, e_i), x_2 \rangle = \langle \tilde{\nabla}_{e_i} e_i, x_2 \rangle$$

$$= \langle \nabla_{e_i}^* e_i - \langle \nabla_{e_i}^* e_i, x \rangle x, x_2 \rangle$$

$$= - \langle \nabla_{e_i}^* e_i, x_1 \rangle x \langle x_2, x_2 \rangle$$

$$= \frac{m - p}{m}.$$

同理，对 $p + 1 \leq i \leq m$ 有

$$\langle \nabla_{e_i}^* e_i, x_2 \rangle = - 1, \quad \langle h(e_i, e_i), x_1 \rangle = \frac{p}{m},$$

$$\langle h(e_i, e_i), x_2 \rangle = - \frac{p}{m}.$$

由上述结果可得

$$H(x) = \frac{1}{m} \sum_{i=1}^m h(e_i, e_i)$$

$$= \frac{1}{m} \sum_{i=1}^m \left\{ \frac{m}{p} \langle h(e_i, e_i), x_1 \rangle x_1 + \frac{m}{m - p} \langle h(e_i, e_i), x_2 \rangle x_2 \right\}$$

$$= \frac{1}{m} \left\{ \sum_{i=1}^p \left[\frac{m}{p} \left(- \frac{m - p}{m} \right) x_1 + \frac{m}{m - p} \cdot \frac{m - p}{m} x_2 \right] \right\}$$

$$+ \sum_{i=p+1}^m \left[\frac{m}{p} \cdot \frac{p}{m} x_1 + \frac{m}{m - p} \left(- \frac{p}{m} \right) x_2 \right] = 0.$$
曲面．

特别当 \(m = 2 \) 和 \(p = 1 \) 时，设 \(x = (x_1, x_2) \in M_{1,1} = S^1(\sqrt{\frac{1}{2}}) \times S^1(\sqrt{\frac{1}{2}}) \subset S^3(1) \)，显然 \(N = x_1 - x_2 \) 是 \(M_{1,1} \) 在 \(S^3(1) \) 中的单位法向量场。根据 Weingarten 公式，

\[
A_N(X) = -\nabla_N(N) = -\nabla_N^\flat(N) = -\nabla_N^\flat(N) + \langle \nabla_N^\flat(N), X \rangle N,
\]

对 \(C^\infty \) 规范正交基 \(X_1, X_2 \)，若 \(X_1 \) 切于第 \(i \) 个 \(S^1(\sqrt{\frac{1}{2}}), i = 1, 2 \)，则有

\[
A_N(X_1) = -\nabla_N^\flat(x_1 - x_2) + \langle \nabla_N^\flat(x_1 - x_2), x_1 + x_2 \rangle(x_1 + x_2)
\]

\[
= -\nabla_N^\flat x_1 + \langle \nabla_N^\flat x_1, x_1 + x_2 \rangle(x_1 + x_2)
\]

\[
= -\nabla_N^\flat x_1 = -X_1,
\]

\[
A_N(X_2) = -\nabla_N^\flat(x_1 - x_2) + \langle \nabla_N^\flat(x_1 - x_2), x_1 + x_2 \rangle(x_1 + x_2)
\]

\[
= \nabla_N^\flat x_2 + \langle -\nabla_N^\flat x_2, x_1 + x_2 \rangle(x_1 + x_2)
\]

\[
= X_2.
\]

于是，从第 1 章 1.6 节例 1 立即得到：由 \(X_1 \) 和 \(X_2 \) 张成的平面的 Riemann 截曲率是（注意：\(A_N(X_i) = -L(X_i) \)）

\[
R(X_1 \wedge X_2)
\]

\[
= \tilde{R}(X_1 \wedge X_2) + \langle \langle A_N(X_1), X_1 \rangle \langle A_N(X_2), X_2 \rangle \rangle
\]

\[
- \langle \langle A_N(X_1), X_2 \rangle \rangle^2
\]

\[
= 1 + \langle \langle -X_1, X_1 \rangle \langle X_2, X_2 \rangle \rangle - \langle \langle -X_1, X_2 \rangle \rangle^2
\]

\[
= 1 + \langle \langle -1 \rangle \cdot 1 - 0^2 \rangle = 0,
\]

即 \(M_{1,1} \) 的 Riemann 截曲率恒为零。这就证明了 \(M_{1,1} \) 在 \(S^3(1) \) 是平坦的。
2.3 Kähler 流形

第二类重要的极小子流形是 Kähler 流形的复子流形的类。

设 $$\mathbb{C}^n$$ 为 (复) $$m$$ 维复向量空间。当然用自然的一一对应方式：
$$(z^1, \ldots, z^n) \leftrightarrow (x^1, \ldots, x^m, y^1, \ldots, y^m)$$ (其中 $$z^j = x^j + iy^j, x^j, y^j \in \mathbb{R}, j = 1, \ldots, m$$)，可将 $$\mathbb{C}^n$$ 视作 $$\mathbb{R}^{2m}$$，记作 $$\mathbb{C}^n \cong \mathbb{R}^{2m}$$。类似于实 $$\mathbb{C}^n$$ 流形的定义，可定义 $$m$$ 维复解析流形。

定义 1 设 $$M$$ 为 $$T_2$$ (Hausdorff) 空间，如果 $$\mathcal{D} = \{(U_\alpha, \varphi_\alpha) | \alpha \in \Gamma\}, \Gamma$$ 为指标集，$$U_\alpha \subset M$$ 为开集，$$\varphi_\alpha : U_\alpha \to \varphi_\alpha(U_\alpha)$$ 为同胚，$$\varphi_\alpha(U_\alpha)$$ 为 $$\mathbb{C}^n$$ 中的开集，且满足：

(1) $$\bigcup_{\alpha \in \Gamma} U_\alpha = M$$；

(2) 相容性：如果 $$(U_\alpha, \varphi_\alpha), (U_\beta, \varphi_\beta) \in \mathcal{D}, U_\alpha \cap U_\beta \neq \emptyset$$，则 $$\varphi_\beta \circ \varphi^{-1}_\alpha : \varphi_\alpha(U_\alpha \cap U_\beta) \to \varphi_\beta(U_\alpha \cap U_\beta)$$ 是解析的 (由对称性，当然 $$\varphi_\alpha \circ \varphi^{-1}_\beta$$ 也是解析的)，即

$$
\begin{align*}
& w^1 = (\varphi_\beta \circ \varphi^{-1}_\alpha)(z^1, \ldots, z^n) \\
& \ldots \\
& w^m = (\varphi_\beta \circ \varphi^{-1}_\alpha)_m(z^1, \ldots, z^n)
\end{align*}
$$

是解析的；

(3) 最大性：$$\mathcal{D}$$ 关于 (2) 是最大的。也就是说，如果 $$(U, \varphi)$$ 与任何 $$(U_\alpha, \varphi_\alpha) \in \mathcal{D}$$ 是解析相容的，则 $$(U, \varphi) \in \mathcal{D}$$. 它等价于，如果 $$(U, \varphi) \subseteq \mathcal{D}, (U, \varphi)$$ 则必与某个 $$(U_\alpha, \varphi_\alpha) \in \mathcal{D}$$ 不是解析相容的。则称 $$\mathcal{D}$$ 为 $$M$$ 上的一个复 (解析) 结构，而 $$(M, \mathcal{D})$$ 为 $$m$$ 维解析流形, $$(U_\alpha, \varphi_\alpha)$$ 称为局部坐标系, $$U_\alpha$$ 称为局部坐标邻域, $$\varphi_\alpha$$ 为局部坐标映射, $$z^j(\mathbf{p}) = (\varphi_\alpha(\mathbf{p}))^j, 1 \leq j \leq m$$ 称为 $$\mathbf{p}$$ 的局部坐标, 简记为 $$(z^j)$$. 有时也称它为局部坐标系. 如果 $$\mathbf{p} \in U_\alpha$$, 则称 $$(U_\alpha, \varphi_\alpha)$$ 为 $$\mathbf{p}$$ 的局部坐标系.

如果 $$(U_\alpha, \varphi_\alpha), (z^j) \in \mathcal{D}, (U_\beta, \varphi_\beta), (w^j) \in \mathcal{D}, \mathbf{p} \in U_\alpha \cap U_\beta$$，则

$$1 = \frac{\partial(w^1, \ldots, w^m)}{\partial(w^1, \ldots, w^m)} = \frac{\partial(w^1, \ldots, w^m)}{\partial(z^1, \ldots, z^n)} \cdot \frac{\partial(z^1, \ldots, z^n)}{\partial(w^1, \ldots, w^m)}.$$
\[
\frac{\partial (w^1, \cdots, w^n)}{\partial (z^1, \cdots, z^n)} \neq 0.
\]

如果 \(\mathcal{D} \) 满足定义 1 中条件 (1) 和 (2)，则称 \(\mathcal{D} \) 为一个复解析构造的基. 显然，\(\mathcal{D} = \{(U, \varphi) | (U, \varphi) \) 与任何 \((U, \varphi_0) \in \mathcal{D} \) 是解析相容的\} 满足 (1)、(2)、(3)，因而 \((M, \mathcal{D})\) 为 \(m\) 维复解析流形.

设 \((U, \varphi), \{z^j\} \) 和 \((U, \varphi'), \{w^j\}\) 为局部坐标系，\(p \in U \cap U', \varphi(p) = (z^1, \cdots, z^n) = z \in \mathbb{C}^n; \varphi'(p) = (w^1, \cdots, w^n) = w \in \mathbb{C}^n, z^j = x^j + iy^j, w^j = u^j + iv^j, x^j, y^j, u^j, v^j \in \mathbb{R}, j = 1, \cdots, m\), 其中 \(i^2 = -1\). 于是，

\[
u + iv = w = \varphi' \circ \varphi^{-1}(z) = f_{a\beta}(x, y) + ig_{a\beta}(x, y).
\]

利用实和复模数的 Cauchy 收敛原理及不等式 \(\max\{|a|, |b|\} \leq \sqrt{a^2 + b^2} = |a + ib| (a, b \in \mathbb{R})\) 可知，\(u = f_{a\beta}(x, y), v = g_{a\beta}(x, y)\) 为实解析映射. 如果 \(\{x^1, \cdots, x^n, y^1, \cdots, y^n\}\) 和 \(\{u^1, \cdots, u^n, v^1, \cdots, v^n\}\) 分别视作 \(p\) 点的实局部坐标，则 \((M, \mathcal{D})\) 自然可视作 \(2m\) 维实解析流形. 此外，由 Cauchy-Riemann 条件：

\[
\frac{\partial u'}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v'}{\partial x} = -\frac{\partial u}{\partial y}
\]

得到 Jacobi 行列式为

\[
\frac{\partial (u^1, \cdots, u^n, v^1, \cdots, v^n)}{\partial (x^1, \cdots, x^n, y^1, \cdots, y^n)} = \det \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{bmatrix}
\]

\[
= \det \begin{bmatrix}
\frac{\partial u}{\partial x} & -\frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial x} & \frac{\partial u}{\partial x}
\end{bmatrix}
\]

\[
= \det \begin{bmatrix}
\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} & -\frac{\partial v}{\partial x} + i \frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial x} & \frac{\partial u}{\partial x}
\end{bmatrix}
\]

186
\[
\det \begin{bmatrix} \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} & 0 \\ \frac{\partial v}{\partial x} & \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x} \end{bmatrix} = \det \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right) \cdot \det \left(\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x} \right) = \det \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right) \cdot \det \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right) = \left| \frac{\partial (w^1, \cdots, w^n)}{\partial (z^1, \cdots, z^n)} \right|^2 > 0,
\]

其中

\[
\frac{\partial u}{\partial x} = \begin{bmatrix} \frac{\partial u^1}{\partial x^1} & \cdots & \frac{\partial u^1}{\partial x^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial u^n}{\partial x^1} & \cdots & \frac{\partial u^n}{\partial x^n} \end{bmatrix}.
\]

显然，\(\mathcal{D} = \{(C, \text{Id}_{C^n}) \mid \text{Id}_{C^n} : C^n \to C^n, \text{Id}_{C^n}(z) = z \} \) 唯一确定了 \(C^n \) 上的一个复解析流形 \((C^n, \mathcal{D})\).

考虑另一典型例子，设 \(z = (z^0, \cdots, z^n), w = (w^0, \cdots, w^n) \in C^{n+1} - \{0\}, z \sim w \Leftrightarrow z = \lambda w, \lambda \in C, \lambda \neq 0. \) \(\{z\} = \{w \in C^{n+1} - \{0\} \mid w \sim z\} \)，等价类的全体为

\(P^n(C) = (C^{n+1} - \{0\})/\sim = \{[z] \mid z \in C^{n+1} - \{0\}\}. \)

投影 \(\pi : C^{n+1} - \{0\} \to P^n(C), \pi(z) = [z]. \) 设 \(C^{n+1} - \{0\} \) 的拓扑为 \(\tau \)，易证 \(\tau' = \{U \mid \pi^{-1}(U) \in \tau\} \) 为 \(P^n(C) \) 上的一个拓扑，于是 \((P^n(C), \tau')\) 为 \((C^{n+1} - \{0\}, \tau) \) 的商拓扑空间，称之为 \(m \) 维复射影空间。下面证明 \(P^n(C) \) 为 \(m \) 维复解析流形。对 \([z], [w] \in P^n(C), [z] \neq [w] \)，则存在含 \(\pi^{-1}([z]) \) 的以原点为心的去心开锥体 \(V_z \) 和含 \(\pi^{-1}([w]) \) 的以原点为心的去心开锥体 \(V_w \) 使得 \(V_z \cap V_w = \emptyset \)，因而 \(\pi(V_z) \) 和 \(\pi(V_w) \) 分别是含 \([z]\) 和 \([w]\) 的不相交的开集，故 \((P^n(C), \tau')\) 为 \(T_2(\text{Hausdorff}) \) 空间。令
\(U_1 = \{ [z] \in P^m(\mathbb{C}) | z \in (z_0, \ldots, z^n), z^t \neq 0 \}, \)

\[\varphi : U_1 \to \mathbb{C}^n, \]

\[\varphi([z]) = \left(\frac{z_0}{z^t}, \ldots, \frac{z^{t-1}}{z^t}, \frac{z^{t+1}}{z^t}, \ldots, \frac{z^n}{z^t} \right) \]

\[= (\xi_0^t, \ldots, \xi_{t-1}^t, \xi_{t+1}^t, \ldots, \xi_n^t), \]

我们称 \((z_0, z^t, \ldots, z^n) \) 为 \([z]\) 的齐次坐标, \((\xi_0^t, \ldots, \xi_{t-1}^t, \xi_{t+1}^t, \ldots, \xi_n^t) \)
为 \([z]\) 关于 \(U_1 \) 的非齐次坐标.

显然, \(\bigcup_{i=0}^m U_i = P^m(\mathbb{C}), \) 且当 \(U_k \cap U_l \neq \emptyset, k \neq l \) 时,

\[\varphi_k \circ \varphi_k^{-1} : \varphi_k(U_i \cap U_l) \to \varphi_k(U_i \cap U_l), \]

\[\varphi_k \circ \varphi_k^{-1}(\xi_0^t, \ldots, \xi_{t-1}^t, \xi_{t+1}^t, \ldots, \xi_n^t) \]

\[= \varphi_k([z]) = (\xi_0^t, \ldots, \xi_{t-1}^t, \xi_{t+1}^t, \ldots, \xi_n^t), \]

其中

\[\begin{cases} \xi_h^t = \frac{z_h^t}{z^t} = \frac{z_h^t}{z^t} = \frac{z_h^t}{z^t}, & h \neq l, k \\ \xi_l^t = \frac{z_l^t}{z^t} = 1 / \frac{z_l^t}{z^t} = \frac{1}{z_l^t} \end{cases} \]

为有理函数,因而它是复解析函数. 于是 \(\mathcal{D} = \{(U_i, \varphi_i)| k = 0, \ldots, m\} \) 确定了 \(P^m(\mathbb{C}) \) 上的一个复 (解析) 结构, 使 \((P^m(\mathbb{C}), \mathcal{D}) \) 成为 \(m \) 维复解析流形.

显然, 齐次坐标的每个非奇异复线性变换必导致 \(P^m(\mathbb{C}) \) 的一个微分同胚, 它也称为线性变换. \(\mathbb{C}^{n+1} \) 的每个 \(k + 1 \) 维线性子空间 \(V \) 的投影 \(\pi(V - \{0\}) (\text{视作} P^k(\mathbb{C})) \) 称为 \(P^m(\mathbb{C}) \) 的 \(k \) 维线性子流形. 设 \(\mathbb{R}^{n+1} \subset C^{n+1} \) 是齐次坐标映射下不变的实子空间, \(\mathbb{R}^{n+1} \) 的 \(k + 1 \) 维实线性子空间 \(V \) 的投影 \(\pi(V - \{0\}) (\text{视作} k \text{维} \text{实} \text{射} \text{影} \text{空} \text{间} P^k(\mathbb{R})) \) 称为 \(k \) 维实线性子流形.

设 \((U_\alpha, \varphi_\alpha), (z^t, \ldots, z^n) = (x^t + iy^t, \ldots, x^n + iy^n) \) 和 \((U_\beta, \varphi_\beta), (w^t, \ldots, w^n) = (u^t + iv^t, \ldots, u^n + iv^n) \) 为两个局部坐标系, \(p \in U_\alpha \cap U_\beta, \) 我们定义线性映射 \(J_{U_\alpha} \) 和 \(J_{U_\beta}, \)

\[J_{U_\alpha} : T_p M \to T_p M, \]

188
和

\[J_{v,p}: \quad T_pM \to T_pM, \]

使得

\[J_{v,p}(\partial/\partial x^i) = \partial/\partial y^i, \quad J_{v,p}(\partial/\partial y^i) = \partial/\partial x^i; \]

\[J_{v,p}(\partial/\partial y^i) = \partial/\partial y^i, \quad J_{v,p}(\partial/\partial y^i) = -\partial/\partial x^i. \]

根据 Cauchy-Riemann 方程得到

\[J_{v,p}(\partial/\partial x^i) = J_{v,p}\left(\sum_i \left[\frac{\partial y^i}{\partial x^j} \frac{\partial}{\partial x^j} + \frac{\partial x^i}{\partial y^j} \frac{\partial}{\partial y^j} \right] \right) \]

\[= \sum_i \left[\frac{\partial y^i}{\partial y^j} \frac{\partial}{\partial x^j} + \left(-\frac{\partial x^i}{\partial y^j} \right) \left(-\frac{\partial}{\partial x^j} \right) \right] \]

\[= \partial/\partial y^i = J_{v,p}(\partial/\partial x^i), \]

\[J_{v,p}(\partial/\partial y^i) = J_{v,p}\left(\sum_i \left[\frac{\partial x^i}{\partial y^j} \frac{\partial}{\partial y^j} + \frac{\partial y^i}{\partial y^j} \frac{\partial}{\partial x^j} \right] \right) \]

\[= \sum_i \left[\left(-\frac{\partial x^i}{\partial y^j} \right) \left(\frac{\partial}{\partial y^j} \right) + \frac{\partial y^i}{\partial x^j} \left(-\frac{\partial}{\partial x^j} \right) \right] \]

\[= -\frac{\partial}{\partial x^i} = J_{v,p}(\partial/\partial y^i). \]

因此，\(J_{v,p} = J_{v,p} \)。从而诱导出一个 \(T_pM \) 上的线性变换 \(J_{v}: T_pM \to T_pM, J_{v}^2 = -1 \) (\(J \) 格地，\(= -\text{Id}_{T_pM} \))。它自然形成一个整体\((1,1)\)型的 \(C^\infty \) 张量场 \(J: TM \to TM \)，满足 \(J^2 = -1 \)。按上述方法，在复解析流形 \(M \) 上自然诱导了一个殆(近)复结构\((C^\infty \) 实流形\((M, \mathcal{D})\)上满足 \(J^2 = -1 \) 的\((1,1)\)型 \(C^\infty \) 张量场称为\((M, \mathcal{D})\)的一个殆(近)复结构，\((M, \mathcal{D}, J)\) 称为殆(近)复流形)。

还可以看到，\(\{ \frac{\partial}{\partial x^1}, J(\frac{\partial}{\partial x^1}), \cdots, \frac{\partial}{\partial x^m}, J(\frac{\partial}{\partial x^m}) \} = \{ \frac{\partial}{\partial x^1}, \frac{\partial}{\partial y^1}, \cdots, \frac{\partial}{\partial x^m}, \}

\(\frac{\partial}{\partial y^m} \) 为 \(T_pM \) 的一个基。一般地有

引理 1 设 \(V \) 为一个实向量空间，具有自同构 \(J: V \to V \)，使得 \(J^2 = -1 \)。则

（1）\(V \) 有一个形如 \(\{ e_1, J e_1, \cdots, e_m, J e_m \} \) 的基（从而 \(\dim V = 2m \) 为
偶数).

（2）如果还有一个形如这样的基 \(\{ e_1, Je_1, \cdots, e_m, Je_m \} \)，则这两个基之间的变换矩阵的行列式是正的，从而 \(J \) 决定了 \(V \) 的一个定向.

证明 (1)（归纳）设 \(e_1 \neq 0, \lambda_1 e_1 + \mu_1 Je_1 = 0 \)，则

\[
0 = J(\lambda_1 e_1 + \mu_1 Je_1) = \lambda_1 Je_1 - \mu_1 e_1,
\]

所以，

\[
0 = \lambda_1 (\lambda_1 e_1 + \mu_1 Je_1) - \mu_1 (\lambda_1 Je_1 - \mu_1 e_1) = (\lambda_1^2 + \mu_1^2) e_1, \lambda_1^2 + \mu_1^2 = 0,
\]

从而 \(\lambda_1 = \mu_1 = 0 \)。所以 \(\{ e_1, Je_1 \} \) 是线性无关的。假设 \(\{ e_1, Je_1, \cdots, e_k, Je_k \} \) 线性无关，如果 \(2k = \text{dim} V \)，则（1）的证明已完成；如果 \(2k < \text{dim} V \)，则存在 \(e_{k+1} \) 使 \(\{ e_1, Je_1, \cdots, e_k, Je_k, e_{k+1} \} \) 线性无关。下证 \(\{ e_1, Je_1, \cdots, e_k, Je_k, e_{k+1} \} \) 也是线性无关的。事实上，如果

\[
\sum_{j=1}^{k+1} (\lambda_j e_j + \mu_j Je_j) = 0,
\]

则

\[
0 = J(\sum_{j=1}^{k+1} [\lambda_j e_j + \mu_j Je_j]) = \sum_{j=1}^{k+1} (\lambda_j Je_j - \mu_j e_j).
\]

类似上述，有

\[
0 = \lambda_{k+1} \sum_{j=1}^{k+1} (\lambda_j e_j + \mu_j Je_j) - \mu_{k+1} \sum_{j=1}^{k+1} (\lambda_j Je_j - \mu_j e_j)
\]

\[
= (\lambda_{k+1}^2 + \mu_{k+1}^2) e_{k+1} + \lambda_{k+1} \sum_{j=1}^{k} (\lambda_j e_j + \mu_j Je_j)
\]

\[
- \mu_{k+1} \sum_{j=1}^{k} (\lambda_j Je_j - \mu_j e_j),
\]

\[
\lambda_{k+1}^2 + \mu_{k+1}^2 = 0, \lambda_{k+1} = \mu_{k+1} = 0,
\]

\[
\sum_{j=1}^{k} (\lambda_j e_j + \mu_j Je_j) = 0, \lambda_1 = \cdots = \lambda_k = \lambda_1 = \cdots = \mu_k = 0.
\]

这就证明了 \(\{ e_1, Je_1, \cdots, e_{k+1}, Je_{k+1} \} \) 是线性无关的。

（2）因为
\[
\left(\begin{array}{cccc}
 e_1 & \cdots & a_{1m} & b_{11} & \cdots & b_{1m} \\
 \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
 a_{m1} & \cdots & a_{mm} & b_{m1} & \cdots & b_{mm} \\
 -b_{11} & \cdots & -b_{1m} & a_{11} & \cdots & a_{1m} \\
 \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
 -b_{m1} & \cdots & -b_{mm} & a_{m1} & \cdots & a_{mm}
\end{array} \right) \left(\begin{array}{c}
 e_1 \\
 \vdots \\
 e_m \\
 Je_1 \\
 \vdots \\
 Je_m
\end{array} \right),
\]

\[
\det \left(\begin{array}{cc}
 A & B \\
 -B & A
\end{array} \right) > 0,
\]

故这两个基之间的变换矩阵的行列式是正的.

引理 1 指出复流形不仅是可定向的，而且还装备了一个典型的定向.

引理 2 对于维复流形 \((M, \mathcal{O})\) 上的殆复结构 \(J\)，有 \(T_{x,y} = 0\)（称 \(J\) 是无挠的），其中

\[
T_{x,y} = [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y].
\]

证明 由公式 \([fX, gY] = f(Xg)Y - g(Yf)X + fg[X, Y]\)，立即有

\[
\]

\[
= fT_{x,y} - (JY)f \cdot JX + J((Yf)JX) + J((JY)f \cdot X) + (Yf)X
\]

\[
= fT_{x,y}.
\]

\[
T_{x,y'} = -T_{y', x} = -gT_{y, x} = gT_{x, y}.
\]

此外，从 \(J\left(\frac{\partial}{\partial x} \right) = \frac{\partial}{\partial y}, J\left(\frac{\partial}{\partial y} \right) = -\frac{\partial}{\partial x}, [\frac{\partial}{\partial x}, \frac{\partial}{\partial x}] = 0, [\frac{\partial}{\partial y}, \frac{\partial}{\partial y}] = 0, [\frac{\partial}{\partial x}, \frac{\partial}{\partial y}] = 0\) 还得到

\[
T_{2, \frac{\partial}{\partial x'}} = [J \frac{\partial}{\partial x}, J \frac{\partial}{\partial x'}] - J[J \frac{\partial}{\partial x}, \frac{\partial}{\partial x'}] - J[J \frac{\partial}{\partial x'}, J \frac{\partial}{\partial x}] - [\frac{\partial}{\partial x}, \frac{\partial}{\partial x'}]
\]

\[
= [\frac{\partial}{\partial y}, \frac{\partial}{\partial y'}] - J[\frac{\partial}{\partial y}, \frac{\partial}{\partial y'}] - J[\frac{\partial}{\partial y'}, \frac{\partial}{\partial y}] - [\frac{\partial}{\partial x}, \frac{\partial}{\partial x'}]
\]

\[
= 0.
\]

类似地，有

191
\[
\frac{T_{\alpha \beta} x^\alpha y^\beta}{\alpha ! \beta !} = \frac{T_{\alpha \beta} x^\alpha y^\beta}{\alpha ! \beta !} = \frac{T_{\alpha \beta} x^\alpha y^\beta}{\alpha ! \beta !} = 0.
\]

因此，\(T_{x,y} = 0 \).

注 1 Newlander 和 Nirenberg 的一个深刻定理（见[BN]，也见[H]) 指出，任何具有满足 \(J^2 = -1 \) 和 \(T_{x,y} = [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y] = 0 \) 的 \(C^\infty \) 流形必有一个微分构造 \(\mathcal{D} \)，使得 \((M, \mathcal{D})\) 为复解析流形，且 \(J \) 为其相联系的殆复结构。

现在来定义具有一种特殊度量的殆(近)复流形；殆(近)Kähler 流形。

定义 2 如果殆(近)复流形 \((M, \mathcal{D}, J)\) 具有 Riemann 度量 \(g \)，满足：

\((H)\) 对 \(\forall \ p \in M \) 和 \(\forall \ X, Y \in T_p M \)，有

\[
g(JX, JY) = g(X, Y),
\]

即在该点 \(p, J \)，为切空间 \(T_p M \) 上的等距变换。在此情形下，称 \(g \) 为 Hermite 度量，\((M, \mathcal{D}, J, g)\) 称为殆(近)Hermite 流形。

\((K)\) 对 \(M \) 上的任何 \(C^\infty \) 切向量场 \(X \) 和 \(Y \)，有

\[
(\nabla X J)(Y) = \nabla X (JY) - J(\nabla X Y) = 0,
\]

即 \(J \) 在 Riemann 联络 \(\nabla \) 下是整群平行的。则称 \(g \) 是 Kähler 的，而 \((M, \mathcal{D}, J, g)\) 称为殆(近)Kähler 流形。

对任意 \(X, Y \in T_p M \)，定义

\[
\omega(X, Y) = g(X, JY),
\]

则

\[
\omega(Y, X) = g(Y, JX) = g(JY, J^2 X)
\]

\[
= g(JY, - X) = - g(X, JY) = - \omega(X, Y),
\]

即 \(\omega \) 是反称的，它是一个 \(M \) 上整体定义的 2 次 \(C^\infty \) 外微分形式。因为 \(\omega \) 在研究殆(近)Kähler 流形中起着中心的作用，所以称它为 \(M \) 的基本 2 形式或 Kähler 形式。下面的引理是非常重要的。

引理 3 设 \((M, J, g)\) 是具有 Hermite 度量 \(g \) 的殆(近)复流形。则 \(g \) 是 Kähler 的 \(\iff \) \(d\omega = 0 \) 和 \(T_{x,y} = 0, \forall X, Y \in C^\infty(TM) \)。
证 1 \((\Rightarrow) \) 设 \(p \in M \),对任何向量 \(X_1, X_2, X_3 \in T_M \), 延拓它们为局部 \(C^\infty \) 向量场 \(\tilde{X}_1, \tilde{X}_2, \tilde{X}_3 \), 使得 \(\nabla_{\tilde{X}_i} \tilde{X}_j = 0, i, j = 1, 2, 3 \) (留作习题). 则 \([\tilde{X}_i, \tilde{X}_j] = (\nabla_{\tilde{X}_i} \tilde{X}_j - \nabla_{\tilde{X}_j} \tilde{X}_i), = 0, i, j = 1, 2, 3 \). 于是, 在 \(p \) 点从

\[
\omega(X, Y) = g(X, JY)
\]

及 \(\nabla_X J = 0 \) (是 Kähler 的) 得到

\[
d\omega(X, Y, Z) = X_1 \omega(Y, Z) - X_2 \omega(X, Z) + X_3 \omega(X, Y) - \omega([X_1, X_2], X_3)
\]

\[
+ \omega([X_1, X_3], X_2) - \omega([X_2, X_3], X_1)
\]

\[
= X_1 \omega(\tilde{X}_2, \tilde{X}_3) - X_2 \omega(\tilde{X}_1, \tilde{X}_3) + X_3 \omega(\tilde{X}_1, \tilde{X}_2) - \omega([\tilde{X}_1, \tilde{X}_2], \tilde{X}_3)
\]

\[
+ \omega([\tilde{X}_1, \tilde{X}_3], \tilde{X}_2) - \omega([\tilde{X}_2, \tilde{X}_3], \tilde{X}_1)
\]

\[
= X_1 g(\tilde{X}_2, J \tilde{X}_3) - X_2 g(\tilde{X}_1, \tilde{X}_3) + X_3 g(\tilde{X}_1, \tilde{X}_2)
\]

\[
= g(\nabla_{x_1} \tilde{X}_2, J \tilde{X}_3) + g(\tilde{X}_2, \nabla_{x_1} (J \tilde{X}_3)) - g(\nabla_{x_2} \tilde{X}_1, J \tilde{X}_3)
\]

\[
- g(\tilde{X}_1, \nabla_{x_2} (J \tilde{X}_3)) + g(\tilde{X}_2, \nabla_{x_1} (J \tilde{X}_3))
\]

\[
+ g(\tilde{X}_1, \nabla_{x_3} \tilde{X}_2)
\]

\[
= g(X_2, (\nabla_{x_1} J) \tilde{X}_3) + g(X_1, (\nabla_{x_2} J) \tilde{X}_3) + g(X_1, (\nabla_{x_3} J) \tilde{X}_2)
\]

由此和下面充分性中最后一式得 \(JT_{x, y} = 0, T_{x, y} = 0 \), \(\forall \ X, Y \in C^\infty (TM) \).

\((\Leftarrow) \) 设 \(d\omega = 0 \). 从 \(J^2 = -1 \) 和

\[
(\nabla_X J) Y = \nabla_X (JY) - J(\nabla_X Y),
\]

\[
(\nabla_X J)(JY) = \nabla_X (J^2 Y) - J(\nabla_X (JY))
\]

\[
= -\nabla_X Y - J(\nabla_X (JY))
\]

\[
= -J(\nabla_X J) Y
\]

(或 \(0 = \nabla_X (\nabla_X J) = \nabla_X J^2 = (\nabla_X J) J + J \nabla_X J \Leftrightarrow (\nabla_X J) J = -J(\nabla_X J) \)) 得到

\[
g(JX_2, (\nabla_{x_1} J)(JX_3)) = g(JX_2, -J(\nabla_{x_1} J) X_3)
\]

\[
= -g(X_2, (\nabla_{x_1} J) X_3).
\]

和

193
\[d\omega(X_1, X_2, X_3) - d\omega(X_1, JX_2, JX_3) \\
= g(X_2, (\nabla_{x_1} J)X_3) - g(X_1, (\nabla_{x_2} J)X_3) + g(X_1, (\nabla_{x_3} J)X_2) \\
- g(JX_2, (\nabla_{x_1} J)(JX_3)) + g(X_1, (\nabla_{x_2} J)(JX_3)) \\
- g(X_1, (\nabla_{x_3} J)(JX_2)) \\
= 2g(X_2, (\nabla_{x_1} J)X_3) + g(X_1, (\nabla_{x_2} J)(JX_3)) \\
- g(X_1, (\nabla_{x_3} J)(JX_2)) + g(X_1, (\nabla_{x_3} J)X_2) \\
- g(X_1, (\nabla_{x_2} J)X_3) \\
= 2g(X_2, (\nabla_{x_1} J)X_3) - g(X_1, - (\nabla_{x_2} J)(JX_3) - \nabla_{x_2} X_3 \\
- (\nabla_{x_3} J)(JX_2))X_2 + \nabla_{x_3} X_2 + \nabla_{x_2} X_3 - \nabla_{x_3} (JX_2) \\
+ \nabla_{x_2} (JX_3) - \nabla_{x_3} X_2 - J\nabla_{x_2} X_3 + J\nabla_{x_3} X_2 \\
= 2g(X_2, (\nabla_{x_1} J)X_3) - g(X_1, J\nabla_{x_2} J)(JX_3)) - J\nabla_{x_3} (JX_2) \\
+ \nabla_{x_3} X_2 - \nabla_{x_3} (JX_2) + \nabla_{x_2} (JX_3) \\
- \nabla_{x_3} X_2 - J\nabla_{x_2} X_3 + J\nabla_{x_3} X_2 \\
= 2g(X_2, (\nabla_{x_1} J)X_3) - g(X_1, J[JX_2, JX_3] \\
+ [JX_2, X_3] + [X_2, JX_3] - J[X_2, X_3]) \\
= 2g(X_2, (\nabla_{x_1} J)X_3) - g(X_1, J(JX_2, X_3)) \\
= 0 - 0 - g(X, J(0)) = 0. \\
\]

由于 \(X_2 \) 和 \(X_3 \) 是任取的，故 \(\nabla_{x_1} J = 0 \)，这就证明了 \(g \) 满足条件 (K)，
\(g \) 是 Kähler 的。

证 2 设 \(g = \langle , \rangle, \omega \) 为 Kähler 形式。定义
\[\Omega(X, Y) = (\nabla_X J)Y - (\nabla_Y J)X \\
= - \Omega(Y, X), \forall X, Y \in C^\infty(TM). \]
显然，对任何 \(X, Y, Z \in C^\infty(TM) \)

194
\[0 = T_{x,y} = [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y] \]
\[= \nabla_{JX}(JY) - \nabla_{JY}(JX) - J \nabla_{JX}Y + J \nabla_{Y}(JX) \]
\[- J \nabla_{x}(JY) + J \nabla_{y}X - \nabla_{x}Y + \nabla_{y}X \]
\[= (\nabla_{JX}J)Y - (\nabla_{JY}J)X + J(\nabla_{y}JX) - J(\nabla_{x}J)Y \]

\[\iff \]
\[\Omega(X, Y) = (\nabla_{x}J)Y - (\nabla_{y}J)X \]
\[= - J(\nabla_{x}J)Y + J(\nabla_{y}J)X \]
\[= (\nabla_{x}J)(JY) - (\nabla_{y}J)(JX) \]
\[= \Omega(JX, JY). \]

d\omega(X, Y, Z)
\[= X\omega(Y, Z) - Y\omega(X, Z) + Z\omega(X, Y) - \omega([X, Y], Z) \]
\[+ \omega([X, Z], Y) - \omega([Y, Z], X) \]
\[= X\langle Y, JZ \rangle - Y\langle X, JZ \rangle + Z\langle X, JY \rangle - \langle \nabla_{x}Y - \nabla_{y}X, JZ \rangle \]
\[+ \langle \nabla_{x}Z - \nabla_{y}X, JY \rangle + \langle J(\nabla_{x}Z - \nabla_{y}X), Y \rangle \]
\[= \langle \nabla_{x}Y, JZ \rangle + \langle Y, \nabla_{x}(JZ) \rangle - \langle \nabla_{y}X, JZ \rangle - \langle X, \nabla_{y}(JZ) \rangle \]
\[+ \langle \nabla_{x}Z - \nabla_{y}X, JY \rangle + \langle J(\nabla_{x}Z - \nabla_{y}X), Y \rangle \]
\[= \langle Y, \nabla_{x}(JZ) \rangle + \langle \nabla_{x}Z, JY \rangle - \langle X, \nabla_{y}(JZ) \rangle \]
\[+ \langle J(\nabla_{x}Z), X \rangle + \langle X, \nabla_{x}(JY) \rangle - \langle X, J(\nabla_{x}Z) \rangle \]
\[= \langle Y, \nabla_{x}(JZ) \rangle - J(\nabla_{x}Z) \]
\[- \langle X, \nabla_{y}(JZ) \rangle - J(\nabla_{x}Z) \]
\[= \langle Y, (\nabla_{x}J)Z \rangle - \langle X, (\nabla_{y}J)Z \rangle + \langle X, \Omega(Z, Y) \rangle \]
\[= \langle Y, (\nabla_{x}J)Z \rangle + \langle X, \Omega(Z, Y) \rangle \]
\[= \langle X, \Omega(Z, Y) \rangle. \]

于是

\[d\omega(X, JY, JZ) \]
\[= \langle JY, (\nabla_{x}J)Z \rangle + \langle X, \Omega(Z, JY) \rangle \]
\[= \langle JY, - J(\nabla_{x}J)Z \rangle + \langle X, \Omega(Z, Y) \rangle \]
\[= - \langle Y, (\nabla_{x}J)Z \rangle + \langle X, \Omega(Z, Y) \rangle, \]

195
\[d\omega(X, Y, Z) - d\omega(X, JY, JZ) \]
\[= \left(\langle Y, (\nabla_x J)Z + \langle X, \Omega(Z, Y) \rangle \right) \]
\[- \left(- \langle Y, (\nabla_x J)Z + \langle X, \Omega(Z, Y) \rangle \right) \]
\[= 2\langle Y, (\nabla_x J)Z \rangle. \]

综合上述各式得到，当 \(g \) 是 Kähler 时，即 \(\nabla J = 0 \)，就蕴涵着 \(\Omega = 0 \)，
从而 \(d\omega = 0 \)；反之 \(d\omega = 0 \) 又蕴涵着 \(\nabla J = 0 \)。即 \(g \) 是 Kähler 的。

推论 1 设 \((M, J, g)\) 为殆 Hermite 流形，则 \(g \) 是 Kähler 的，\(\iff \Omega = 0, T_{x,y} = 0, \forall \ X, Y \in C^\infty(TM). \)

证明 (\(\Rightarrow \)) \(g \) 是 Kähler 的，即 \(\nabla J = 0 \)，这蕴涵着 \(\Omega = 0 \)，再由引理 3 必要性有 \(T_{x,y} = 0, \forall \ X, Y \in C^\infty(TM). \)

(\(\Leftarrow \)) \(\Omega = 0 \)，则
\[2d\omega(X, Y, Z) = d\omega(X, Y, Z) - d\omega(Z, Y, X) \]
\[= \langle Y, (\nabla_x J)Z + \langle X, \Omega(Z, Y) \rangle \rangle \]
\[+ \langle Y, - \langle \nabla_x J \rangle X + \langle Z, - \Omega(X, Y) \rangle \rangle \]
\[= \langle X, \Omega(Z, Y) \rangle + \langle Y, \Omega(X, Z) \rangle + \langle Z, \Omega(Y, X) \rangle \]
\[= 0, \]
即 \(d\omega = 0 \)。再由推论 1 右边条件 \(T_{x,y} = 0, \forall \ X, Y \in C^\infty(TM) \) 及引理 3，\(g \) 是 Kähler 的。

定义 3 如果 \(M \) 为复（解析）流形，\(J \) 为自然诱导的殆（近）复结构，且具有 Riemann 度量 \(g \) 满足：

(H) 对任意 \(p \in M \) 和 \(X, Y \in T_p M \)，有
\[g(JX, JY) = g(X, Y), \]
则称 \(g \) 为 Hermite 度量，\(M \) 为 Hermite 流形。

(K) 对 \(M \) 上的任何 \(C^\infty \) 切向量场 \(X \) 和 \(Y \)，有
\[(\nabla_x J)(Y) = \nabla_x (JY) - J(\nabla_x Y) = 0, \]
即 \(J \) 在 Riemann 联络下是整体平行的。则称 \(g \) 是 Kähler 的，而 \(M \) 称为 Kähler 流形。

显然，Kähler 流形是殆（近）Kähler 流形。

研究 Kähler 流形的重要理由之一由下面两个定理给出，从第 196
一个定理看到，由一个 Kähler 流形可以得到许多 Kähler 子流形；
而第二个定理则给出许多极小子流形的例子。

定理 1 Kähler 流形 $(\tilde{M}, g_{\tilde{M}})$ 的每个复子流形在诱导度量 $g_M = \psi^* g_{\tilde{M}}$ 下是 Kähler 流形，其中 $\psi: M \to \tilde{M}$ 为包含映射。

证 1 设 $\dim_c M = m, \dim_c \tilde{M} = \tilde{m}$，选 \tilde{M} 的局部坐标 $z^1, \ldots, z^\tilde{m}$，$z^{\tilde{m}+1}, \ldots, z^m$ 为 M 的局部坐标。如果 $z^i = x^i + iy^i, x^i, y^i \in \mathbb{R}$，则从 $\tilde{J} = \left(\begin{array}{c} \frac{\partial}{\partial y^i} \\ \frac{\partial}{\partial x^i} \end{array} \right)$ 立即得到 $\tilde{J} (T, M) \subset M$。再由 $\tilde{J}^2 = -1$ 知 $\tilde{J} (T, M) = T, M$。因此，对任意 $X \in T, M, Y \in T^* M$，有 $g_{\tilde{M}}(X, \tilde{J}Y) = g_{\tilde{M}}(\tilde{J}X, \tilde{J}Y) = g_{\tilde{M}}(\tilde{J}X, Y) = -g_{\tilde{M}}(\tilde{J}X, Y) = 0$，从而 $\tilde{J}Y \in T_{\tilde{M}}, \tilde{J} (T^* M) \subset T^* M$，又因为 $\tilde{J}^2 = -1$，所以 $\tilde{J} (T^* M) = T^* M$。

由条件 (K) $(\nabla \chi (JY) = \tilde{J} \nabla \chi Y)$ 和条件 (H) $(g_{\tilde{M}}$ 在 \tilde{J} 变换下不变)，对 M 上的 C^∞ 切向量场 X, Y，有

$$\nabla_X (JY) = (\nabla_X (JY))^T = (\tilde{J} \nabla (\tilde{J}Y))^T = (\tilde{J} \nabla X Y)^T$$

$$= (\tilde{J} \nabla X Y)^T = \tilde{J} \nabla X Y = J \nabla X Y,$$

即 $(\nabla_X J)(Y) = \nabla_X (JY) - J(\nabla_X Y) = 0, g_M$ 满足条件 (K)。因此，M 也是 Kähler 子流形。

证 2 因为 $g_M = \psi^* g_{\tilde{M}}$，所以

$$\psi^* \omega_{\tilde{M}} (X, Y) = \omega_{\tilde{M}} (\psi_* X, \psi_* Y)$$

$$= g_{\tilde{M}} (\psi_* X, \tilde{J} \psi_* Y) = g_{\tilde{M}} (\psi_* X, \psi_* JY)$$

$$= \psi^* g_M (X, JY) = g_M (X, JY)$$

$$= \omega_M (X, Y),$$

即 $\omega_M = \psi^* \omega_{\tilde{M}}$ 为 M 上的基本 2 形式。由于 $(\tilde{M}, g_{\tilde{M}})$ 是 Kähler 流形，故 $d \omega_M = 0$，所以

$$d \omega_M = d \psi^* \omega_{\tilde{M}} = \psi^* d \omega_{\tilde{M}} = \psi^* (0) = 0,$$

再根据引理 3，立即推出 (M, g_M) 也是 Kähler 流形。

定理 2 Kähler 流形 $(\tilde{M}, g_{\tilde{M}})$ 的复子流形 (M, g_M) 是 $(\tilde{M}, g_{\tilde{M}})$ 的
的极小子流形。

证明 设 h 为 (M, g_M) 的第 2 基本形式，从定理的证 1 有（因为 $J\psi_* = \psi_* J$，可视 $J|_{TM} = J$，所以在不致混淆下，一律记为 J）

$$h(X, JY) = (\nabla_X JY) = (J \nabla_X Y) = J(\nabla_X Y) = J(h(X, Y)) = J(h(Y, X)) = h(Y, JX) = h(JX, Y).$$

类似引理 2 的证明，我们可以用归纳法在 Kähler 子流形 (M, g_M) 中选择局部规范正交基 $\{e_1, Je_1, \cdots, e_m, Je_m\}$，其中 $m = \dim cM$。

事实上，先取 e_1，使 $g_M(e_1, e_1) = 1$，则 $g_M(Je_1, Je_1) = g_M(e_1, e_1) = 1$，$g_M(e_1, Je_1) = \omega(e_1, e_1) = 0$。假设 $\{e_1, Je_1, \cdots, e_k, Je_k\}$, $1 \leq k \leq m - 1$，是规范正交的，取 e_{k+1} 满足

$$g_M(e_{k+1}, e_j) = g_M(e_{k+1}, Je_j) = 0, j = 1, \cdots, k,$$

$$g_M(e_{k+1}, e_{k+1}) = 1,$$

则 $g_M(Je_{k+1}, e_j) = g_M(J^2 e_{k+1}, Je_j) = -g_M(e_{k+1}, Je_j) = 0, g_M(Je_{k+1}, Je_j) = g_M(e_{k+1}, e_j) = 0, j = 1, \cdots, k, g_M(Je_{k+1}, Je_{k+1}) = g_M(e_{k+1}, e_{k+1}) = 1$。因此，$M$ 的平均曲率向量场为

$$H = \frac{1}{2m} \sum_{k=1}^{m} [h(e_k, e_k) + h(Je_k, Je_k)]$$

$$= \frac{1}{2m} \sum_{k=1}^{m} [h(e_k, e_k) + J^2(h(e_k, e_k))]$$

$$= \frac{1}{2m} \sum_{k=1}^{m} [h(e_k, e_k) - h(e_k, e_k)] = 0,$$

即 (M, g_M) 为 $(\bar{M}, g_{\bar{M}})$ 的极小子流形。

研究 Kähler 流形的第二个重要理由是基于下面的基本且非常卓越的 Wirtinger 不等式。

定理 3（Wirtinger 不等式） 设 $(\bar{M}, g_{\bar{M}})$ 为 Kähler 流形，$M \subset \bar{M}$ 为实 $2m$ 维 C^n 定向子流形。dV, 表示 M 上的诱导度量 g_M 的体积形式。则 \bar{M} 的基本 2 形式 (Kähler 形式) ω 的 m 次幂 $\omega^m = \omega \wedge \bar{\omega} \wedge \omega$
到 T,M 的限制满足：

$$-dV, \leq \frac{(-1)^m \omega^n}{m!} \leq dV,$$

且 $\frac{(-1)^m \omega^n}{m!} = dV, \iff T,M$ 为 T,M 的复子空间.

证明 因为 $\omega(X,Y) = - \omega(Y,X)$，所以 ω 的特征值为 $\pm \lambda_1, \ldots, \pm \lambda_m$。根据[李查], 510 页定理 3，存在 T,M 的一个规范正交定向基 e_1, \ldots, e_{2m}，使得 ω 在 T,M 中用形如

$$
\begin{pmatrix}
\omega(e_1,e_1) & \ldots & \omega(e_1,e_{2m}) \\
\ldots & \ldots & \ldots \\
\omega(e_{2m},e_1) & \ldots & \omega(e_{2m},e_{2m})
\end{pmatrix}
= \begin{pmatrix}
0 & \lambda_1 & & \\
-\lambda_1 & 0 & & \\
& & \ddots & \\
& & & 0 & \lambda_m \\
& & & & -\lambda_m & 0
\end{pmatrix}
$$

的矩阵表示，其中 $\lambda_k = \omega(e_{2k-1},e_{2k}), k = 1, \ldots, m$。根据 Schwarz 不等式，

$$-1 = - \| e_{2k-1} \| \| e_{2k} \| \leq \lambda_k = \omega(e_{2k-1},e_{2k})$$

$$= g_M(e_{2k-1},Je_{2k}) = - g_M(Je_{2k-1},e_{2k})$$

$$\leq \| Je_{2k-1} \| \| e_{2k} \| = \| e_{2k-1} \| \| e_{2k} \| = 1,$$

于是，$\lambda_k = 1 \iff e_{2k} = - Je_{2k-1}$；$\lambda_k = -1 \iff e_{2k} = Je_{2k-1}$。令 e_1, \ldots, e_{2m} 为对偶于 e_1, \ldots, e_{2m} 的 C^∞ 1 形式，则有

$$\omega = \sum_{k=1}^m \lambda_k e_{2k-1} \wedge e_{2k},$$

$$\omega^n = (m!) \lambda_1 \cdots \lambda_m e^1 \wedge \cdots \wedge e^{2m}$$

$$= (m!) \lambda_1 \cdots \lambda_m dV.$$
\[\{e_1, \cdots, e_{2m}\} = \{e_1, -\lambda_1 Je_1, \cdots, e_{2m-1}, -\lambda_m Je_{2m-1}\} \]

与 \{e_1, Je_1, \cdots, e_{2m-1}, Je_{2m-1}\} 是同向的。

即 \(T_pM \) 为 \(T_p\tilde{M} \) 的复子空间。

注 2 如果在每个点 \(p \in M \)，有 \(\frac{(-1)^m \omega^n}{m!} = dV \)，则 \(J(T_pM) = T_pM \) 在 \(T_pM \) 上，\(J^2 = -1 \)，且显然有 \(T_{x,y} = 0 \)。根据注 1，\(M \) 为 \(\tilde{M} \) 的复解析子流形。

定理 4 设 \(\tilde{M} \) 为 Kähler 流形，\(\psi: M \to \tilde{M} \) 为复子流形，\(M \) 是紧致带边的（可能 \(\partial M = \emptyset \)），\(\dim \lambda M = 2m \)。则 \(M \) 在诱导度量下的体积

\[\text{Volume}(M) \leq \text{Volume}(M_1), \]

其中 \(\psi_1: M_1 \to \tilde{M} \) 是任何同调于 \(\psi: M \to \tilde{M} \) 的 2m 维 \(C^\infty \) 实子流形。

证明 从 \(d\omega = 0 \) 及 \(d \) 的性质，立即有

\[d\omega^n = m d\omega \wedge \omega \wedge \cdots \wedge \omega = 0. \]

再应用 Stokes 定理，就得

\[
\int_M \psi^* \omega^n - \int_{M_1} \psi_1^* \omega^n = \int_{\psi(M)} \omega^n - \int_{\psi_1(M_1)} \omega^n \\
= \int_{\psi(M) \cup \psi_1(M_1)} \omega^n \\
= \int_U d\omega^n = \int_U 0 = 0.
\]

于是

\[\text{Volume}(M) = \int_M dV = \frac{(-1)^m}{m!} \int_M \psi^* \omega^n = \frac{(-1)^m}{m!} \int_{M_1} \psi_1^* \omega^n \leq \int_{M_1} dV_1 = \text{Volume}(M_1). \]

注意，根据定理 3 和注 2，\(\text{Volume}(M_1) = \text{Volume}(M) \Leftrightarrow \psi_1: M_1 \to M \) 也为复子流形。

关于紧致 Kähler 流形和 Kähler 流形的紧致复子流形，下面两个定理给出了一些拓扑信息。
定理 5 设 M 为紧致的复 m 维 Kähler 流形，则实系数上同调群 $H^{2k}(M;\mathbb{R}) \neq 0, k = 0, \ldots, m$.

证明 不失一般性，可以假定 M 是连通的。设 ω 为 M 的基本 2 形式，则对每个 $k = 0, \ldots, m$，
$$d\omega^k = k\omega \wedge \omega \wedge \cdots \wedge \omega = 0.$$ 在 de Rham 意义下，ω^k 对应了一个实 $2k$ 维的上同调类 $[\omega^k]$. 此外，从 de Rham 定理得到
$$[\omega^k] \cong \frac{k}{\omega} \cup \cdots \cup [\omega]$$ 其中 “\cup” 表示 $H^*(M;\mathbb{R})$ 中的上积。

对复流形 M 的典型定向，定理 3 指出，M 的体积元素 $dV = \frac{(-1)^m \omega^m}{m!}$. 根据 Poincaré 对偶理，可以取基本闭链 $[M] \in H_{2m}(M;\mathbb{R})$，于是，
$$[\omega^m](M) = \int_M \omega^m = \int_M (-1)^m m! dV$$
$$= (-1)^m m! \cdot \text{Volume}(M) \neq 0.$$ 因此，$[\omega^m] \neq 0$，从而 $[\omega^k] \neq 0$ (应用反证，假设 $[\omega^k] = 0$，则 $0 \neq [\omega^m] = [\omega^k] \cup [\omega^{m-k}] = 0 \cup [\omega^{m-k}] = 0$，矛盾)。这就蕴涵着 $H^{2k}(M;\mathbb{R}) \neq 0, k = 0, \ldots, m$.

定理 6 设 \tilde{M} 为 Kähler 流形，$\psi: M \to \tilde{M}$ 为 \tilde{M} 的紧致复子流形，$\partial M = \emptyset, \dim_{\mathbb{R}} M = 2m$. 如果 $[M]$ 表示 M 的基本闭链，ψ_* 为关于同调的自然同态，则在 $H_{2m}(\tilde{M};\mathbb{Z})$ 中 $\psi_*(M) \neq 0$. 更进一步，$H^{2k}(\tilde{M};\mathbb{R}) \neq 0, k = 0, \ldots, m$.

证明 设 ω 为 \tilde{M} 的 Kähler 形式，则
$$[\omega^m] (\psi_*(M)) = \int_M \psi^* \omega^m = (-1)^m m! \text{Volume}(M) \neq 0,$$
因此，$\psi_*(M) \neq 0, [\omega^m] \neq 0, [\omega^k] \neq 0$，这就蕴涵着 $H^{2k}(\tilde{M};\mathbb{R}) \neq 0, k = 0, \ldots, m$.

201
2.4 Kähler 流形的例子

在这一节中，我们将给出 Kähler 流形的具体例子。设 V 为 $2m$ 维实向量空间，V^* 为它的对偶空间，它也是 $2m$ 维实向量空间。V 上的一个殆复结构 J 自然诱导了 V^* 上的一个殆复结构，也用 J 表示。设 $J : V \rightarrow V$ 为同态，$J^2 = -1$，令

$$J\theta(Y) = \theta(JY), \quad \theta \in V^*, Y \in V.$$

显然，$J^2 = -1$，即 J 也是 V^* 上的一个殆复结构。再定义 V 的复化 V^c，即 $V^c = V \otimes \mathbb{C}$（它也可视作以 V 上的基为基的 \mathbb{C} 上的复 a 维向量空间）。用自然的方式，V 视作 V^c 的实子空间。更一般地，V 上的 (r,s) 型张量空间 $T^r_s(V)$ 可自然地视作张量空间 $T^r_s(V^c)$ 的实子空间，V^c 中的复共轭是由

$$Z = X + iY \rightarrow \bar{Z} = X - iY, X, Y \in V$$

定义的实线性同构。V^c 的复共轭可自然地扩张到 $T^r_s(V^c)$ 上去。

现在假设 V 是具有殆复结构 J 的 $n = 2m$ 维实向量空间。则 J 可以唯一地扩张到 V^c 的复线性自同构，仍记为 J，它仍然满足 $J^2 = -1$。所以 J 的特征值为 i 和 $-i$。令

$$V^{1,0} = \{ Z \in V^c | JZ = iZ \}, \quad V^{0,1} = \{ Z \in V^c | JZ = -iZ \}.$$

则有

引理 1
(1) $V^{1,0} = \{ X - iJX | X \in V \}, V^{0,1} = \{ X + iJX | X \in V \}$；
(2) $V^c = V^{1,0} \oplus V^{0,1}$ (复向量空间的直和)；
(3) V^c 中的复共轭定义了 $V^{1,0}$ 到 $V^{0,1}$ 上的一个实线性同构。

证明
(1) 因为 $J(X - iJX) = JX + iX = i(X - iJX)$，所以 $X - iJX \in V^{1,0}$；反之，如果 $X + iY \in V^c$，且 $J(X + iY) = i(X + iY) = iX - Y$，则 $JX = -Y, X + iY = X - iJX$。这就证明了

$$V^{1,0} = \{ X - iJX | X \in V \}.$$

202
同理可证 $V^{0.1} = \{X + iJX | X \in V \}$.

(2) 对任意的 $X \in V$, 令
$$X = \frac{X - iJX}{2} + \frac{X + iJX}{2},$$
其中 $\frac{X - iJX}{2} \in V^{1.0}$, $\frac{X + iJX}{2} \in V^{0.1}$. 于是, 对任意的 $X + iY \in V^c$, 有
$$X + iY = \left(\frac{X - iJX}{2} + i\frac{Y - iJY}{2}\right) + \left(\frac{X + iJX}{2} + i\frac{Y + iJY}{2}\right)$$
$$= \left(\frac{X + JY}{2} - iJ\frac{X + JY}{2}\right) + \left(\frac{X - JY}{2} + iJ\frac{X - JY}{2}\right).$$
此外 $V^{1.0} \cap V^{0.1} = \{X - iJX = X + iJX | X \in V\} = \{X | X = 0\} = \{0\}$. 因此, $V^c = V^{1.0} \oplus V^{0.1}$.

显然, $V^{1.0} \rightarrow V^{0.1}$, $Z = X - iJX \rightarrow \bar{Z} = X + iJX$ 为实线性同构.

设 V^* 为 V 的对偶空间, V^* 的复化 V^{*c} 是 V^c 的对偶空间. 关于 V^* 上的殆复结构 J 的特征值 $\pm i$, 同样有直和分解:
$$V^{*c} = V^{1.0} \oplus V^{0.1}.$$

下面的引理也是显然的.

引理 2 $V_{1,0} = \{\theta \in V^* | \theta(Z) = 0, \forall Z \in V^{0.1}\}, V_{0,1} = \{\theta \in V^* | \theta(Y) = 0, \forall Y \in V^{1.0}\}.$

证明 如果 $\theta \in V_{1,0}$, 则 $J\theta = i\theta$, 从而
$$\theta(Z) = -i\theta(JZ) = -i\theta(-iZ) = -\theta(Z)$$
$$\theta(Z) = 0, \forall Z \in V^{0.1}.$$
反之, 如果 $\theta(Z) = 0, \forall Z \in V^{0.1}$, 则
$$(J\theta)(U) = J\theta(Y + Z)$$
$$= \theta(JY + JZ) = \theta(iY - iZ)$$
$$= i\theta(Y) - i\theta(Z)$$
$$= i\theta(Y) = i\theta(Y + Z) = i\theta(U), \forall U \in V^c,$$
即 $J\theta = i\theta, \theta \in V_{1,0}$. 这就证明了
\[V_{1,0} = \{ \theta \in V^* \mid \theta(Z) = 0, \forall Z \in V^{0,1} \}. \]

另一式可类似证明。

张量空间 \(T^*_c(V) \) 可以分解成与空间 \(V^{1,0}, V^{0,1}, V_{1,0} \) 和 \(V^{0,1} \) 之一相拼合的向量空间的张量积的直和。下面将更加仔细地研究外代数 \(\Lambda V^{**} \) 的分解。外代数 \(\Lambda V_{1,0} \) 和 \(\Lambda V^{0,1} \) 可以用自然的方法视作 \(\Lambda V^{**} \) 的子代数。用 \(\Lambda^{r,s} V^{**} \) 记由 \(\alpha \wedge \beta \) 张成的 \(\Lambda V^{**} \) 子空间，其中 \(\beta \in \Lambda^r V_{1,0}, \beta \in \Lambda^s V^{0,1} \)。明显地有

引理 3 外代数 \(\Lambda V^{**} \) 可以分解为

\[\Lambda V^{**} = \sum_{r=0}^{2m} \Lambda^{r,s} V^{**}, \]

其中 \(\Lambda^{r,s} V^{**} = \sum_{r+s=r} \Lambda^{r,s} V^{**} \)。此外，可通过给出 \(\Lambda^{r,s} V^{**} \) 和 \(\Lambda^{s,r} V^{**} \) 之间的一个实线性同构自然地将 \(V^{**} \) 中的复共轭扩张成 \(\Lambda V^{**} \)。

如果 \(\{e^1, \ldots, e^n\} \) 为 \(V_{1,0} \) 中的一个基，则 \(\{\tilde{e}^1, \ldots, \tilde{e}^n\} \) 为 \(V^{0,1} \) 的一个基，其中 \(\tilde{e}^i = e^i \)。元素 \(e^1 \wedge \cdots \wedge e^r \wedge \tilde{e}^i \wedge \cdots \wedge \tilde{e}^s, 1 \leq j_1 < \cdots < j_r \leq m, 1 \leq k_1 < \cdots < k_s \leq m \) 形成了复域上 \(\Lambda^{r,s} V^{**} \) 的一个基。

下面引理的证明是直接的。

引理 4 设 \(g \) 为具有殆复结构 \(J \) 的实向量空间 \(V \) 中的 Hermite 内积。则 \(g \) 可以唯一地扩张为 \(V^* \) 的一个复对称双线性型，且满足下列条件

(1) \(g(Z, W) = g(Z, \overline{W}), Z, W \in V^* \);

(2) \(g(Z, Z) > 0, Z \in V^* \), \(Z \neq 0 \);

(3) \(g(Z, \overline{W}) = 0, Z \in V^{1,0}, \overline{W} \in V^{0,1} \).

相反地，\(V^* \) 上的每个满足(1)，(2)，(3) 的复对称双线性型 \(g \) 是 \(V \) 的一个 Hermite 内积的自然扩张。

证明 \((\Rightarrow)\)

\[g(Z, \overline{W}) = g(X + iY, U + iV) \]
\[= g(X - iY, U - iV) \]
\[= g(X, U) - g(Y, V) - ig(Y, U) - ig(X, V) \]

204
\[
= g(X, U) - g(Y, V) + ig(Y, U) + ig(X, V) \\
= g(X + iY, U + iV) \\
= g(Z, W), Z, W \in V^c.
\]

(2) \(g(Z, Z) = g(X + iY, X - iY) = g(X, X) + g(Y, Y) > 0, Z = X + iY \neq 0.\)

(3) 对 \(Z \in V^{1,0}, W \in V^{0,1},\)
\[
g(Z, \overline{W}) = g(X - iJX, \overline{Y} + iJY) \\
= g(X - iJX, Y - iJY) \\
= g(X, Y) - g(JX, JY) - ig(JX, Y) - ig(X, JY) \\
= g(X, Y) - g(X, Y) - ig(-X, JY) - ig(X, JY) \\
= 0.
\]

\((\Leftarrow)\) 设 \(g\) 为 \(V^c\) 上的满足(1), (2), (3) 的复对称双线性型. 因为 \(g\) 限制到 \(V\), 有
\[
g(X, Y) = g(\overline{X}, \overline{Y}) = \overline{g(X, Y)}, X, Y \in V,
\]
即 \(g(X, Y)\) 为实数.
\[
g(X, X) = g(X, \overline{X}) > 0, X \neq 0,
\]
此外，从 \(0 = g(X - iJX, Y - iJY) = g(X, Y) - g(JX, JY) - ig(JX, Y) - ig(X, JY)\) 得到，对任意 \(X, Y \in V\), 有
\[
g(X, Y) = g(JX, JY).
\]
这就证明了 \(g\) 为 \(V\) 上的一个 Hermite 度量.

我们已经知道，对于 \(V\) 上具有殆复结构 \(J\) 的每个 Hermite 内积 \(g\)，联系到一个元素 \(\omega \in \Lambda^2 V^*:\)
\[
\omega(X, Y) = g(X, JY), X, Y \in V.
\]
前面已证过，\(\omega\) 是反对称的，即 \(\omega(Y, X) = -\omega(X, Y)\)，进一步可证明 \(\omega\) 还是 \(J\) 不变的，事实上
\[
\omega(JX, JY) = g(JX, J^2Y) = -g(JX, Y)
\]
\[
= -g(Y, JX) = -\omega(Y, X) = \omega(X, Y), X, Y \in V.
\]
因为 \(\Lambda^2 V^*\) 可以视作 \(\Lambda^2 V^{**}\) 的一个子空间，故 \(\omega\) 可以视作为 \(\Lambda^2 V^{**}\) 的一个元素。换句话说，\(\omega\) 可以唯一扩张为 \(V^c\) 上的反称双线性
形式，仍记作 ω．由引理 4，立即有

定理 1 (1) 与 V 的 Hermite 内积 g 相联系的 V^c 上的反称双线性型 $\omega \in \wedge^{1,1} V^{*c}$．

(2) 设 $\{Z_1, \cdots, Z_m\}$ 是 $V^{1,0}$ 关于 C 的一个基，而 $\{\xi^j, \cdots, \xi^m\}$ 是 $V_{1,0}$ 中相应的对偶基．记

$$g_{jk} = g(Z_j, Z_k), \quad j, k = 1, \cdots, m,$$

则

$$g_{jk} = \tilde{g}_{kj}, \quad j, k = 1, \cdots, m;$$

$$g = \sum_{j,k=1}^m [g_{jk}\xi^j \otimes \bar{\xi}^k + g_{kj}\bar{\xi}^k \otimes \xi^j].$$

(3) $\omega = -i \sum_{j,k=1}^m g_{jk}\xi^j \wedge \bar{\xi}^k$．

证明 (1) 由引理 4 (3)，

$$\omega(Z, W) = g(Z, JW) = g(Z, iW)$$

$$= ig(Z, W) = 0, \quad \forall Z, W \in V^{1,0}.$$ 同理，$\omega(Z, W) = 0, \forall Z, W \in V^{0,1}$，因此，$\omega \in \wedge^{1,1} V^{*c}$．

(2) 根据引理 4(1)，$g_{jk} = g(Z_j, Z_k) = \overline{g(Z_j, Z_k)} = \overline{g(Z_k, Z_j)} = \tilde{g}_{kj}$. 由此得到

$$g = \sum_{j,k=1}^m [g_{jk}\xi^j \otimes \bar{\xi}^k + g_{kj}\bar{\xi}^k \otimes \xi^j].$$

（3）从 (1) 和

$$Z = \sum_{j=1}^m (\xi^j(Z)Z_j + \bar{\xi}^j(Z)\bar{Z}_j), W = \sum_{k=1}^m (\xi^k(W)Z_k + \bar{\xi}^k(W)\bar{Z}_k),$$

$$JW = i \sum_{k=1}^m (\xi^k(W)Z_k - \bar{\xi}^k(W)\bar{Z}_k)$$

得到

$$\omega(Z, W) = g(Z, JW)$$

$$= -i \sum_{j,k=1}^m g_{jk}[\xi^j(Z)\bar{\xi}^k(W) - \xi^j(W)\bar{\xi}^k(Z)].$$

206
\[= (- i \sum_{j,k=1}^{\infty} g_{jk} \xi^j \wedge \xi^k)(Z,W), \]
\[\omega = - i \sum_{j,k=1}^{\infty} g_{jk} \xi^j \wedge \xi^k. \]

2m 维 C\^m 流形 M 在 x 点的复切空间是切空间 T_x M 的复化 T\^*_x M = T_x M \otimes_\mathbb{C} \mathbb{C}，而 T_x M 的元素称为 x 点处的复切向量。记 T\^*_x M 为 T\^*_x M(M 的对偶空间) 的复化。M 上的复 r 形式 \omega 在每个点 x ∈ M 处给出了 \wedge^r T\^*_x M 的一个元素。换句话说，M 上的一个复 r 形式 \omega

在每个点 x ∈ M 处给出了一个反称 r 线性映射 T\^*_x M \times \cdots \times T\^*_x M → C。更一般地，可以定义 M 上的复张量场为(实)张量场的复化。

如果 M 为具有殆复结构 J 的殆复流形，则 T\^*_x M = T\^{1,0}_x M \oplus T\^{0,1}_x M，其中 T\^{1,0}_x M 和 T\^{0,1}_x M 分别是对应于 J 的特征值 i 和 -i 的特征空间。如果一个复向量场在每个点 x ∈ M 属于 T\^{1,0}_x M(或 T\^{0,1}_x M)，则称它是(1, 0) 型(或(0, 1) 型)的。

类似地可定义 \wedge^{r+s} T\^*_x M^c，\wedge^r T\^*_x M^c = \bigoplus_{r+s \in \mathbb{R}} \wedge^{r+s} T\^*_x M^c，\wedge T\^*_x M^c

= \sum_{r=0}^{2m} \wedge^r T\^*_x M^c 以及 (p, q) 型复形式 \omega。如果 \omega_1, \cdots, \omega_m 为 \wedge^{1,0} T\^*_x M^c 的局部基，则它的复共线 \overline{\omega}_1, \cdots, \overline{\omega}_m 为 \wedge^{0,1} T\^*_x M^c 的局部基。由此可得 (p, q) 形式 \omega^1 \wedge \cdots \wedge \omega^r \wedge \overline{\omega}_1 \wedge \cdots \wedge \overline{\omega}_q，1 \leq j_1 < \cdots < j_r \leq m 和 1 \leq k_1 < \cdots < k_q \leq m 为 \wedge^{r+s} T\^*_x M^c 的一个局部基，因此，(p, q) 型形式 \omega 和多于 p 个(1, 0) 型或多于 q 个(0, 1) 型的复向量场 Z_1, \cdots, Z_{r+s} 有 \omega(Z_1, \cdots, Z_{r+s}) = 0.

如果 M 为 m 维复(解析)流形，z_1, \cdots, z^n 为 M 中的复局部坐标系。除非特别说明，一般用希腊字母 α, β, γ, \cdots 表示跑遍 1, \cdots, m 的自然数；拉丁字母 A, B, C, \cdots 则表示跑遍 1, \cdots, m, \bar{1}, \cdots, \bar{m} 的自然数。令

\[Z_\alpha = \frac{\partial}{\partial z^\alpha} = \frac{1}{2} \left(\frac{\partial}{\partial x^\alpha} - i \frac{\partial}{\partial y^\alpha} \right), \]
\[\bar{Z}_\alpha = \frac{\partial}{\partial \bar{z}^\alpha} = \frac{1}{2} \left(\frac{\partial}{\partial x^\alpha} - i \frac{\partial}{\partial y^\alpha} \right), \]
\[\xi^\alpha = dx^\alpha + idy^\alpha, \quad \bar{\xi}^\alpha = d\bar{z}^\alpha = dx^\alpha - idy^\alpha. \]

207
其中 \(z^a = x^a + iy^a, x^a, y^a \in \mathbb{R}, i^2 = -1 \). 在 \(M \) 上已给定 Hermite 度量 \(g \)，在每个切空间 \(T_xM \) 中，我们将此 Hermite 内积 \(g \) 拟张为复切空间 \(T_xM^* (T_xM) \) 的复对称双线型。且令

\[
 g_{\alpha \bar{\beta}} = g(Z_\alpha, Z_{\bar{\beta}}).
\]

由引理 4，\(g_{\alpha \beta} = g_{\bar{\alpha} \bar{\beta}} = 0 \)，而 \(g_{\alpha \bar{\beta}} = \bar{g}_{\beta \alpha} \) 按惯例，记 Riemann 度量或第 1 基本形式

\[
 g = ds^2 = \sum_{\alpha, \beta = 1}^{m} [g_{\alpha \beta} dz^\alpha \otimes d\bar{z}^\beta + g_{\beta \alpha} d\bar{z}^\beta \otimes dz^\alpha]
\]

（通常记作 \(2 \sum_{\alpha, \beta = 1}^{m} g_{\alpha \beta} dz^\alpha \otimes d\bar{z}^\beta \))，而由定理 1 得到基本 2 形式为

\[
 \omega = -i \sum_{\alpha, \beta = 1}^{m} g_{\alpha \beta} dz^\alpha \wedge d\bar{z}^\beta
\]

例 1 令 \(M = \mathbb{C}^n, (z^1, \cdots, z^n) \) 为整体复坐标系，其中 \(z^a = x^a + iy^a, x^a, y^a \in \mathbb{R} \)，显然，\(J(\frac{\partial}{\partial x^a}) = \frac{\partial}{\partial y^a}, J(\frac{\partial}{\partial y^a}) = -\frac{\partial}{\partial x^a}, a = 1, \cdots, m, J^2 = -1 \)，即 \(J \) 为 \(\mathbb{C}^n \) 上的自然的殆复结构。易证

\[
 g = ds^2 = \frac{1}{2} \sum_{a = 1}^{n} [dz^a \otimes d\bar{z}^a + dz^a \otimes dz^a]
\]

\[
 = \frac{1}{2} \sum_{a = 1}^{n} [(dx^a + idy^a) \otimes (dx^a - idy^a) + (dx^a - idy^a) \otimes (dx^a + idy^a)]
\]

\[
 = \sum_{a = 1}^{n} [dx^a \otimes dx^a + dy^a \otimes dy^a]
\]

为 Hermite 度量。而相应的基本 2 形式为

\[
 \omega = -\frac{i}{2} \sum_{a = 1}^{n} dz^a \wedge d\bar{z}^a
\]

\[
 = -\frac{i}{2} \sum_{a = 1}^{n} 2i dx^a \wedge dy^a = \sum_{a = 1}^{n} dx^a \wedge dy^a.
\]

容易看出 \(d\omega = -\sum_{a = 1}^{n} d(x^a \wedge dy^a) = -\sum_{a = 1}^{n} [d^2 x^a \wedge dy^a + (-1)^{a+1} dx^a \wedge d^2 y^a] = 0 \)。根据 2.3 引理 3，(\(\mathbb{C}^n, J, g \)) 为 Kähler 流形。
例 2 设 $\tau_1, \cdots, \tau_{2m}$ 为 C^n 中实线性无关的向量, $\Gamma = \{ \sum_{j=1}^{2m} n_j \tau_j | n_j \in \mathbb{Z} \text{（整数集）} \}$ 自然作用在 C^n 上，即对每个固定的 $v \in \Gamma$, 其作用为平移 $z \rightarrow z + v$. $z, w \in C^n$ 称为等价的，记作 $z \sim w \Leftrightarrow \exists \gamma \in \Gamma$, 使 $w = z + \gamma$. 记 $[z] = \{ w \in C^n | w \sim z \}$ 为 z 的等价类，而商集

$$M = C^n/\Gamma = \{ [z] | z \in C^n \}$$

就是 C^n 关于 Γ 的等价类的集合，$\pi: C^n \rightarrow C^n/\Gamma = M, z \rightarrow \pi(z) = [z]$ 为投影. 如果 τ 为 C^n 上的通常的拓扑，则以

$$\tau' = \{ U \subset M = C^n/\Gamma | \pi^{-1}(U) \in \tau \}$$

为拓扑基生成的拓扑，称为 $M = C^n/\Gamma$ 上的商拓扑，易见，它为 m 维复解析流形，它的万有覆盖空间是 C^n. 我们称 $M = C^n/\Gamma$ 为 m 维复环面，且同胚于 $S^1 \times \cdots \times S^1$. 显然，例 1 中给出的 C^n 上的 Kähler 度量 g 在 Γ 对 C^n 上的作用下是不变的，即如果 $v \in \Gamma$ 给出映射 $v: C^n \rightarrow C^n, z \rightarrow z + v$, 则 $v^* g = g$, 其中，v^* 为协变张量上的诱导映射. 由不变性，可以知道在 $M = C^n/\Gamma$ 上存在 Hermite 度量 \tilde{g} 使得 $\pi: C^n \rightarrow C^n/\Gamma = M$ 是解析（全纯）投影映射，且 $\pi^*(\tilde{g}) = g$. 此外，π 是一个局部微分同胚，因此，在点 $z \in C^n$ 的一个开邻域中，$\pi_U = \pi|_U$ 是双全纯映射，于是，由 $(\pi_U^{-1})^* g|_U = \tilde{g}|_U$ 和 $d\omega|_U = 0$ 得到

$$d\tilde{\omega}|_{\pi(U)} = d(\pi_U^{-1})^* \omega|_U = (\pi_U^{-1})^* d\omega|_U = 0.$$

这就证明了 \tilde{g} 为 $M = C/\Gamma$ 上的 Kähler 度量，所有的复环面必定是 Kähler 流形.

例 3 设 $P^n(C)$ 为 m 维复射影空间, $\{ z^0, \cdots, z^n \}$ 为其齐次坐标, $U = \{ (z^0, \cdots, z^n) \in P^n(C) | z^r \neq 0 \}, r = 0, \cdots, m$. 在每个 U 上，令

$$\xi_r^a = z^a/z^r, \ a = 0, \cdots, m.$$

则 $\{ \xi^0_r, \xi^1_r, \cdots, \xi^m_r, \cdots, \xi^n_r \}$ (其中 ξ^r_r 表示删去 $\xi_r = 1$) 为局部坐标系. 在此局部坐标系中，考虑函数 $f_r = \sum_{a=0}^{m} \xi^a_r \bar{\xi}_r^a$, 则在 $U_r \cap U\delta$ 上有

209
\[
f_y = \sum_{a=0}^{m} \frac{z^a}{z^y} \bar{z}^a = \sum_{a=0}^{m} \left(\frac{z^a}{z^y} / \bar{z}^a \right) \left(\bar{z}^a / \bar{z}^y \right)
= f_\xi \xi^a \bar{\xi}^b.
\]

因此，在 \(U, \cap U_y \) 上得到
\[
\partial f_y = \bar{\partial} f_y.
\]

显然，通过在 \(U_y \) 上令
\[
\omega = -4i \partial f_y,
\]

\[
(1 + \sum_{a \neq y} \xi^a \bar{\xi}^a) \sum_{\alpha, \beta \neq y} d\xi^\alpha \wedge d\bar{\xi}^\beta - \sum_{\alpha, \beta \neq y} \bar{\xi}^\alpha \xi^\beta d\xi^\alpha \wedge d\bar{\xi}^\beta
= -4i \frac{\partial f_y}{(1 + \sum_{\alpha \neq y} \xi^\alpha \bar{\xi}^\alpha)^2}
\]

得到一个 \(P^n(C) \) 上定义的总体的 (1,1) 型形式，下证 \(d\omega = 0 \).

在 \(U_y \) 中，引进算符
\[
\partial = \sum_{\alpha \neq y} d\xi^\alpha \frac{\partial}{\partial z^\alpha}, \quad \bar{\partial} = \sum_{\alpha \neq y} d\bar{\xi}^\alpha \frac{\partial}{\partial \bar{z}^\alpha}.
\]

易证
\[
d = \partial + \bar{\partial} \quad (留作习题)，
\]

\[
0 = d\omega = (\partial + \bar{\partial}) \omega = \bar{\omega} + \omega + \bar{\partial} \omega + \partial \omega
\]

\[
\bar{\omega} = 0, \quad \omega = 0, \quad \bar{\partial} \omega = -\partial \omega.
\]

于是
\[
d\omega = -4i(\partial + \bar{\partial}) \omega \ln(1 + \sum_{\alpha \neq y} \xi^\alpha \bar{\xi}^\alpha)
= -4i(\bar{\omega} \omega - \bar{\omega} \omega) \ln(1 + \sum_{\alpha \neq y} \xi^\alpha \bar{\xi}^\alpha) = 0.
\]

也可在 \(U_y \) 中先定义 \(C^\infty \) 2 形式
\[
\omega_y = -4i \frac{\sum_{\alpha=0}^m (\xi^\alpha \bar{\xi}^\alpha) \sum_{\alpha=0}^m d\xi^\alpha \wedge d\bar{\xi}^\alpha - \sum_{\alpha, \beta=0}^m \xi^\alpha \bar{\xi}^\beta d\xi^\alpha \wedge d\bar{\xi}^\beta}{(\sum_{\alpha=0}^m \xi^\alpha \bar{\xi}^\alpha)^2}
\]

(注意，\(\xi^\alpha = 1, d\xi^\alpha = 0, d\bar{\xi}^\alpha = 0 \))，然后，在 \(U_y \cap U_\delta \) 中，应用局部坐标变换

210
\[\xi^\theta_{\gamma} = \begin{cases} \frac{\xi^\theta}{\xi^\delta}, & \theta \neq \gamma, \delta \\ \frac{1}{\xi^\delta}, & \theta = \delta \end{cases} \]

不难验证 \(\alpha_{\nu_i} = \omega_{\nu_i} \)，由此说明，可以拼成一个 \(P^n(C) \) 上的整体 \(C^\infty \) 形式 \(\omega \)。因为 \(\omega(Z, W) = 0, Z, W \in T^{1,0}M ; \omega(Z, W) = 0, Z, W \in T^{0,1}M \)，所以，

\[\omega(JX, JY) = \omega(X, Y), \quad \forall \ X, Y \in C^\infty(TM). \]

令

\[g(X, Y) = \omega(JX, Y), \quad \forall \ X, Y \in C^\infty(TM) \]

则

\[g(Y, X) = \omega(JY, X) = \omega(J^2Y, JX) = -\omega(Y, JX) = \omega(JX, Y) = g(X, Y), \]

即 \(g \) 是对称的。又

\[g(JX, JY) = \omega(J^2X, JY) = -\omega(X, JY) = \omega(JY, X) = g(Y, X) = g(X, Y), \]

\(g \) 是 Hermite 的。如果再能证明 \(g \) 是正定的，就可以断言它是 Kähler 度量。有时，称它为 Fubini-Study 度量（参阅 [Fu] 和 [St]），从而 \((P^n(C), J, g) \) 为 Kähler 流形。这是最重要的 Kähler 流形的例子之一。

最后，验证 \(g \) 确是正定的。为简单起见，只考虑在 \(U_0 \) 中，其 Riemann 度量为（只写一半）

\[g = \sum_{a, \beta = 1}^m g_{a\beta} d\xi^a \otimes \bar{d}\xi^\beta \]

\[= 4 \frac{(1 + \sum_{a=1}^m \xi^a \bar{\xi}^a) \sum_{a=1}^m d\xi^a \otimes d\bar{\xi}^a - \sum_{a, \beta = 1}^m \xi^a \xi^\beta d\xi^a \otimes d\bar{\xi}^\beta}{(1 + \sum_{a=1}^m \xi^a \bar{\xi}^a)^2} \]

211
\[
= 4 \sum_{\alpha, \beta = 1}^{m} \left(1 + \left\| \xi_0 \right\|^2 \right) \delta_{\alpha \beta} - \frac{\bar{\xi}_{0} \xi_{\alpha}}{\left(1 + \left\| \xi_0 \right\|^2 \right)^{2}} \dd \xi_{\alpha} \otimes d \bar{\xi}_{\beta}.
\]

设 \(\tilde{g}_{\alpha \beta} = (1 + \left\| \xi_0 \right\|^2) \delta_{\alpha \beta} - \overline{\xi}_{0} \xi_{\beta}, u \in \mathbb{C}^{n} \)，根据 Schwartz 不等式，有

\[
u^{*}g \nu = \sum_{\alpha, \beta = 1}^{m} \tilde{g}_{\alpha \beta} u_{\alpha} \overline{u}_{\beta}
\]

\[
= \sum_{\alpha, \beta = 1}^{m} (1 + \left\| \xi_0 \right\|^2) \delta_{\alpha \beta} u_{\alpha} \overline{u}_{\beta} - \left(\sum_{\alpha = 1}^{m} \xi_{0} u_{\alpha} \right) \left(\sum_{\beta = 1}^{m} \xi_{\beta} \overline{u}_{\beta} \right)
\]

\[
\geq (1 + \left\| \xi_0 \right\|^2) \left\| u \right\|^2 - \left\| u \right\|^2 \left\| \xi_0 \right\|^2
\]

\[
= \left\| u \right\|^2,
\]

这就证明了 \(\tilde{g} \) 和 \(g \) 是正定的.

注 1 在例 3 中，令 \(\pi: \mathbb{C}^{n+1} - \{0\} \to P^{n}(\mathbb{C}), z \to \pi(z) = [z] \) 为自然投影。则 \(\omega_{0} = \pi^{*} \omega \) 为 \(\mathbb{C}^{n+1} - \{0\} \) 上的 \(C^{\infty} \) 2 形式。例如，相应于 \(U_{0} \)，有

\[
\omega_{0} = \pi^{*} \omega = -4i \dd \Delta \ln \left(1 + \sum_{\alpha = 1}^{m} \frac{z_{\alpha}}{z_{0}} \frac{\overline{z}_{\alpha}}{\overline{z}_{0}} \right)
\]

\[
= -4i \dd \Delta \left(\ln \sum_{\alpha = 0}^{m} z_{\alpha} \overline{z}_{\alpha} - \log z_{0} - \log \overline{z}_{0} \right)
\]

\[
= -4i \dd \Delta \sum_{\alpha = 0}^{m} z_{\alpha} \overline{z}_{\alpha}
\]

\[
= -4i \frac{\left(\sum_{\alpha = 0}^{m} z_{\alpha} \overline{z}_{\alpha} \right) \sum_{\alpha = 0}^{m} dz_{\alpha} \wedge d \overline{z}_{\alpha} - \sum_{\alpha, \beta = 0}^{m} z_{\alpha} z_{\beta} dz_{\alpha} \wedge d \overline{z}_{\beta}}{\left(\sum_{\alpha = 0}^{m} z_{\alpha} \overline{z}_{\alpha} \right)^{2}}.
\]

显然，\(d \omega_{0} = d \pi^{*} \omega = \pi^{*} d \omega = \pi^{*} (0) = 0 \)。如果 \(g_{0}(X, Y) = \omega_{0}(X, JY) \)，则

\[
g_{0} = \pi^{*} g = 4 \frac{\left(\sum_{\alpha = 0}^{m} z_{\alpha} \overline{z}_{\alpha} \right) \sum_{\alpha = 0}^{m} dz_{\alpha} \times d \overline{z}_{\alpha} - \sum_{\alpha, \beta = 0}^{m} z_{\alpha} z_{\beta} dz_{\alpha} \times d \overline{z}_{\beta}}{\left(\sum_{\alpha = 0}^{m} z_{\alpha} \overline{z}_{\alpha} \right)^{2}}.
\]

212
不难看出，齐次坐标 \((z^0, \ldots, z^n)\) 的酉变换（或变换 \((z^0, \ldots, z^n) \mapsto (\tilde{z}^0, \ldots, \tilde{z}^n)\)) 为 \(\mathbb{C}^{n+1} - \{0\}\) 的等距变换，它自然诱导了 \(P^n(\mathbb{C})\) 上的一个变换 \(\tilde{U}\)：

\[
\begin{align*}
\mathbb{C}^{n+1} - \{0\} & \rightarrow \mathbb{C}^{n+1} - \{0\} \quad U(z) \\
\pi & \downarrow \quad \downarrow \pi \\
\pi(z) = [z] & \in P^n(\mathbb{C}) \rightarrow P^n(\mathbb{C}) \quad \tilde{U}(\pi(z)) = \pi(U(z)) \\
\tilde{U}([z]) & = [U(z)]
\end{align*}
\]

所以，从

\[
\begin{align*}
g(\pi_* X, \pi_* Y) & = \pi_* g(X, Y) = g_0(X, Y) \\
& = g_0(UX, UY) = \pi_* g(UX, UY) \\
& = g(\pi_* UX, \pi_* UY) \\
& = g(\tilde{U}_* \pi_* X, \tilde{U}_* \pi_* Y)
\end{align*}
\]

立即可推出 \(\tilde{U}\) 为 \(P^n(\mathbb{C})\) 上的等距变换。由此和 2.1 定理 3 知道 \(P^n(\mathbb{C})\) 的实和复线性子空间在该 Riemann 度量 \(g\) 下都是全测地子流形。

例 4 设 \(G_{r,t}(\mathbb{C})\) 为 \(\mathbb{C}^{r+t}\) 中 \(p\) 维线性子空间的复 Grassmann 流形，\(M^*(p + q, p; \mathbb{C})\) 是秩为 \(p\) 的 \((p + q) \times p\) 的复矩阵；可以将其视作 \(\mathbb{C}^{r+t}\) 中 \(p\) 个线性无关向量的集合。\(\mathbb{C}^{r+t}\) 中 \(p\) 个线性无关的向量决定了 \(\mathbb{C}^{r+t}\) 中的一个 \(p\) 维线性子空间。因此，得到一个自然投影：

\[
M^*(p + q, p; \mathbb{C}) \rightarrow G_{r,t}(\mathbb{C}).
\]

则 \(M^*(p + q, p; \mathbb{C})\) 为 \(G_{r,t}(\mathbb{C})\) 上的以 \(GL(p, \mathbb{C})\) 为构造群的纤维丛；群 \(GL(p, \mathbb{C})\) 通过右乘矩阵 \(C^\infty\) 作用在 \(M^*(p + q, p; \mathbb{C})\) 上。在 \(M^*(p + q, p; \mathbb{C})\) 中，用 \(p \times (p + q)\) 复矩阵 \(P\) 表示坐标系。在 \(M^*(p + q, p; \mathbb{C})\) 上定性闭 \((1, 1)\) 型 \(C^\infty\) 形式：

\[
\tilde{\omega} = -i \partial \bar{\partial} \ln \det(P^t P).
\]

容易验证 \(\tilde{\omega}\) 投影到底空间 \(G_{r,t}(\mathbb{C})\) 上的闭 \((1, 1)\) 型形式 \(\omega\)，有 \(\pi^* \omega = \tilde{\omega}\)。对任意 \(X, Y \in C^\infty(TG_{r,t}(\mathbb{C}))\)，令

\[
g(X, Y) = \omega(JX, Y).
\]

因为酉群 \(U(p + q)\) 左方作用在 \(M^*(p + q, p; \mathbb{C})\) 上保持函数 \(P^t P\) 以
及复结构不变，所以，它保持 $\tilde{\omega}$ 于是 $U(p+q)$ 在 $G_{s'}(C)$ 上的诱导作用保持 ω，复结构以及 g。因此，g 在群 $U(p+q)$ 下是不变的，此群可迁地作用在 $G_{s'}(C)$ 上。

为了证明以 ω 为基本 2 形式的 g 是 Kähler 度量，我们用 $G_{s'}(C)$ 的局部坐标系表示 g。记

$$P = \begin{pmatrix} P_0 \\ P_1 \end{pmatrix},$$

其中 P_0 是 $p \times p$ 矩阵，P_1 是 $q \times p$ 矩阵。不失一般性，考虑使 $\det P_0 \neq 0$ 的 $G_{s'}(C)$ 的开子集 U，则 $P \rightarrow P_1 P_0^{-1}$ 给出了 U 到空间 $M(p,q;C)$ 上的一一映射。令 $Q = P_1 P_0^{-1}$，可以用 Q 作为 U 中的局部坐标。因为 $P^TP = P_0^T(I + \overline{Q}^T Q)P_0$，这里 I 表示 $p \times p$ 的单位矩阵。于是得到

$$\omega = -4i\partial \overline{\partial} \ln \det(I + \overline{Q}^T Q),$$

通过一个直接计算知在 $Q = 0$ 处有

$$g = 4 \text{trace}(d\overline{Q}^T dQ).$$

这就蕴涵着，在 $Q = 0$ 处，g 是正定的。因为当 $U(p+q)$ 可迁地作用在 $G_{s'}(C)$ 上时，g 是不变的，所以 g 是处处正定的。

细心的读者会注意到，形式 $\tilde{\omega}, \omega$ 和度量 g 是例 3 中给出的 ω_0, ω 和度量 g 的推广。

例 5 下面的定理 2 指出，任何复流形上必有 Hermite 度量。

设 g 为复维数 1 的复流形（Riemann 曲面）M 上的任一 Hermite 度量，而 ω 为基本 2 形式，它是 $(1,1)$ 型的且在 M 上是总次数 2 的形式。又因 M 是实 2 维的，故无高于 2 次的非零形式，从而 $d\omega = 0$。根据 2.3 引理 3，g 是 Kähler 的。

定理 2 C^∞ 仿紧的殆复流形 (M, \mathcal{D}, J) 必有 Hermite 度量 \tilde{g}。

证明 因为 (M, \mathcal{D}) 是仿紧的，故存在 M 上的坐标邻域的局部有限的开覆盖 $\{U_\alpha | \alpha \in \Gamma\}$ 以及从属于它的 C^∞ 单位分解 $\{\rho_\alpha | \alpha \in \Gamma\}$，其中 $(U_\alpha, \varphi_\alpha), \{x_\alpha\}$，为局部坐标系。令

214

\[
\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^i} \right)_x = \delta_{jk},
\]

则

\[
\begin{cases}
\rho_\alpha(x)(\cdot, \cdot)_{\alpha}, & x \in U_\alpha \\
0, & x \in M - \{y \in U_\alpha | \rho_\alpha(y) > 0 \}
\end{cases}
\]

在 \(M \) 上是 \(C^\infty \) 的，记它为 \(\rho_\alpha(\cdot, \cdot)_\alpha \)。容易验证 \(g(\cdot, \cdot) = \sum_\alpha \rho_\alpha(\cdot, \cdot)_\alpha \) 为 \((M, \mathcal{D}) \) 上的 \(C^\infty \) Riemann 度量，对任意的 \(X, Y \in C^\infty(TM) \)，令

\[
\tilde{g}(X, Y) = g(X, Y) + g(JX, JY),
\]

则 \(\tilde{g}(JX, JY) = \tilde{g}(X, Y) \)，即 \(\tilde{g} \) 为 \((M, \mathcal{D}, J) \) 上的 Hermite 度量。

例 6 2 维 \(C^\infty \) 定向流形 \(M \) 上的每个殆复结构 \(J \) 必无挠（即 \(T_{x,y} = 0 \)）。

事实上，对 \(M \) 上的任何 \(C^\infty \) 切向量场 \(X \)，有

\[
\]

另一方面，在 \(x \neq 0 \) 的点的一个开邻域中，每个 \(C^\infty \) 向量场 \(Y \) 是 \(X \) 和 \(JX \) 的线性组合。由引理 2 的证明知，

\[
T_{x,y} = T_{x,x+\mu x} = \lambda T_{x,x} + \mu T_{x,x} = \lambda \cdot 0 + \mu \cdot 0 = 0.
\]

再根据 \(T_{x,y} \) 的连续性得，对任意 \(X, Y \in C^\infty(TM) \)，\(T_{x,y} = 0 \)，即 \(J \) 是无挠的。

此外，还有 2 维 \(C^\infty \) 定向流形上的每个 Riemann 度量 \(g \) 用自然的方法可定义一个殆复结构 \(J \)。为此，设 \((U_\alpha, \varphi_\alpha) \), \(\{x^1_\alpha, x^2_\alpha \} \) 为 \(M \) 上局部定向坐标系，\(\left\{ \frac{\partial}{\partial x^1_\alpha}, \frac{\partial}{\partial x^2_\alpha} \right\} \) 为局部坐标系，通过 Gram-Schmidt 正交化过程得到 \(C^\infty \) 的局部规范正交定向基 \(\{e^1_\alpha, e^2_\alpha \} \)。构造线性变换 \(TU_\alpha \rightarrow TU_\alpha \)，使得

\[
J_{U_\alpha} \left[\begin{array}{c} e^1_\alpha \\ e^2_\alpha \end{array} \right] = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \left[\begin{array}{c} e^1_\alpha \\ e^2_\alpha \end{array} \right].
\]

215
如果 \((U, \varphi, \sigma)\), \((x', x'')\) 为 \(M\) 上的另一局部定向坐标系, 类似上述的线性变换为 \(J_{V'}\), 如果 \(U \cap U' \neq \emptyset\) 则由

\[
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}^{-1}
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}^{-1}
=
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\]

得到

\[
J_{V'a} \begin{pmatrix} e_1' \\ e_2' \end{pmatrix} = J_{V'a} \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix} e_1'' \\ e_2'' \end{pmatrix}
=
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}J_{V'a} \begin{pmatrix} e_1'' \\ e_2'' \end{pmatrix}
=
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\begin{pmatrix} e_1'' \\ e_2'' \end{pmatrix}
=
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\begin{pmatrix} e_1'' \\ e_2'' \end{pmatrix}
= J_{V'a} \begin{pmatrix} e_1'' \\ e_2'' \end{pmatrix}.
\]

因此, 在 \(U \cap U'\) 中, \(J_{V'a} = J_{V'a}\), 从而可以拼成一个 \(M\) 上的整体 \(C^\infty(1, 1)\) 型张量 \(J\), 使得 \(J|_{V'a} = J_{V'a}\). 显然, 由造法, \(J^2 = -1\), 即 \(J\) 为 \(M\) 上的殆复结构.

如果 \((M, \mathcal{D})\) 为 2 维 \(C^\infty\) 定向仿紧流形, 根据定理 2, 必存在 \(C^\infty\) Riemann 度量 \(g\), 从而可构造殆复结构 \(J\). 再根据定理 2, 有 Hermite 度量 \(\tilde{g}\). 所以 \((M, \mathcal{D}, \tilde{g}, J)\) 为殆 Kähler 流形. 又因为 \(J\) 总是无挠的及例 4 的结论, 它必为 1 维 Kähler 流形.

定理 2 指出, 每个仿紧的复流形上必存在 Hermite 度量, 但是否一定存在 Kähler 度量呢? 回答是否定的. 请看下例

例 7 Hopf 曲面是不存在 Kähler 度量的复流形, 具体构造如下.

考虑 3 维球面 \(S^3 = \{z = (z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1\}\) 和 \(C^\infty\)
同胚
\[f: S^3 \times \mathbb{R} \to \mathbb{C}^2 - \{0\}, \]
\[f(z^1, z^2, t) = (e^{iz^1}, e^{iz^2}), t \in \mathbb{R}, (z^1, z^2) \in S^3 \subset \mathbb{C}^2. \]
无限循环群 \mathbb{Z} 自然地作用在 $S^3 \times \mathbb{R}$ 上，那就是，对 $m \in \mathbb{Z}$，定义映射
\[m: S^3 \times \mathbb{R} \to S^3 \times \mathbb{R}, \]
\[(z^1, z^2, t) \to (z^1, z^2, t + m). \]
易见，$(S^3 \times \mathbb{R})/\mathbb{Z}$ C^∞ 同胚于 $S^3 \times S^1$。在 C^∞ 同胚 f 下，可以将 \mathbb{Z} 在 $S^3 \times \mathbb{R}$ 上的作用转为 \mathbb{Z} 在 $\mathbb{C}^2 - \{0\}$ 上的作用，即 $m: \mathbb{C}^2 - \{0\} \to \mathbb{C}^2 - \{0\}, (e^{iz^1}, e^{iz^2}) \to (e^{i+mz^1}, e^{i+mz^2}), t \in \mathbb{R}, (z^1, z^2) \in S^3 \subset \mathbb{C}^2$，为自同胚。它是 $\mathbb{C}^2 - \{0\}$ 的自同胚群的子群，记作 Γ。容易验证，它是无不动点的严格不连续群（在 \mathbb{Z} 作用下，点的轨迹是以 0 和 ∞ 为“聚点”的离散序列）。因此群 \mathbb{Z} 和 Γ 的作用与 C^∞ 同胚 f 可交换，即有下面的交换图表:

\[
\begin{array}{ccc}
S^3 \times \mathbb{R} & \xrightarrow{f} & \mathbb{C}^2 - \{0\} \\
\downarrow & & \downarrow \\
S^3 \times S^1 \cong (S^3 \times \mathbb{R})/\mathbb{Z} & \xrightarrow{\tilde{f}} & (\mathbb{C}^2 - \{0\})/\Gamma = M
\end{array}
\]
其中垂直箭头表示自然投影。根据[Wel], p188, Proposition 5.3，M 是一个复流形。在 $	ilde{f}$ 的作用下，它 C^∞ 同胚于 $S^3 \times S^1$（因而 M 是紧致的）。值得提到的是紧致 Kähler 流形的奇数维同调群的 Betti 数是偶数（参阅[Wel], p198, Corollary 5.2 (c))。由此结论立知，奇数维 Betti 数不是偶数的紧致复流形上不存在 Kähler 度量。由于 $b_1(M) = b_1(S^3 \times S^1) = 1$ 不是偶数，故 M 不是 Kähler 流形。

Kodaira（见[Kodaira], p164, Example 6.9 指出，C^∞ 同胚于 $S^{2q+1} \times S^{2q+1}$ 的复流形 $M^4_{1,2}$ 当 p 和 q 不全为零时，不具有 Kähler 度量。
在这一节行将结束之时，我们讨论单位球面 S^n 上的殆复结构和 Kähler 度量的问题。

例 8 设 S^n 为 \mathbb{R}^{n+1} 中的单位球面。Kirchhoff（见[Ki]1.2）指出，如果 S^n 具有殆复结构，则 S^{n+1} 是绝对平行的，即具有平行的 C^∞ 基向量场。另一方面，Borel 和 Serre（见[BS]) 证明了对 $m \neq 2, 6, S^n$ 不具有殆复结构。稍后，Adams (见[Ad]) 证明了，只有对 $m + 1 = 1, 3$ 和 7，S^{n+1} 是绝对平行的。Adams 与 Kirchhoff 的结论相结合蕴含着 Borel-Serre 的结论。Adams 和 Borel-Serre 定理的证明已超出本书的范围，我们只研究 Kirchhoff 的基本结果。

设 J 为 S^n 上的殆复结构，\mathbb{R}^{n+1} 为 \mathbb{R}^{n+2} 的子空间，\mathbb{R}^{n+2} 的单位向量 e 垂直于 \mathbb{R}^{n+1}。在 S^{n+1} 上构造一个线性框架场 σ。设 $x \in S^{n+1}$，如果 $x \neq e, -e$，则 x 可唯一分解为

$$x = ae + by, a, b \in \mathbb{R}, b > 0, y \in S^n.$$

$$a = \langle x, e \rangle, by = x - ae = x - \langle x, e \rangle e, y = \frac{x - \langle x, e \rangle e}{\| x - \langle x, e \rangle e \|}, b = \| x - \langle x, e \rangle e \|$$（注意，当 $x = e, -e$ 时，分解不唯一！）。设 V_e 为 \mathbb{R}^{n+2} 中平行于切空间 $T_e S^n$ 的 \mathbb{R}^{n+2} 的 m 维子空间，J_e 为 V_e 的线性自同构，它对应于由 J 给出的 $T_e S^n$ 的线性自同构。定义线性映射 $\sigma_z : \mathbb{R}^{n+1} \to T_e S^{n+1}$，

$$\sigma_z(y) = ay - be,$$

$$\sigma_z(z) = az + bJ_e(z), \quad \forall z \in V_e.$$

(\mathbb{R}^{n+1} 由 y 和 V_e，张成，且 $\sigma_z(y)$ 和 $\sigma_z(z)$ 都与 x 正交，因此，可以将 $\sigma_z(y)$ 和 $\sigma_z(z)$ 视作 $T_e S^{n+1}$ 的元素)。设 $\{z_1, \cdots, z_m\}$ 为 V_e 中的基，容易算出 $\{\sigma_z(y), \sigma_z(z_1), \cdots, \sigma_z(z_m)\}$ 为 $T_e S^{n+1}$ 的基，从而 $\sigma_z : \mathbb{R}^{n+1} \to T_e S^{n+1}$ 为线性同构。如果定义 $\sigma : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1} = T_e S^{n+1}$ 为恒等变换 $\text{Id}_{\mathbb{R}^{n+1}}$ 及 $\sigma : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1} = T_e S^{n+1}$，$\sigma = - \text{Id}_{\mathbb{R}^{n+1}}$。则由当 $x \to e (e - e)$ 时，$b \to 0, a \to 1 (1 - 1)$ 知 σ 关于 $x \in S^{n+1}$ 是连续的。设 $\{e_1, \cdots, e_{m+1}\}$ 是 \mathbb{R}^{n+1} 中的固定基，则 $\sigma_z(e_1), \cdots, \sigma_z(e_{m+1})$ 为 $T_e S^{n+1}$ 中的基，它关于 x 是连续的，从而构造了 S^{n+1} 上的一个整体连续的基向

218
量场. 再由微分拓扑中著名的扰动定理（参阅[徐]，第 2 章），存在 S^{m+1} 中的 C^∞ 基向量场，这就证明了 S^{m+1} 是绝对平行的.

由例 6 知 2 维 C^∞ 流形 S^2 上具有 Kähler 度量，因而它为 Kähler 流形. 现可以具体证明 $S^2 \cong P^1(C)$，故它为复流形，再由例 5 中的论述得出 S^2 为 Kähler 流形. 为此，设

$$f: S^2 \to P^1(C),$$

$$f(x, y, z) = \begin{cases}
[(x - iy, 1 - z)], & x^2 + y^2 \neq 0, z \neq \pm 1, \\
[(1, 0)], & x^2 + y^2 = 0, z = 1, \\
[(0, 1)], & x^2 + y^2 = 0, z = -1.
\end{cases}$$

当 $z = \pm 1$ 时，

$$[(\frac{x - iy}{1 - z}), 1]] = [(x - iy, 1 - z)]$$

$$= [(1, \frac{1}{x - iy}], [(1, \frac{x + iy}{1 + z}].$$

由此易见 f 为 C^∞ 同胚.

此外，从上还得到启示，如果设

$$W = \dot{u} + i\dot{v} = \frac{x - iy}{1 - z}, \quad Z = u + iv = \frac{x + iy}{1 + z},$$

则有

$$\begin{cases}
\dot{u} = \frac{u}{u^2 + v^2}, \\
\dot{v} = \frac{-v}{u^2 + v^2},
\end{cases}$$

$$W = \frac{u - iv}{u^2 + v^2} = \frac{1}{u + iv} = \frac{1}{Z}.$$

因此，Z 为 $S^2 - \{(0, 0, -1)\}$ 中的复局部坐标，W 为 $S^2 - \{(0, 0, 1)\}$ 中的复局部坐标，且 $W = \frac{1}{Z}$ 为解析变换，故 S^2 为 2 维复（解析）流形.

现在我们应用 Cayley 数来构造 S^6 上的殆复结构. Cayley 数 $x = (q_1, q_2)$ 是 4 元数的有序对，它的全体形成了 R 上的 8 维非结合
代数，其加法和数乘定义如下：

\[(q_1, q_2) \pm (q'_1, q'_2) = (q_1 \pm q'_1, q_2 \pm q'_2),\]

\[(q_1, q_2)(q'_1, q'_2) = (q_1q'_1 - q'_2q_2, q'_2q_1 + q_2q'_1),\]

这里，\(\tilde{q}\) 表示 \(q\) 的 4 元数共轭，\(\tilde{x} = (q_1, -q_2)\) 表示 Cayley 数 \(x = (q_1, q_2)\) 的共轭。则 \(\tilde{x}x = (q_1\tilde{q}_1 + q_2\tilde{q}_2, 0)\)，且令 \(|x|^2 = q_1\tilde{q}_1 + q_2\tilde{q}_2\)。明显地，

\(|x| \geq 0, \text{且 } |x| = 0 \iff q_1 = q_2 = 0.\) 通过直接验证知 \(|xy| = |x||y|\)。

因此，\(xy = 0 \iff x = 0 \text{ 或 } y = 0.\) 虽然乘法结合律不成立，但所谓的交错律是成立的，即

\[x(xy) = (xx)y, (yx)x = y(xx).\]

如果 \(q_1\) 是实的且 \(q_2 = 0\)，则称 Cayley 数 \(x = (q_1, q_2)\) 是实的；如果 \(q_1\) 是纯虚 4 元数，则称 Cayley 数 \(x = (q_1, q_2)\) 为纯虚的。设 \(U_7\) 为由纯虚 Cayley 数形成的 7 维实向量空间。在 \(U_7\) 中，我们定义内积 (,) 和向量积 \(\times\) 如下：对 \(x, y \in U_7\)，

\[-(x, y) = xy \] 的实部，

\[x \times y = xy \] 的虚部。

（这是通过将 \(\mathbb{R}^3\) 视作纯虚 4 元数的空间而被定义的 \(\mathbb{R}^3\) 中内积和向量积的推广）。可以验证，如果 \(x, y, z \in U_7\)，则

(1) \(xx = -(x, x) = -|x|^2;\)

(2) \(x \times y = -y \times x;\)

(3) \((x \times y, z) = (x, y \times z)\)（关于 Cayley 数更多的细情，可参阅[J]）。设 \(S^8 = \{x \in U_7 | |x| = 1\}\) 为 \(U_7\) 中的单位截面。将其切空间 \(T_z S^8\) 与平行于它的 \(U_7\) 子空间 \(V_z = \{y \in U_7 | (x, y) = 0\}\) 相合。定义一个线性自同态 \(J_z : V_z \to V_z\)，对 \(y \in V_z\)，

\[J_z(y) = x \times y.\]

事实上，由 (2) 和 (3) 得到 \(x \times x = -x \times x, x \times x = 0, (x, x \times y) = (x \times y, x) = (0, y) = 0\)，故 \(x \times y \in V_z\)，从而 \(J_z\) 为 \(V_z\) 上的一个自同态。此外，

\[J_z^2(y) = J_z(J_z(y)) = x \times (x \times y) = x(x \times y) - (x, x \times y) = x(x \times y) = x(xy) = (xx)y\]

220
\[- \frac{1}{2} y = - y,\]
即 \(J_\star^2 = J_\star \cdot J_\star = - 1 \)。同态族 \(J_\star(x) \in S^6 \) 定义了 \(S^6 \) 上的一个殆复结构。通过直接计算可验证该殆复结构具有非零挠，即 \(T_{x,y} \neq 0 \)。因此，它不是某个复流形的殆复结构。值得提出的是，不知道 \(S^6 \) 上是否具有复结构。

2.5 单位球面上紧致极小
子流形的刚性

设 \(M^n \) 为 \(m + p \) 维单位球面 \(S^{m+p} \) 上的 \(m \) 维紧致 \(C^\infty \) 子流形，\(S = \sum_{a=m+1}^{m+p} \sum_{i=1}^{m} h^i_j \) 表示 \(C^\infty \) 浸入 \(M^n \to S^{m+p} \) 的第 2 基本形式的长度的平方。在 [Y] 中，S. T. Yan 证明了：如果平均曲率向量 \(H \) 是平行的（即 \(\nabla H = 0 \)）和

\[
S \leq m/(\sqrt{m} + 3 - \frac{1}{p - 1}).
\] (1)

则 \(M^n \) 躺在 \(S^{m+p} \) 的一个 \(C^\infty \) 全测地子流形 \(S^{m+p} \) 中。另一方面，如果 \(M^n \) 极小，根据第 1 章 1.6 定理 7，\(S = m(m - 1) - s \)，其中 \(s \) 为 \(M^n \) 的数值曲率。由于 \(s \) 与 \(M^n \) 的外围空间无关，故 \(S \) 为 \(M^n \) 的内蕴不变量；Simons (参阅 [Simo] 2) 证明了，如果 \(S \leq m/(2 - \frac{1}{p}) \) 在 \(M^n \) 上处处成立，那么 \(S = 0 \)（即 \(M^n \) 为全测地的）或者 \(S \equiv m/(2 - \frac{1}{p}) \)。

较后，S. S. Chern 等 (参阅 [Cher], 1, 2, Do Carmo and Kobayashi) 确定了 \(S^{m+p} \) 中满足 \(S \equiv m/(2 - \frac{1}{p}) \) 的所有极小子流形。即如果 \(M^n \) 是极小的和

\[
S \leq m/(2 - \frac{1}{p - 1}),
\] (2)

则 \(M^n \) 是全测地的，或 Clifford 环面或 \(S^d \) 中的 Veronese 曲面。

莫小欢 (参阅 [Mo]) 和沈一兵 (参阅 [Sh]) 分别对 (1) 和 (2) 中
的 Pinching 常数有所改进，而我们对两种类型的 Pinching 常数得到了进一步的改进（参阅 [CXY] 以及 [CX])。

设 M^n 在 S^{n+p} 中的余维数 $p \geq 2$，选择 S^{n+p} 中的局部 \mathcal{C}^∞ 规范正交基向量场 $e_1, \cdots, e_m, e_{m+1}, \cdots, e_{m+p}$，使得限制到 M^n 向量场 e_1, \cdots, e_m 切于 M^n。为方便，按惯例，取 $1 \leq A, B, C, \cdots, \leq m + p$, $1 \leq i, j, k, \cdots \leq m, m + 1 \leq \alpha, \beta, \gamma, \cdots \leq m + p$。关于上述所选 S^{n+p} 的标架场，令 $\omega_1, \cdots, \omega_{m+1}$ 为其对偶标架场，则 S^{n+p} 的结构方程由

$$
\text{d}\omega^A = - \sum_b \omega^A_b \wedge \omega^b.
$$

$$
\omega^a_b + \omega^b_a = 0.
$$

$$
\text{d}\omega^A_a = - \sum_c \omega^A_c \wedge \omega^c_a + \Omega^A_a,
$$

$$
\Omega^A_a = \frac{1}{2} \sum_{c,d} \tilde{K}_{ABCD} \omega^c \wedge \omega^d,
$$

$$
\tilde{K}_{ABCD} = \delta_{AC}\delta_{BD} - \delta_{AD}\delta_{BC}.
$$

限制这形式到 M^n，则

$$
\omega^a_i = - \sum_j h^a_{ij} \omega^i, h^a_{ij} = h^a_{ji},
$$

$$
\omega^a = 0,
$$

$$
\text{d}\omega^i_j = - \sum_k \omega^i_k \wedge \omega^j_k + \Omega^i_j,
$$

$$
\Omega^i_j = \frac{1}{2} \sum_{k,l} K_{ijkl} \omega^k \wedge \omega^l,
$$

$$
K_{ijkl} = \tilde{K}_{ijkl} + \sum_a (h^a_{ik} h^a_{jl} - h^a_{il} h^a_{jk}),
$$

$$
\text{d}\omega^a_i = - \sum_j \omega^a_j \wedge \omega^i_a + \Omega^a_i,
$$

$$
\Omega^a_i = \frac{1}{2} \sum_{k,l} K_{a,ijkl} \omega^k \wedge \omega^l,
$$

$$
K_{a,ijkl} = \sum_i (h^a_{ik} h^a_{il} - h^a_{il} h^a_{ik}).
$$
记 $h = \sum_{a,i,j} h_{a}^{i} \omega^{i} \otimes \omega^{j} \otimes e_{a}$ 为 M^{n} 的第 2 基本形式，$S = \| h \|^{2} = \sum (h_{a}^{i})^{2}$ 为 h 的长度平方。对每个 a，用 H_{a} 表示矩阵 (h_{a}^{i})，而 $H = \frac{1}{m} \sum_{a} \text{tr} H_{a} \cdot e_{a} = \frac{1}{m} \sum_{a,i} h_{a}^{i} \cdot e_{a}$ 为平均曲率向量场，其中 $\text{tr} H_{a} = \text{trace} H_{a}$。

$$\| H \| = \frac{1}{m} \sqrt{\sum_{a} (\sum_{i} h_{a}^{i})^{2}}$$

为 H 的长度。

如果平均曲率向量 H 在法丛中是平行的，即 $\nabla H = 0$，根据 2.1 引理 1(2)，$\| H \| = $ 常数（假设 M^{n} 是连通的）。假定 $H \neq 0$，令 $e_{m+1} = H / \| H \|_{}$，则我们有

$$\text{tr} H_{a} = 0 \quad (a \neq m + 1), \quad (14)$$

$$\text{tr} H_{m+1} = m \| H \|, \quad (15)$$

$$\omega_{a}^{m+1} = 0, \quad (16)$$

$$H_{m+1} H_{a} = H_{a} H_{m+1}, \quad \forall a. \quad (17)$$

引理 1 如果 $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}$ 为 $2m$ 个实数，满足 $\sum_{i=1}^{m} b_{i} = 0$，则有

$$\left[\sum_{i,j} a_{i} a_{j} (b_{i} - b_{j})^{2} \right]^{2} \leq (2m + 6) \left(\sum_{i} a_{i}^{2} \right)^{2} \left(\sum_{j} b_{j}^{2} \right)^{2}. \quad (18)$$

证明 根据 Schwarz 不等式，我们有

$$\left[\sum_{i,j} a_{i} a_{j} (b_{i} - b_{j})^{2} \right]^{2} \leq (\sum_{i} a_{i}^{2})^{2} \sum_{i,j} (b_{i} - b_{j})^{4}$$

$$= (\sum_{i} a_{i}^{2})^{2} \sum_{i,j} (b_{i}^{4} + b_{j}^{4} + 6b_{i} b_{j}^{3} - 4b_{i} b_{j}^{3} - 4b_{i}^{3} b_{j})$$

$$= (\sum_{i} a_{i}^{2})^{2} [2m \sum_{i} b_{i}^{4} + 6 (\sum_{j} b_{j}^{2})^{2}]$$

$$\leq (2m + 6) \left(\sum_{i} a_{i}^{2} \right)^{2} \left(\sum_{j} b_{j}^{2} \right)^{2}.$$
定理 1 设 M^n 为 S^{n+1} 中具有平行平均曲率向量 H 的 m 维 C^∞ 连通子流形，如果 $p \geq 2, m \geq 2, H \neq 0$，且

$$S \leq \min\{m/(2 - 1/p), m/\sqrt{m + 3/2}\}$$ \hspace{1cm} (19)$$

则 M^n 躺在 S^{n+1} 的全测地子流形 S^{m+1} 中。

证明 从[Mo], (2.3)（参阅[Y], (7.8)－(7.12))，容易看出

$$\sum_{\beta \neq m+1} h^{\beta}_{ij} \Delta h^{\beta}_{ij} \geq m \| H \| \sum_{\beta \neq m+1} \text{tr}(H_{m+1} H^{\beta}_{m+1}) - \sum_{\beta \neq m+1} \left[\text{tr}(H_{m+1} H_{\beta})\right]^2$$

$$+ m \sum_{\beta \neq m+1} \left(h^{\beta}_{ij}\right)^2 - (2 - 1/p - 1)\left[\sum_{\beta \neq m+1} \left(h^{\beta}_{ij}\right)^2\right]^2$$ \hspace{1cm} (20)$$

固定向量 $e_{\beta}(\beta \neq m+1)$，从(15) 和 (17)，令 H_{m+1} 和 H_{β} 是同时对角的，则有

$$m \| H \| \text{tr}(H_{m+1} H^{\beta}_{m+1}) - \left[\text{tr}(H_{m+1} H_{\beta})\right]^2$$

$$= \sum_{i,j} h^{m+1}_{ij} h^{m+1}_{ij} (h^{\beta}_{ij})^2 - \left(\sum_i h^{m+1}_{ij} h^{\beta}_{ij}\right)^2$$

$$= \sum_{i,j} \left[h^{m+1}_{ij} h^{m+1}_{ij} (h^{\beta}_{ij})^2 - h^{m+1}_{ij} h^{\beta}_{ij} h^{m+1}_{ij} h^{\beta}_{ij}\right]$$

$$= \frac{1}{2} \sum_{i,j} h^{m+1}_{ij} h^{m+1}_{ij} (h^{\beta}_{ij})^2 - (h^{\beta}_{ij})^2.$$ \hspace{1cm} (21)$$

注意，$\text{tr} H_{\beta} = \sum_i h^{\beta}_{ii} = 0$，由上面的引理，就得

$$m \| H \| \text{tr}(H_{m+1} H^{\beta}_{m+1}) - \left[\text{tr}(H_{m+1} H_{\beta})\right]^2$$

$$\geq -\sqrt{2m + 6} \frac{2}{\sqrt{2}} \left(\sum_i h^{m+1}_{ij}\right)^2 \left(\sum_j (h^{\beta}_{ij})^2\right)$$

$$= -\sqrt{m + 3} \frac{2}{\sqrt{2}} \left[\sum_{i,j} (h^{m+1}_{ij})^2\right] \left[\sum_{i,j} (h^{\beta}_{ij})^2\right].$$ \hspace{1cm} (22)$$

将(22)代入(20)有

$$\sum_{\beta \neq m+1} h^{\beta}_{ij} \Delta h^{\beta}_{ij}$$

224
\[
\sum_{\beta \neq m+1} (h_{ij}^\beta)^2 \{ m - \sqrt{\frac{m+3}{2}} \sum h_{ij}^{m+1} \}^2 - (2 - \frac{1}{p-1}) \sum_{\beta \neq m+1} (h_{ij}^\beta)^2 \geq \sum_{\beta \neq m+1} (h_{ij}^\beta)^2 (m - MS),
\]

其中 \(M = \max (2 - \frac{1}{p-1}, \sqrt{\frac{m+3}{2}}) \). 由题设 \(S \leq m/M \)，再由 (23) 得到

\[
\frac{1}{2} \Delta \sum_{\beta \neq m+1} (h_{ij}^\beta)^2 = \sum_{\beta \neq m+1} (h_{ij}^\beta)^2 + \sum_{\beta \neq m+1} h_{ij}^\beta \Delta h_{ij}^\beta \geq 0,
\]

根据第 1 章 1.5 定理 5，\(\sum_{\beta \neq m+1} (h_{ij}^\beta)^2 \) 为局部常值，则

\[
0 = \frac{1}{2} \Delta \sum_{\beta \neq m+1} (h_{ij}^\beta)^2
= \sum_{\beta \neq m+1} (h_{ij}^\beta)^2 + \sum_{\beta \neq m+1} h_{ij}^\beta \Delta h_{ij}^\beta,
\]

\[
0 = \sum_{\beta \neq m+1} h_{ij}^\beta \Delta h_{ij}^\beta
\]

\[
\sum_{\beta \neq m+1} (h_{ij}^\beta)^2 \{ m - \sqrt{\frac{m+3}{2}} \sum h_{ij}^{m+1} \}^2
- (2 - \frac{1}{p}) \sum_{\beta \neq m+1} (h_{ij}^\beta)^2
\]

\[
\sum_{\beta \neq m+1} (h_{ij}^\beta)^2 (m - MS) \geq 0,
\]

且此时为等式.

于是，从上式容易看到

(i) 当 \(\sqrt{\frac{m+3}{2}} > 2 - \frac{1}{p-1} \) 时，有
$$\sum_{i,j} (h_{ij}^2) = 0,$$
即 $h_{ij}^2 = 0, i, j = 1, \cdots, m, \beta = m + 2, \cdots, m + p$. 因此，$M^n$ 躺在 S^{n+1} 的全测地子流形 S^{n+1} 中；

(ii) 当 $\sqrt{m + 3}/2 \leq 2 - 1/p - 1$ 时，显然，$2 \leq m \leq 4$ 和 $\sqrt{m + 3}/2 \neq 2 - 1/p - 1$, 所以 $\sqrt{m + 3}/2 < 2 - 1/p - 1$, 由此得到 $\sum_{i,j} (k_{ij}^m)^2 = 0$ 和 $\| H \| = 0$, 这与设 $\| H \| \neq 0$ 相矛盾。

推论 1 设 $m \geq 5$，且满足定理 1 中的条件，则 M^n 在 S^{n+1} 中是全膝点的。

证明 从 [Mo] 中 2.2 节推论和当 $m \geq 5$ 时，$\sqrt{m + 3}/2 \geq 2 - 1/p - 1$, 可直接推出

$$\frac{m}{\sqrt{m + 3}/2} < 2 \sqrt{m - 1},$$
故立即得到 M^n 在 S^{n+1} 中是全膝点的。

定理 2 设 M^n 为 $m + p$ 纬单位球面 S^{m+1} 的 m 纬紧致极小子流形，即 $H = 0$. 当 S 满足

$$S \leq \frac{3m + 2}{5m + 2} m$$

时，或者

(1) M^n 为 S^{m+1} 的全测地子流形；

或者

(2) $m = 2, M^2$ 是 S^1 中的 Veronese 曲面。

证明 记

$$T_1 M = \bigcup_{x \in M^n} T_1 x M = \bigcup_{x \in M^n} \{ u \in T_1 x M \mid \| u \| = 1 \}$$

为 M^n 的单位球丛。我们定义函数

226
\[\sigma : T_1 M \to \mathbb{R}, \]
\[\sigma(u) = \langle h(u, u), h(u, u) \rangle, \forall u \in T_1 M. \tag{26} \]

因为 \(T_1 M \) 是紧致的，故连续函数 \(\sigma \) 在某个向量 \(u_0 \in T_{x_0} M(x_0 \in M^n) \)达到它的最大值。如果 \(\sigma(u_0) = 0 \)，显然，\(h = 0 \) 即 \(M^n \) 为 \(S^{n+1} \) 的全测地子流形。因此，下面设 \(\sigma(u_0) \neq 0 \)。在 \(x_0 \) 的开邻域中，我们选择一个局部 \(C^{\infty} \) 的规范正交标架场，并取 \(e_1 = u_0 \) 和在 \(x_0 \) 令
\[e_{m+1} = h(u_0, u_0)/\| h(u_0, u_0) \|, \tag{27} \]
则有
\[h_{11}^2 = 0, \quad a \neq m + 1. \tag{28} \]

因为 \(e_1 \) 是最大方向，所以在点 \(x_0 \) 对任何 \(t, x^2, \cdots, x^m \in \mathbb{R} \)，有
\[\sigma(e_1 + t \sum_{k=2}^{m} x^k e_k) \leq 1 + t^2 \sum_{k=2}^{m} (x^k)^2 (h_{11}^{m+1})^2. \tag{29} \]

关于 \(t \) 展开(29)式得到
\[4th_{11}^{m+1} \sum_{k=2}^{m} x^k h_{11}^{m+1} + O(t^2) \leq 0, \]
\[h_{11}^{m+1} \sum_{k=2}^{m} x^k h_{11}^{m+1} = 0, \]
\[\sum_{k=2}^{m} x^k h_{11}^{m+1} = 0 \quad (\text{由} \ 0 \neq \sigma(u_0) = \sigma(e_1)) \]
\[= \langle h(e_1, e_1), h(e_1, e_1) \rangle \]
\[= \sum_a (h_{11}^a)^2 = (h_{11}^{m+1})^2. \]

由此得到在点 \(x_0 \) 有
\[h_{11}^{m+1} = 0 \quad (k \neq 1). \tag{30} \]

选择 \(x_0 \in M^n \) 处的局部 \(C^{\infty} \) 标架 \(e_2, \cdots, e_m \) 使得 \(H_{m+1} \) 是对角型的，即
\[h_{ij}^{m+1} = 0 \quad (i \neq j). \tag{31} \]

关于 \(t \) 再一次展开(29)得到
\[-2t^2 \{ \sum_{i \neq 1} (h_{11}^{m+1} - h_{ii}^{m+1}) - 2 \sum_{a \neq m + 1} (h_{ii}^a)^2 \} (x^i)^2. \]
由此，对固定的 i，在点 x_0 处有

$$\sum_{\alpha \neq m + 1} \sum_{i, j \neq 1} k_{\alpha i}^2 k_{\alpha j}^2 + O(t^3) \leq 0.$$

(32)

由上面的 (28) 式和下面的引理 2；

$$\sum_a (h_{11}^{m+1})^2 + \sum_a h_{ii}^2 h_{11}^{m+1} \leq 0,$$

在点 x_0 处对任意 i 有

$$h_{11}^{m+1} h_{11}^{m+1} \leq 0.$$

(33)

假设 M^m 在 S^{m+1} 中不是全测地的，由 (27) 的约定，我们有 (28)－(33)。对于 $u = \sum_i u_i e_i \in T_{1} M$,

$$\sigma(e_i) = (h_{11}^{m+1})^2 = \max_{u \in T_{1} M} \sigma(u).$$

(34)

此外，由 $|h_{ii}^{m+1}|^2 = \sigma(e_i) \leq \sigma(e_i) = |h_{11}^{m+1}|^2$ 得到

$$|h_{11}^{m+1}| = \max_i |h_{ii}^{m+1}|.$$

(35)

将 (32) 对指标 i 求和，并由 $H = 0$ 蕴涵着 $\sum_i h_{ii}^{m+1} = 0$ 推得

$$2 \sum_{\alpha \neq m + 1} (h_{\alpha i}^2)^2 \leq \sum_i (h_{11}^{m+1})^2 (h_{11}^{m+1} - h_{ii}^{m+1})$$

$$= m(h_{11}^{m+1})^2 - h_{11}^{m+1} \sum_i h_{ii}^{m+1}$$

$$= m(h_{11}^{m+1})^2 = m \sigma(e_i).$$

(36)

另一方面，从 (32) 和 (35)，有

$$2 \sum_{\alpha \neq m + 1} (h_{\alpha i}^2)^2 \leq h_{11}^{m+1} (h_{11}^{m+1} - h_{ii}^{m+1}) \leq 2 (h_{11}^{m+1})^2,$$

$$\sum_{\alpha \neq m + 1} (h_{\alpha i}^2)^2 \leq (h_{11}^{m+1})^2 = \sigma(e_i).$$

(37)

将 (33) 关于 i 求和，并应用 (31)，(10)，(13) 和 Ricci 恒等式（参阅 [Y]），就得到

228
\[0 \geq 2 \sum_{i} h_{11}^{m+1} h_{11i}^{m+1} = \sum_{i} h_{11i}^{m+1} (h_{11i}^{m+1} - h_{11i}^{m+1}) \]

\[= \sum_{i} h_{11i}^{m+1} (h_{11i}^{m+1} K_{11i} + h_{11i}^{m+1} K_{11i}) + h_{11i}^{m+1} \sum_{a,i} h_{11a}^o K_{a,m+1,i} \]

\[= \sum_{i} h_{11i}^{m+1} (h_{11i}^{m+1} - h_{11i}^{m+1}) K_{11i} + h_{11i}^{m+1} \sum_{a,i} h_{11a}^o K_{a,m+1,i} \]

\[= \sum_{i} (h_{11i}^{m+1} - h_{11i}^{m+1}) \{-1 + \sum_{a,i} [(h_{11i}^{o})^2 - h_{11i}^o h_{11i}^o] \}
+ h_{11i}^{m+1} \sum_{a,i} h_{11i}^o (h_{11i}^{m+1} - h_{11i}^{m+1}) \]

\[= m\sigma(e_1) + \sum_{a,i} h_{11i}^{m+1} h_{11i}^{m+1} (h_{11i}^{o})^2 - \sigma(e_1) \sum_{a,i} (h_{11i}^{o})^2 \]

\[- \sigma(e_1) \sum_{i} (h_{11i}^{m+1})^2 + h_{11i}^{m+1} \sum_{a,i} (h_{11i}^{o})^2 (h_{11i}^{m+1}) - \sigma(e_1) \sum_{a,i} (h_{11i}^{o})^2 \]

\[= m\sigma(e_1) - 2\sigma(e_1) \sum_{a\neq m+1} (h_{11i}^{o})^2 - \sigma(e_1) \sum_{i} (h_{11i}^{m+1})^2 \]

\[+ 2 \sum_{a\neq m+1} h_{11i}^{m+1} h_{11i}^{m+1} (h_{11i}^{o})^2. \]

将 \(2h_{11i}^{m+1} h_{11i}^{m+1} \geq - (h_{11i}^{m+1})^2 - (h_{11i}^{m+1})^2\) 代入 (38)，再由 (28), (35), (36) 和 (37) 得到

\[0 \geq m\sigma(e_1) - \sum_{a\neq m+1} (h_{11i}^{o})^2 - \sigma(e_1) \sum_{i} (h_{11i}^{m+1})^2 \]

\[- (\lambda + \mu) \sum_{a\neq m+1} (h_{11i}^{m+1})^2 (h_{11i}^{o})^2 \]

\[\geq m\sigma(e_1) - (3 + \lambda) \sigma(e_1) \sum_{i} (h_{11i}^{o})^2 - \sigma(e_1) \sum_{i} (h_{11i}^{m+1})^2 \]

\[- \mu\sigma(e_1) \sum_{i\neq 1} (h_{11i}^{m+1})^2 \]

\[= m\sigma(e_1) - (3 + \lambda) \sigma(e_1) \sum_{a\neq m+1} (h_{11i}^{o})^2 \]

229
\[-(1 + \mu)\sigma(e_1) \sum_i (h_m^{n+1})^2 + \mu \sigma^2(e_1) \geq m\sigma(e_1) - (3 + \lambda - \frac{2\mu}{m}) \sigma(e_1) \sum_{\alpha \neq m+1} (h_{\alpha}^n)^2 - (1 + \mu)\sigma(e_1) \sum_i (h_m^{n+1})^2, \tag{39}\]

其中 \(\lambda \geq 0, \mu \geq 0, \lambda + \mu = 1\). 取 \(\lambda = \frac{m + 2}{3m + 2}\), 则 \(1 + \mu = \frac{5m + 2}{3m + 2}\),

\[3 + \lambda - \frac{2\mu}{m} = \frac{10m + 4}{3m + 2}.\]

将它们代入(39)，并由题设得到

\[0 \geq \sigma(e_1) \left\{ m - \frac{5m + 2}{3m + 2} \left[2 \sum_{\alpha \neq m+1} (h_{\alpha}^n)^2 + \sum_i (h_m^{n+1})^2 \right] \right\} \]

\[\geq \sigma(e_1) (m - \frac{5m + 2}{3m + 2} S) \geq 0.\]

从 \(\sigma(e_1) \neq 0\) 立即有 \(S = \frac{3m + 2}{5m + 2} m\). 所以，前面的不等式成为等式，从而 \(|h_m^{n+1}| = |h_{m+1}^n| \ (i \neq 1)\). 由(37)，我们知道

\[\sum_{\alpha \neq m+1} (h_{\alpha}^n)^2 = (h_{m+1}^n)^2. \tag{40}\]

将(40)代入(32)，容易看到

\[h_m^{n+1} = - h_{m+1}^n, \quad i \neq 1. \tag{41}\]

但是，\(0 = \sum_{i=1}^m h_{i+1}^n = h_{m+1}^n - (m - 1) h_{m+1}^n = - (m - 2) h_{m+1}^n\) 蕴涵着

\(m = 2\). 于是，定理的条件成为 \(S \leq \frac{4}{3}\)，根据第1章1.6定理7, \(M^2\) 的 Riemann 截曲率

\[\frac{1}{2} S = \frac{1}{2} \left[2(2 - 1) + 2^2 ||H||^2 - ||k||^2 \right] = 1 - \frac{1}{2} S \geq 1 - \frac{1}{2} \cdot \frac{4}{3} = \frac{1}{3}.\]

由[1]中的结论知，\(M^2\) 是 \(S^4\) 中的 Veronese 曲面.

引理 2 \[\sum_i (h_{1i}^n)^2 + \sum_{i,j} h_{1i}^n h_{1j} = 0.\]

证明 设 \(u_0 = \sum_i v^i e_i \in T_{l_0}M, x_0 \in M^n\)，对任何 \(u = \sum_i u^i e_i \in \)

230
$T_{x_0}M$，令 $\gamma_*(t)$ 为 M^n 中满足 $\gamma_*(0) = x_0, \gamma'_*(0) = u$ 的测地线。将 u_0
沿 $\gamma_*(t)$ 平行移动得到局部 C^∞ 向量场 $v_*(t) = \sum v'(t)e_i$ 满足 $v'(0) = v$, 再令

$$
\sigma_*(t) = \sigma(v_*(t)) = \langle h(v_*(t), v_*(t)), h(v_*(t), v_*(t)) \rangle,
$$

由极大值条件便得

$$
\left. \frac{d}{dt} \sigma_*(t) \right|_{t=0} = 0,
$$

$$
\left. \frac{d^2}{dt^2} \sigma_*(t) \right|_{t=0} \leq 0,
$$

也就是

$$
\nabla_{\gamma'_*(t)} \langle h(v_*(t), v_*(t)), h(v_*(t), v_*(t)) \rangle |_{t=0} = 0,
$$

$$
\nabla_{\gamma'_*(t)} \nabla_{\gamma'_*(t)} \langle h(v_*(t), v_*(t)), h(v_*(t), v_*(t)) \rangle |_{t=0} \leq 0.
$$

于是可以推得

$$
\langle h(v_*(t), v_*(t)), (\nabla h)(v_*(t), v_*(t), \gamma'_*(t)) \rangle |_{t=0} = 0,
$$

$$
\| (\nabla h)(v_*(t), v_*(t), \gamma'_*(t)) \|^2 |_{t=0}
$$

$$
+ \langle (\nabla \nabla h)(v_*(t), v_*(t), \gamma'_*(t), \gamma'_*(t)), h(v_*(t), v_*(t)) \rangle |_{t=0} \leq 0.
$$

在 x_0 处令 $\gamma'_*(0) = u_i$, 则由上式即得

$$
\sum_{\alpha} (h_{\alpha i}^2)^2 + \sum_{\alpha} h_{\alpha i}^2 h_{\alpha i}^2 \leq 0.
$$

推论 2 设 M^n 为 S^{n+r} 中的 m 维紧致极小子流形，如果 $m \geq 3$
和 $S(x_0) \leq \frac{3m + 2}{5m + 2} m$, 则 M^n 是全测地的，其中 x_0 为定理 2 的证明
中的特殊点。

证明 (反证) 假设 M^n 不是全测地的，即 $\sigma(e_1) \neq 0$. 由此和题
设不等式得到

$$
0 \geq \sigma(e_1) \{ m - \frac{5m + 2}{3m + 2} S(x_0) \} \geq 0,
$$

从而

$$
S(x_0) = \frac{3m + 2}{5m + 2} m.
$$
用定理 2 证明中相同的方法，有 $h_i^{m+1} = - h_i^{m+1} (i \neq 1)$，但是，$0 = \sum_{i=1}^{n} h_i^{m+1} = h_i^{11} - (m - 1)h_i^{11} = - (m - 2)h_i^{11}$ 蕴涵着 $m = 2$，这与题设 $m \geqslant 3$ 相矛盾。

为了改进 Simons 型常数，我们仿照向量函数

$$\sigma(u) = \langle h(u, u), h(u, u) \rangle, \quad \forall u \in T_1M$$

构造新函数

$$f(x) = \max_{u, v \in T_1 M} \| h(u, u) - h(v, v) \|^2. \quad (42)$$

显然，M^n 是全测地的 $\Leftrightarrow \sigma = 0$。因此，$\sigma$ 是衡量 M^n 是否全测地的函数，而下面的引理表明 f 为衡量 M^n 是否全测点的函数。

引理 3 M^n 是全测的 $\Leftrightarrow f \equiv 0$。

证明 参阅第 2 章 2.1 引理 3(6)。

对 $x \in M$，假设

$$f(x) = \| h(u_0, u_0) - h(v_0, v_0) \|^2 \neq 0, u_0, v_0 \in T_1M, \quad (43)$$

在 x 点处，选择适当的规范正交标架 (e_i) 使得

$$e_{m+1} = \frac{1}{\sqrt{f(x)}} [h(u_0, u_0) - h(v_0, v_0)] \quad (44)$$

和矩阵 h_i^{m+1} 满足

$$h_1^{m+1} \geqslant h_2^{m+1} \geqslant \cdots \geqslant h_{m+1}^{m+1}, \quad h_i^{m+1} = 0 \ (i \neq j). \quad (45)$$

在这样选择的规范正交标架下，如果 $u_0 = \sum_i x_i e_i, v_0 = \sum_i y_i e_i$，则

$$f(x) = \| h(u_0, u_0) - h(v_0, v_0) \|^2$$

$$= \| \sum_{i, j} (x_i x_j - y_i y_j) h_i^{m+1} e_{m+1} \| ^2$$

$$= \| \sum_{i, j} (x_i x_j - y_i y_j) h_i^{m+1} e_{m+1} \| ^2$$

$$= \sum_i [(x_i)^2 - (y_i)^2] h_i^{m+1} e_{m+1} ^2 \leqslant (h_1^{m+1} - h_{m+1}^{m+1})^2,$$

因为 $\| h(e_1, e_1) - h(e_m, e_m) \|^2 = ((1^2 - 0^2) h_1^{m+1} + (0^2 - 1^2) h_{m+1}^{m+1})^2$

$$= (h_1^{m+1} - h_{m+1}^{m+1})^2$，所以

$$f(x) = (h_1^{m+1} - h_{m+1}^{m+1})^2.$$
如果取 \(u_0 = e_1, v_0 = e_m \)，则在上述所选的规范正交标架下，由于
\[h(e_1, e_1) - h(e_m, e_m) \] 与 \(e_{m+1} \) 平行，就有
\[h^a_{11} = h^a_{mm}, \quad a \neq m + 1. \tag{46} \]
取 \(e_i, e_i \in T_xM \)，显然，
\[u = \frac{1}{\sqrt{2}} (e_i + e_j) \in T_xM, v = \frac{1}{\sqrt{2}} (e_i - e_j) \]
\(\in T_xM \)，则
\[\sum_a [h^a_{ij}(x)]^2 = \| h(e_i, e_j) \|^2 \]
\[= \| h\left(\frac{1}{\sqrt{2}}(u + v), \frac{1}{\sqrt{2}}(u - v)\right) \|^2 \]
\[= \frac{1}{4} \| h(u + v, u - v) \|^2 \]
\[= \frac{1}{4} \| h(u, u) - h(v, v) \|^2 \]
\[\leq \frac{1}{4} f(x). \tag{47} \]
在 \(M \) 上，由
\[H_{ijkl} = \sum_a h^a_{ij}h^a_{kl} \tag{48} \]
定义 \(C^\infty \) 张量场 \(H = (H_{ijkl}) \)。清楚地，在上述的规范正交标架下，
\[f(x) = (h^{m+1}_{11} - h^{m+1}_{mm})^2 \]
\[= (h^{m+1}_{11})^2 + (h^{m+1}_{mm})^2 - 2h^{m+1}_{11}h^{m+1}_{mm} \]
\[= \sum_a (h^a_{11})^2 + \sum_a (h^a_{mm})^2 - 2 \sum_a h^a_{11}h^a_{mm} \]
\[= H_{1111} + H_{mmmm} - 2H_{11mm} \tag{49} \]
记
\[\Delta(1, m) = (\Delta H)_{1111} + (\Delta H)_{mmmm} - 2(\Delta H)_{11mm}, \tag{50} \]
其中 \(\Delta \) 为 \(M \) 上的拉普拉斯算子。

引理 4 设 \(M^m \) 为 \(S^{m+r} \) 中的 \(m \) 维 \(C^\infty \) 极小子流形，\(x \in M^m, f(x) \neq 0 \)，则在 \(x \) 点处有上述所选的规范正交标架，且

233
\[(1) \quad \frac{1}{2} A(1, m) \geq (h_{11}^{m+1} - h_{mm}^{m+1})^2 (m - \frac{3}{2} S); \quad (51) \]

\[(2) \quad \text{如果 } S(x) \leq \frac{2}{3}, \text{ 则 } (a) A(1, m) \geq 0, \text{ 进一步 } (b) \text{ 若 } A(1, m) = 0, \text{ 那么 } S = \frac{2}{3} \text{ 及} \]

\[\begin{align*}
& h_{ii}^{m+1} = 0, \quad i \neq 1, m \\
& h_{ij}^c = 0, \quad (i, j) \neq (1, m) \\
& \sum_a (h_{1a}^a)^2 = (h_{11}^{m+1})^2 = (h_{mm}^{m+1})^2 = \frac{m}{6}. \quad (52)
\end{align*} \]

证明

(1) 设 \(\nabla h = (h_{ij}) \) 和 \(\nabla^2 h = (h_{ij}^{ab}) \) 分别为 \(h \) 的 1 阶和 2 阶协变导数。从第 2 基本形式 \(h \) 的 Laplace 的公式（参阅[Simô]、或[Cher]、Do Carmo and Kobayashi, (2. 9)–(2. 20)），有（参阅[CX]）

\[\begin{align*}
\frac{1}{2} (AH)_{1111} &= \sum_{a, i} [h_{i1}^a h_{11i}^a + (h_{11i}^a)^2] \\
\frac{1}{2} (AH)_{mmmm} &= \sum_{a, i} [h_{mm}^a h_{mmi}^a + (h_{mmi}^a)^2] \\
(AH)_{11mm} &= \sum_{a, i} [h_{i1}^a h_{mmi}^a + (h_{mmi}^a h_{11i}^a) + 2h_{11i}^a h_{mmi}^a],
\end{align*} \]

234
\[
\begin{align*}
\sum_t h_{11}^{m+1} &= mh_{11}^{m+1} + \sum_{\alpha, t} (h_{11}^{m+1} - h_{tt}^{m+1})h_{1t}^{\alpha}h_{tt}^{\alpha} \\
&\quad - 2 \sum_{\alpha, t} (h_{11}^{m+1} - h_{tt}^{m+1})(h_{1t}^{\alpha})^2 \\
\sum_i h_{mm}^{m+1} &= mh_{mm}^{m+1} + \sum_{\alpha, t} (h_{mm}^{m+1} - h_{tt}^{m+1})h_{mm}^{\alpha}h_{tt}^{\alpha} \\
&\quad - 2 \sum_{\alpha, t} (h_{mm}^{m+1} - h_{tt}^{m+1})(h_{mi}^{\alpha})^2.
\end{align*}
\] (54)

因为 M^m 是极小的（即 $\sum_i h_{ii}^m = 0$），故利用 (45), (46), (53) 和 (54) 可以得到

\[
\frac{1}{2} \Delta(1, m) = \frac{1}{2} (\Delta H)_{1111} + \frac{1}{2} (\Delta H)_{mmmm} - (\Delta H)_{11mm}
\]

\[
= \sum_{\alpha, t} [h_{11}^\alpha h_{11}^{\alpha} + (h_{11}^\alpha)^2] + \sum_{\alpha, t} [h_{mm}^\alpha h_{mm}^{\alpha} + (h_{mm}^{\alpha})^2] \\
\quad - \sum_{\alpha, t} [h_{11}^\alpha h_{mm}^{\alpha} + h_{mm}^\alpha h_{11}^{\alpha} + 2h_{11}^\alpha h_{mm}^{\alpha}] \\
= \sum_{\alpha, t} (h_{11}^\alpha - h_{mm}^\alpha)(h_{11}^\alpha - h_{mm}^\alpha) + \sum_{\alpha, t} (h_{11}^\alpha - h_{mm}^\alpha)^2 \\
\geq \sum_i (h_{11}^{m+1} - h_{mm}^{m+1})(h_{11}^{m+1} - h_{mm}^{m+1}) \\
= (h_{11}^{m+1} - h_{mm}^{m+1})^2 \{m + \sum_i (h_{11}^{m+1} - h_{tt}^{m+1})h_{1t}^{m+1}\} \\
- 2(h_{11}^{m+1} - h_{mm}^{m+1}) \sum_{\alpha, t} (h_{11}^{m+1} - h_{tt}^{m+1})(h_{1t}^{\alpha})^2 \\
+ 2(h_{11}^{m+1} - h_{mm}^{m+1}) \sum_{\alpha, t} (h_{mm}^{m+1} - h_{tt}^{m+1})(h_{mt}^{\alpha})^2 \\
\geq (h_{11}^{m+1} - h_{mm}^{m+1})^2 \{m + \sum_i (h_{11}^{m+1} - h_{tt}^{m+1})h_{1t}^{m+1}\} \\
- 2(h_{11}^{m+1} - h_{mm}^{m+1}) \sum_{\alpha, t \neq 1} (h_{11}^{m+1} - h_{tt}^{m+1})(h_{1t}^{\alpha})^2 \\
+ 2(h_{11}^{m+1} - h_{mm}^{m+1}) \sum_{\alpha, t \neq m} (h_{mm}^{m+1} - h_{tt}^{m+1})(h_{mt}^{\alpha})^2
\]
\[\begin{align*}
&= (h_{i1}^{m+1} - h_{mm}^{m+1})^2 \{ m - \sum_i (h_i^{m+1})^2 \} \\
&\quad - 2 \sum_{a, i \neq 1} (h_a^i)^2 - 2 \sum_{a, i \neq m} (h_a^m)^2 \} \]
\[\geq f(x) \{ m - S - \frac{S}{2} \} \]
\[\geq f(x) \{ m - S - \frac{3}{2}S \}, \tag{55} \]

其中最后一个不等号是应用(47)通过下面的推导实现的:

\[2 \sum_a (h_{im}^a)^2 \leq \frac{1}{4} (h_{i1}^{m+1} - h_{mm}^{m+1})^2 + \sum_a (h_{im}^a)^2 \]
\[\leq \frac{1}{2} [(h_{i1}^{m+1})^2 + (h_{mm}^{m+1})^2] + \sum_a (h_{im}^a)^2 \]
\[\leq \frac{1}{2} S. \tag{56} \]

(2) 如果 \(S(x) \leq \frac{2}{3} m \), 则

(a) \(A(1,m) \geq f(x) \{ m - \frac{3}{2} S \} \geq 0. \)

(b) 若 \(A(1,m) = 0 \), 则 \(m - \frac{3}{2} S = 0 \), 即 \(S = \frac{2}{3} m \), 且(56)为等式，即

\[S(x) = 2 \sum_a (h_{im}^a)^2 + (h_{i1}^{m+1})^2 + (h_{mm}^{m+1})^2. \]

由此和 \(S(x) \) 的定义得到

\[\begin{cases}
 h_{i1}^{m+1} = 0, & i \neq 1, m \\
 h_{ij}^a = 0, & (i,j) \neq (1,m) \\
 \sum_a (h_{im}^a)^2 = (h_{i1}^{m+1})^2 = (h_{mm}^{m+1})^2 = \frac{m}{6}.
\end{cases} \]

清楚地，\(f(x) \) 为 \(M^n \) 上的连续函数. 关于 \(f \), 有与[Ca], Lemma 3

相同的结论.

236
引理 5 设 M^n 为 S^{n+r} 中的 m 维 C^∞ 连通极小子流形，如果在 M^n 上 $S \leq \frac{2}{3} m$，则 $f(x)$ 在 M^n 上为常值函数。

证明 固定 $x \in M^n$，设 U_x 为 x 的割迹内某个开邻域，$y \in U_x$。

$u(y), v(y)$ 为 $e_1 = u(x), e_m = v(x)$ 沿连接 x 到 y 的唯一测地线平行移动得到的 M^n 的切向量。定义

$$g_i(y) = \| h(u(y), u(y)) - h(v(y), v(y)) \|^2,$$

则

$$\Delta g_i(x) = \Delta H(u(y), u(y), u(y), u(y)) + H(v(y), v(y), v(y), v(y))$$

$$- 2H(u(y), u(y), v(y), v(y)) \biggr|_{y=x} = \Delta(1, m) \quad (由(49) 和(50)).$$

如果 $f(x) \neq 0$，从引理 4，$\Delta(1, m) \geq 0$；如果 $f(x) = 0$，由第 2 章 2.1 引理 3(6)，$h^a_{ij}(x) = 0 \quad \forall \ \alpha, i, j$，由此及 (52)，就得到 $\Delta(1, m) = \sum_{a, i, j} (h^a_{11} - h^a_{mm})^2 \geq 0$。

对于连续函数的 Laplace，我们有推广的定义

$$(\Delta f)(x) = c \lim_{r \to 0} r^{-2} \left\{ \int_{B_r(x)} f / \int_{B_r(x)} 1 - f(x) \right\},$$

其中 c 为正常数，$B_r(x)$ 为中心在 x，半径为 r 的测地球。从该定义，f 在 M^n 上为次调和函数 $\Leftrightarrow \Delta f(x) \geq 0, \forall \ x \in M^n$。因为 $g_i(x) = f(x)$ 且在 U_x 上，$g_x \leq f$，所以 $(\Delta f)(x) = (\Delta g_x)(x) = \Delta(1, m) \geq 0$. 因此，$f(x)$ 是次调和的，从而 f 在 M^n 上是常值函数.

定理 3 设 M^n 为 $S^{n+r}(p \geq 2)$ 中的 m 维连通紧致极小子流形。如果在 M^n 上处处有 $S \leq \frac{2}{3} m$，则 M^n 必须是全测地的或是 Veronese 曲面（参照 [CX]）。

证明 从引理 5 知道 $f(x)$ 在 M^n 上是常值函数。如果 $f(x) = 0$，则 M^n 是全测地的；假设 $f(x) \neq 0$，由引理 4 和 5，

$$\Delta f(x) \geq \Delta g_i(x) = \Delta(1, m) \geq 0,$$

$$\Delta(1, m) = 0,$$

237
从而 $S = \frac{2}{3}m$ 和 (52) 成立，故再由 (10), (13), (44), (45), (46) 得到

$$K_{i_{1}i_{1}} = 1 + \sum_{a} [h_{i_{1}}^{a} h_{i_{1}}^{a} - (h_{i_{1}}^{a})^2]$$

$$= \begin{cases}
1, & i = 2, \cdots, m - 1, \\
1 - \frac{m}{3}, & i = m.
\end{cases} \quad (57)$$

$$K_{i_{m}i_{1}} = 1 + \sum_{a} [h_{m}^{a} h_{i_{1}}^{a} - (h_{m}^{a})^2]$$

$$= \begin{cases}
1, & i = 2, \cdots, m - 1, \\
1 - \frac{m}{3}, & i = 1.
\end{cases} \quad (58)$$

$$K_{i_{a}i_{1}} = \sum_{k} (h_{i_{1}}^{k} h_{i_{1}}^{k} - h_{i_{1}}^{k} h_{i_{1}}^{k})$$

$$= \begin{cases}
2h_{m+1}^{k} h_{i_{1}}^{k}, & \alpha = m + 1, i = m, \\
-2h_{m+1}^{k} h_{i_{1}}^{k}, & \beta = m + 1, i = m, \\
0, & \text{其他情形}.
\end{cases} \quad (59)$$

利用这些结论，并直接计算得到

$$\begin{cases}
\sum_{i} h_{11}^{m+1} h_{11}^{m+1} = 0 \\
\sum_{i} h_{mm}^{m+1} h_{mm}^{m+1} = 0 \\
\sum_{a,i} h_{i_{1}i_{1}}^{a} h_{i_{1}i_{1}}^{a} = 0.
\end{cases} \quad (60)$$

另一方面，由 $S = \frac{2}{3}m$ 为常值，就有

$$0 = \Delta S = \sum_{a,i,j,k} (h_{ij}^{a})^2 + \sum_{a,i,j,k} h_{ij}^{a} h_{ij}^{a}$$

$$= \sum_{a,i,j,k} (h_{ij}^{a})^2 + \sum_{i} h_{11}^{m+1} h_{11}^{m+1} + \sum_{i} h_{mm}^{m+1} h_{mm}^{m+1}$$

$$+ 2 \sum_{a,i} h_{i_{1}i_{1}}^{a} h_{i_{1}i_{1}}^{a}$$

238
\[\sum_{a, i, j, k} (h_{ijkl}^a)^2, \]

这就蕴含着 \(h_{ijkl}^a = 0 \) (\(\forall \ a, i, j, k \)), 即 \(M^n \) 的第 2 基本形式 \(h \) 是平行的。

因为满足 (44)ー(46) 的规范正交标架 \(\{ e_i \} \) 是在 \(M^n \) 的每个点处选择的, 它可以不是局部 \(C^\infty \) 的; 但是, 对 \(x \in M^n \), 规范正交标架 \(\{ e_i \} \) 可沿满足 \(\gamma(0) = x \) 的任何测地线 \(\gamma(t) \) 平行移动, 因为

\[\frac{d h_{ijkl}^{a+1}}{dt} = \frac{d}{dt} \langle h(e_1, e_2), e_{a+1} \rangle = 0, \quad j = 2, \cdots, m - 1, \]

这就意味着对任何 \(x \in M^n, \)

\[\frac{d h_{ijkl}^{a+1}}{dx} = 0, \quad j = 2, \cdots, m - 1. \] (61)

同理有

\[\frac{d h_{ijkl}^{a+1}}{dx} = 0, \quad j = 2, \cdots, m - 1. \] (62)

从 \(M^n \) 的结构方程 (见 [CCK] 和 (61)), 对 \(2 \leq j \leq m - 1 \), 有

\[0 = \frac{d h_{ijkl}^{a+1}}{dt} = \sum_i h_{ijkl}^{a+1} \omega_i^o + \sum_i h_{ijkl}^{a+1} \omega_i^o - \sum_j h_{ijkl} \omega_j \]

\[= h_{ijkl}^{a+1} \omega_i^o, \quad \omega_i^o = 0, \quad j = 2, \cdots, m - 1. \quad \text{(63)} \]

同理, \(\omega_i^o = 0, j = 2, \cdots, m - 1. \) 此外, 从 Cardan 结构方程得到

\[d \omega_i^o = - \sum_i \omega_i^o \wedge \omega_i^o + \omega_i^o \wedge \omega_i^o, \quad j = 2, \cdots, m - 1. \]

从而

\[\omega_i^o \wedge \omega_i^o = 0, \quad j = 2, \cdots, m - 1. \]

因为 \(\omega_i^o, \cdots, \omega_m^o \) 是规范正交的, 所以必须 \(m = 2 \).

由于 \(m = 2 \), 所以 \(S = \frac{4}{3} \), 即 \(M^n = M^2 \) 的 Riemann 裁曲率等于 \(\frac{1}{3} \). 从 [1] 的结果, \(M^2 \) 必须是 \(S^4 \) 中的 Veronese 曲面.

注 1 定理的另一证法可参阅 [LL].

关于定理 1, 何太平在下面的定理 4 中 (参阅 [何]) 将 S. T. Yau 所得到的 Simons 型常数 \(m/(\sqrt{m + 3 - \frac{1}{p - 1}}) \) 改进到
2. \(\sqrt{m - 1} (m \geq 8) \) 这样的最佳情形，并给出了 \(M^m \) 在此时的几何分类.

定理 4 设 \(M^m \) 为 \(m + p \) 维单位球面 \(S^{m+p} \) 中具有非零平行平均曲率向量的 \(m \) 维 \(C^\infty \) 形状紧致连通子流形．

(1) 如果 \(m \geq 8 \) 或 \(m \geq 3 \) 且 \(p \leq 2, S \leq 2 \sqrt{m - 1} \)，则或者 \(S = m \parallel H \parallel^2 \)，此时 \(M^m \) 为 \(S^{m+p} \) 的全测地子流形 \(S^{m+1} \) 的全圆超曲面，即 \(M^m \) 等距于 \(m \) 维球面；或者 \(S \neq m \parallel H \parallel^2 \) 而 \(S = 2 \sqrt{m - 1} \)，此时 \(M^m \) 为 \(S^{m+p} \) 的全测地子流形 \(S^{m+1} \) 中的一个 \(m - 1 \) 维常截曲率流形 \(M_1 \) 和一条曲线 \(M_2 \) 的直积 \(M_1 \times M_2 \)．

(2) 如果 \(2 < m \leq 7, S \leq \frac{2}{3} m \)，则 \(M^m \) 是全圆的，即 \(M^m \) 等距于一个 \(m \) 维球面．

例 1 何太平还给出了一个例子，说明定理 4 当 \(m \geq 8 \) 或 \(m \geq 3 \) 且 \(p \leq 2 \) 时，\(S = 2 \sqrt{m - 1} \) 是最佳的 Simons 型 Pinching 常数．

设 \(S^m(r) \) 为 \(R^{m+1} \) 中的以原点 \(O \) 为中心、\(r \) 为半径的 \(m \) 维球面．

令

\[
M_1 = S^{m-1} \left(\frac{1}{\sqrt{1 + (m - 1)^{1/2}}} \right), \quad M_2 = S^1 \left(\frac{1}{\sqrt{1 + (m - 1)^{1/2}}} \right).
\]

按下面的方式将 \(M_1 \times M_2 \) 嵌入 \(S^{m+1} \) 中：设 \((u, v) \in M_1 \times M_2 \)，这里 \(u \) (或 \(v \)) 是 \(R^m \) (或 \(R^2 \)) 中长为 \(\sqrt{1 + (m - 1)^{1/2}} \) (或 \(\sqrt{1 + (m - 1)^{1/2}} \)) 的向量，视 \((u, v) \) 为 \(R^{m+2} \) 的一个单位向量，同 [Cher]，Do Carmo and Kobayashi 中的讨论可证，\(M_1 \times M_2 \) 是 \(S^{m+1} \) 中具有非零平行平均曲率向量，且 \(S = 2 \sqrt{m - 1} \) 的紧致子流形．

第 2 章习题

1. 在 2.2 例 4 中，设 \(ds^2 \) 为 \(S^4(1) \) 上的标准度量张量．证明

240
\[\psi^* ds^2 = dx \otimes dx + dy \otimes dy + dz \otimes dz, \]
从而推得 \(\psi \) 为 \(C^\infty \) 等距浸入.

2. 验证 2.1 中第 2 基本形式长度平方
\[S = \sum_{i=1}^m (h_i^e)^2, H(x) = \sum_{i=1}^m \left(\frac{1}{m} \sum_{j=1}^m h_i^e \right) e_i \]
与规范正交基 \(e_1, \cdots, e_m, e_{m+1}, \cdots, e_{m+\ell} \)（以及它的对偶基 \(\omega_1, \cdots, \omega_m, \omega_{m+1}, \cdots, \omega_{m+\ell} \)）的选取无关.

3. 证明 2.1 引理 5 证 1 中的等式:
\[(\hat{R}(X, Y) \xi)^\perp = R(X, Y) \xi + h(A_i(X), Y) - h(X, A_i(Y)).\]

4. 设 \((M, g) = (M, \varphi^* \tilde{g}), (\tilde{M}, \tilde{g})\) 为 \(C^\infty \) Riemann 流形, \(\varphi : M \to \tilde{M} \) 为 \(C^\infty \) 等距变换, \(R \) 和 \(\hat{R} \) 分别为 \(M \) 和 \(\tilde{M} \) 的曲率张量, \(X, Y, Z, W \) 为 \(M \) 的 \(C^\infty \) 张量场,
\[d\varphi(X) = \tilde{X}, d\varphi(Y) = \tilde{Y}, d\varphi(Z) = \tilde{Z}, d\varphi(W) = \tilde{W}. \]
则
\[d\varphi(\nabla X Y) = \tilde{\nabla} X \tilde{Y}, \]
\[d\varphi(R(X, Y) Z) = \hat{R}(\tilde{X}, \tilde{Y}) \tilde{Z} \]
\[= \hat{R}(d\varphi(X), d\varphi(Y)) d\varphi(Z). \]
\[K(X, Y, Z, W) = g(X, R(Z, W) Y) \]
\[= \tilde{g}(\tilde{X}, \hat{R}(\tilde{Z}, \tilde{W}) \tilde{Y}) \]
\[= \hat{R}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W}), \]
\[\hat{R}_{\varphi^*}(\tilde{X} \wedge \tilde{Y}) = \hat{R}_{\varphi}(d\varphi(X) \wedge d\varphi(Y)) \]
\[= R_{\psi}(X \wedge Y). \]

5. 设 \(S^n \subset \mathbb{R}^{n+1}, \forall x, x' \in S^n \), \(P \) 和 \(P' \) 分别为 \(T_x S^n \) 和 \(T_{x'} S^n \) 中的 2 维平面，则存在一个等距 \(\varphi : S^n \to S^n \), 使得
\[\varphi(x) = x' \]
且
\[d\varphi(P) = P'. \]
由此得出 \(S^n \) 具有常 Riemann 毫曲率.

6. 设 \(M \) 为 \(\tilde{M} \) 的 \(C^\infty \) Riemann 正则子流形, 则 \(M \) 为 \(\tilde{M} \) 的全测地子流形 \(\Leftrightarrow \) 切丛 \(TM \) 关于 \(\tilde{M} \) 的 Levi-Civita 联络 \(\tilde{\nabla} \) 是平行的, 即沿每
条 C^∞ 曲线 $\gamma; [0,1] \to M$, 有
\[
P^\nu(T_{\gamma(t)}M) = T_{\gamma(t)}M,
\]
其中 P^ν 为沿 $\gamma(t)$ 的平行移动.

7. 设 M 为 \tilde{M} 的 C^∞ 全测地子流形, $x \in M$, $X \land Y$ 为 T_xM 的 2 维平面, 则 $X \land Y$ 分别关于 M 和 \tilde{M} 的 Riemann 腹曲率, 有
\[
\tilde{R}(X \land Y) = R(X \land Y).
\]

题 8—11 可参阅[XX].

8. 设 $M^n(\dim M^n)$ 为 C^∞Riemann 流形 (\tilde{M}^{n+k}, g) 上的
Riemann 正则子流形, 则对 $\forall ~ p \in M^n$, 必存在 p 在 \tilde{M}^{n+k} 中的局部坐
标邻域 U, 及局部坐标系 (x^i) 使得
\[
U \cap M^n = \{ q \in U, \vert x^\alpha(q) = 0, \alpha = m + 1, \ldots, m + k \},
\]
并且 $(\frac{\partial}{\partial x^{m+1}}, \ldots, \frac{\partial}{\partial x^{m+k}})$ 为 $U \cap M^n$ 的法空间中的一组
基.

9. 设 M^n 为 (\tilde{M}^{n+k}, g) 的 C^∞ Riemann 闭子流形, 则 M 上任一 C^∞
法向量场 X 均可表为
\[
X = \text{grad} f |_{\tilde{M}},
\]
其中 $f \in C^\infty(\tilde{M}, R), f |_{\tilde{M}} = 0$.

10. 设 (M^n, g) 为 (\tilde{M}^{n+k}, g) 的 C^∞ Riemann 正则子流形, $f \in$
$C^\infty(\tilde{M}^{n+k}, R), g = e^{2f}g$. 证明,
(1) \[h^\wedge_\alpha = e^{-f}(h^\alpha_\alpha - e_\alpha(f)\delta_{ij}), \]
(2) \[\tilde{H} = e^{-2f}(H - \sum e_\alpha(f)e_\alpha), \]
其中 $(e_\alpha | \alpha = m + 1, \ldots, m + k)$ 为法空间中
的规范正交基, 而 H 和 \tilde{H} 分别为 M^n 关于 (\tilde{M}^{n+k}, g) 和 (\tilde{M}^{n+k}, g) 的平均曲率向量场.

(2) (M^n, g) 为 (\tilde{M}, g) 的全测地子流形 $\iff h^\wedge_\alpha = e_\alpha(f)\delta_{ij}$.

(3) (M^n, g) 全脐点 $\iff (M^n, g)$ 全脐点.

(4) 如果存在 $f \in C^\infty(\tilde{M}, R), f |_{\tilde{M}} = 0$, 使得 (M^n, g) 在 (\tilde{M}^{n+k}, g) 中的平均曲率向量场 $H(x) = \text{grad} f |_{\tilde{M}}$, 证明在点态保角变
形 $g = e^{2f}g$ 下, (M, g) 为 (\tilde{M}, g) 的极小子流形 (此时, 称 (M^n, g) 为
（\(\tilde{M}^{n+1}, g\)）的相应于 \(f\) 的拟极小子流形）．

（5）当 \(M^n\) 为 \(\tilde{M}^{n+1}\) 的闭正则子流形，则 \((M^n, g)\) 为 \((\tilde{M}^{n+1}, g)\) 的拟极小子流形．

11．任一 \(C^\infty\) 流形 \(M^n\) 均可视作 \((\mathbb{R}^{2n+1}, g)\) 的拟极小正则子流形．

12．设 \(M\) 是 Riemann 截曲率为 \(c\) 的 3 维空间形式 \(\mathbb{R}^3(c)\) 中的具有常 Gauss 曲率的极小曲面，则或者 \(M\) 是全测地的或者 \(c > 0\) 且 \(M\) 是 Clifford 环面的开片（参阅[Chen]，[L]）．

题 13-14 可参阅 [Simo]．

13．(Simons, 1968) 设 \(M\) 为常曲率为 \(c\) 的 \(m + p\) 维 \(C^\infty\) Riemann 流形的 \(m\) 维 \(C^\infty\) 定向闭极小子流形，有

\[\int_M \{(2 - \frac{1}{p})S - mc\}SdV \geq 0, \]

其中 \(S = \sum_{a, i, j}(h^a_{ij})^2\)．

14．(Simons, 1968) 设 \(M\) 为 \(m + p\) 维单位球面的 \(m\) 维 \(C^\infty\) 闭极小子流形，如果 \(M\) 不是全测地和在 \(M\) 上不等式

\[S \leq m/(2 - \frac{1}{p}) \]

处处成立，则

\[S = m/(2 - \frac{1}{p}). \]

15．(Chern, do Carmo, Kabayashi, 1970) Clifford 极小超曲面和 Veronese 曲面的开片是 \(m\) 维单位球面上 \(S = m/(2 - \frac{1}{p})\) 仅有的极小子流形（参阅 [CCK]）．

16．设 \(M^n\) 为 \(S^{n+1}\) 中紧致极小超曲面，其第 2 基本形式的长度平方 \(S\)（或数量曲率）为常数．则当 \(S > m\) 时，\(S > m + cm - d\)，此处 \(c \geq 1/4\)．特别地，当 \(S > m > 17\) 时，\(S > m + \frac{1}{4} m\)（参阅 [YC]，p89-100）．
17. M^n 为 S^{m+1} 中紧致极小超曲面，其第 2 基本形式长度的平方 S 为常数，则当 M^n 的 Riemann 截曲率不小于 $\frac{m - s}{m}$ 时，以下两者必有一成立：

(1) M^n 为全测地子流形。
(2) M^n 为 Clifford 环面。

题 18—20 可参阅 [MXY]。

18. 设 M^n 为 S^{m+1} 中紧致极小超曲面，其第 2 基本形式长度平方 S 为常数。如果 M^n 的 Riemann 截曲率不小于 $-\frac{\frac{m}{m + 1} \cdot \frac{1}{3}}{2m + 3}$，则 M^n 必为 Clifford 环面或全测地子流形。

当 $n = 3$ 时，只要 Riemann 截曲率不小于 $\frac{1}{2}$，则 M^3 必为全测地子流形或 Clifford 环面。

19. 设 M^n 为 S^{m+1} 中紧致极小超曲面，其第 2 基本形式长度平方 S 为常数。如果 M^n 的 Ricci 曲率大于 $(m - 3) + \frac{3}{2m + 3}$，则 $S \leq m + \frac{3}{2}$。

20. M^n 为 S^{m+1} 紧致超曲面，其第 2 基本形式长度平方 S 为常数。当 $m = 4$，Ricci 曲率大于 $(m - 3) + \frac{7}{2m + 5}$ 时；或当 $m \geq 5$，Ricci 曲率大于 $(m - 3) + \frac{3}{2m + 3}$ 时，M^n 只能为全测地子流形或 Clifford 环面。

21. 设 $M = B^n = \{x = (x_1, \cdots, x_n) | \sum_{i=1}^{m} x_i^2 < 1\} \subset \mathbb{R}^n$ 为单位球，双曲 Riemann 度量为

$$g = \frac{4}{[1 - \sum_{j} x_j^2]^2} \sum dx_i \otimes dx_i.$$

按下面步骤证明：(M, g) 为常 Riemann 截曲率 -1 的 C^∞ 完备 Riemann 流形。

244
(1) s 为曲线 $y: [0, +\infty) \to B^n, y(s) = \left(\frac{e^s - 1}{e^s + 1}, 0, \cdots, 0\right)$ 的弧长；

(2) $y([0, +\infty))$ 为由

$$(x_1, x_2, \cdots, x_n) \mapsto (x_1, -x_2, \cdots, -x_n)$$

所给出的等距 $B^n \to B^n$ 的固定点集。因而，根据第 2 章 2.1 定理 3，
y 为一条测地线；

(3) \mathbb{R}^n 的任何正交线性变换 A 限制在 B^n 上时就成为双曲 Riemann 度量的等距变换，于是，$A(y)[0, +\infty) \to B^n$ 也为测地线；

(4) $(M, g) = (B^n, g)$ 是 C^∞ 完备 Riemann 流形；

(5) 设 $p \in M = B^n$，将 $T_p(M) = T_p B^n$ 与 \mathbb{R}^n 视作相同。设 E 为 \mathbb{R}^n 中包含线平面 P 及向量 p 的一个 3 维向量子空间 (如 P 已包含了向量 p，或如 $p = 0$，这样的 E 将不是唯一确定的)。令 $\mathbb{R}^n = E \oplus E^\perp$ (正交直和)，映射 $(e, e') \mapsto (e, -e') (e \in E, e' \in E^\perp)$ 在 B^n 上的限制正好是一个等距，它以 $E \cap B^n$ 为 B^n 的固定点集。根据第 2 章 2.1 定理 3，$E \cap B^n$ 为 B^n 的全测地子流形；

(6) 存在 \mathbb{R}^n 的正交变换 A，使得 $A(E) = \mathbb{R}^3 = \{(x_1, x_2, x_3, 0, \cdots, 0) | x_1, x_2, x_3 \in \mathbb{R}\}$，再应用第 1 章题 6 得到 $(M = B^n, g)$ 的 Riemann 截曲率为 -1。

22. (Takahashi, 1966) 设 M 为 Euclid 空间 \mathbb{R}^n 中的 m 维极小子流形，则 M 的 Ricci 张量是半负定的，且 M 为全测地的充要条件是它的数量曲率为 -1。

(参阅 [Ta], [Chen], p76, Theorem 2.1)

23. (Bernstein) 设 $x^3 = x^3(x^1, x^2)$ 为 Euclid 空间 \mathbb{R}^3 中的极小曲面，则 $x^3(x^1, x^2)$ 为 x^1 和 x^2 的线性函数，即极小曲面为 \mathbb{R}^3 中的平面。

著名的 Bernstein 问题是：\mathbb{R}^{m+1} 中的极小超曲面 $x^{m+1} = x^{m+1}(x^1, \cdots, x^m)$ 关于所有的 x^1, \cdots, x^m 是否必须是线性的？对于 $m \leq$
7 回答是肯定的 \((m = 3, [Gi]; m = 4, [Al]; m = 5, 6, 7, [Simo]_2)\). 而对于 \(m > 7\), 回答是否定的 \([\text{BGG}]\).

(参阅 [Chen], p76—78)

24. 构造 \(S^3(1)\) 中的任意亏格的紧致可定向的极小子曲面 \([\text{L}]_2\).

25. 设 \(M\) 为 Euclid 空间 \(\mathbf{R}^*\) 中的 \(m\) 维 \(C^\infty\) 正则子流形. 如果 \(M\) 在 \(\mathbf{R}^*\) 中关于点 \(C \in \mathbf{R}^*\) 的位置向量场 \(\vec{X}\) 平行于平均曲率向量 \(H\), 则 \(M\) 或者为 \(\mathbf{R}^*\) 中的极小子流形或者为 \(\mathbf{R}^*\) 中以 \(C\) 为中心的小超曲面的极小子流形.

(参阅 [Chen], p81—83, Corollary 3.3)

26. 设 \(M\) 为 \(n\) 维 Euclid 空间 \((\mathbf{R}^*, \tilde{g})\) 中的 \(m\) 维 \(C^\infty\) 闭正则子流形, \(\vec{X}\) 为 \(\mathbf{R}^*\) 中的位置向量, \(H\) 为 \(M\) 关于 \((\mathbf{R}^*, \tilde{g})\) 的平均曲率向量. 证明:

(1) \(\Delta \tilde{g}(\vec{X}, \vec{X}) = 2m(1 + \tilde{g}(H, \vec{X}))\);

(2) \(M\) 包含在中心在点 \(c \in \mathbf{R}^*\) 的 \(\mathbf{R}^*\) 中的小超曲面中的充要条件是 \(\tilde{g}(H, \vec{X} - c) \geq -1\) 或 \(\tilde{g}(H, \vec{X} - c) \leq -1\) 处处成立.

以下题 27, 28 可参阅 [PT] p36—38.

27. 设 \(X: M^n \rightarrow \mathbf{R}^{n+1}\) 为 \(C^\infty\) 嵌入, 它是连通的全胚超曲面 \((m > 1)\). 应用外微分形式证明:

(1) \(h = H(x)g\), 其中 \(\| H(x) \| = c\) 常数;

(2) \(X(M^n)\) 或者包含在 \(\mathbf{R}^{n+1}\) 的超平面中, 或者包含在 \(\mathbf{R}^{n+1}\) 的超球面中.

28. 设 \(X: M^n \rightarrow \mathbf{R}^{n+1}\) 为 \(C^\infty\) 连通的全胚正则子流形, 由引理 5, \(h = H(x)g\) 且 \(\nabla H(x) = 0\) 则或者

(1) \(H(x) = 0\) 和 \(M\) 包含在 \(\mathbf{R}^{n+1}\) 的 \(m\) 维仿射子空间中, 或者

(2) \(X + (H/a)\) 为常向量 \(x_0\), 其中 \(a = \| H(x) \|\); 且 \(M\) 包含在 \(\mathbf{R}^{n+1}\) 的 \(m\) 维球面中.

29. 将题 27, 28 中的 \(\mathbf{R}^{n+1}, \mathbf{R}^{n+1}\) 改为 \(S^{m+1}, S^m, S^n\) 或者 \(H^{n+1}\),

246
$H^{n+\frac{1}{2}}(\text{其中 } H^{n+\frac{1}{2}} = \{x = (x_1, \cdots, x_{m+k}) \in \mathbb{R}^{n+\frac{1}{2}} | x_{m+k} > 0\}, \ g = \frac{1}{x_{m+k}^{\frac{1}{2}}} \sum_{i=1}^{m+k} dx_i \otimes dx_i \text{为常 Riemann 被曲率 } -1 \text{的空间形式})$. 证明类似的结论。

30. 通过一个直接计算，证明 2.4 例 4 中，在 $Q = 0$ 处有

$$g = 4 \text{trace}(dQ dQ).$$

它蕴涵着在 $Q = 0$ 处，g 是正定的。

31. 证明 2.4 注 2 中的结论.
第 3 章 Jacobi 场、变分和极小子流形

在这一章中，我们应用测地线定义了指数映射和论述了各种完备的等价性。证明了完备 C^∞ Riemann 流形中任何两点必有一条最短测地线相连接，由此得到 $\exp_x : T_x M \to M$ 为满映射。

我们知道，最短曲线必为测地线，而测地线局部为最短线。由长度第 1 变分公式，γ 的测地线相当于 γ 为长度函数的临界道路。而由长度第 2 变分公式，如果沿测地线 $\gamma(t), a \leq t \leq b$ 有共轭点 $\gamma(c), a < c < b$，则 γ 不是连接 $\gamma(a)$ 和 $\gamma(b)$ 的最短线。Bonnet-Myers 定理指出，m 维连通完备 C^∞ Riemann 流形，如果其截曲率 $k \geq c > 0$（或更一般地，其 Ricci 张量是正定的，且任一特征值 $\lambda \geq (m - 1)c > 0$），则 M 是紧致的，它的直径 $d(M) \leq \pi/\sqrt{c}$，且基本群 $\pi_1(M)$ 是有限的。

从长度第 2 变分公式自然引入 Jacobi 方程

$$\nabla^2 \gamma X + R(X, \gamma')\gamma' = 0,$$

而满足此方程的 X 称为 Jacobi 场。应用 Jacobi 场，我们证明了 Cartan-Hadamard 定理：具有非正截曲率的 C^∞ Riemann 流形没有共轭点。由此，在第 5 章证明了它 C^∞ 同胚于 \mathbb{R}^n。

类似地，由体积第 1 变分公式，C^∞ 浸入 $f : M \to \bar{M}$ 是临界子流形的充分必要条件是平均曲率向量场 $H \equiv 0$，即 M 为极小子流形。为进一步研究子流形的体积的极小性，我们建立了体积第 2 变分公式。在本章的最后，我们给出了 Morse 指数定理。
3.1 测地线、指数映射和流形的完备性

设 $\langle M, \langle, \rangle \rangle$ 为 m 维 C^∞ Riemann 流形，$\gamma: [a, b] \to M$ 为测地线，即 $\nabla_\gamma \gamma' = 0$，则
$$\frac{d}{dt} \langle \gamma', \gamma' \rangle = 2 \langle \nabla_\gamma \gamma', \gamma' \rangle = 2(0, \gamma') = 0$$
及“速度向量”的长度 $|| \gamma' || = \langle \gamma', \gamma' \rangle^{1/2}$ 沿 γ 是常值. 引进弧长函数
$$s(t) = \int_a^t || \gamma' || \, dt = || \gamma' || (t - a)$$
为 t 的线性函数，或 $t = \frac{s}{|| \gamma' ||} + a$. 显然，$t = s(\text{弧长}) \Leftrightarrow a = 0$ 和 $|| \gamma' || = 1$.

设 $\{x^1, \cdots, x^n\}$ 为局部坐标系，$\gamma(t)$ 的局部坐标为 $x^1(t), \cdots, x^n(t)$. γ 的测地线方程为二阶常微分方程组：
$$\frac{d^2 x^i}{dt^2} + \sum_{i,j=1}^n I_{ij}^k(x^1, \cdots, x^n) \frac{dx^i}{dt} \frac{dx^j}{dt} = 0, \quad k = 1, \cdots, m.$$

引理 1 对每个 $p \in M$，存在 p 的开邻域 U 和 $\varepsilon > 0$ 使得对任何 $q \in U$ 及任何 $X \in T_q M, || X || < \varepsilon$ 有唯一的测地线
$$\gamma_x: (-2, 2) \to M$$
满足 $\gamma_x(0) = q, \frac{d\gamma_x}{dt}(0) = \gamma'(0) = X$.

证明 由 2 阶常微分方程组解的存在唯一性定理，存在 p 的开邻域 U 和数 $\varepsilon_1, \varepsilon_2 > 0$，使得对任何 $q \in U$ 及任何 $X \in T_q M, || X || < \varepsilon_1$，有唯一的测地线
$$\tilde{\gamma}_x: (-2\varepsilon_2, 2\varepsilon_2) \to M$$
满足：$\tilde{\gamma}_x(0) = q, \frac{d\tilde{\gamma}_x}{dt}(0) = \tilde{\gamma}'(0) = X$.

设 c 为任意常数，显然，如果 $t \to \gamma(t)$ 为测地线，则 $t \to \tilde{\gamma}(ct)$ 也
为测地线.

取 $0 < \varepsilon < \varepsilon_1 \varepsilon_2$，则当 $\|X\| < \varepsilon$ 和 $|t| < 2$ 时，$\|X/\varepsilon_2\| < \varepsilon_1$, $|\varepsilon_2 t| < 2\varepsilon_2$.

因此，可以定义 $\gamma_x(t) = \gamma_{x/\varepsilon_2}(\varepsilon_2 t)$.

定义 1 设 $X \in T_p M$, $\gamma : [0, 1] \to M$ 为测地线，$\gamma(0) = p$, $\frac{dy}{dt}(0) = y'(0) = X$，则点 $y(1) \in M$ 用 $\exp_p X$ 表示，并称它为切向量 X 的指数。引理 1 指出，当 $\|X\|$ 足够小时，$\exp_p X$ 是定义好，但对较大的 $\|X\|$, $\exp_p X$ 未必定义好，然而，只要定义好，$\exp_p X$ 总是唯一的确定的。

根据微分方程解的存在唯一性定理知，$\gamma_x(t) = \gamma_{x/\varepsilon_2}(\frac{t}{\varepsilon_2})$，所以 $\gamma_x(a) = \gamma_{x/\varepsilon_2}(\frac{a}{\varepsilon_2}) = \gamma_{x/\varepsilon_2}(1) = \exp_p a X$，或 $\gamma_x(t) = \exp_p t X$。

如果对任意 $p \in M$，任意 $X \in T_p M$，$\exp_p X$ 已经定义好，则称 (M, \langle , \rangle) 是测地完备的。它等价于每条测地线段 $\gamma : [a, b] \to M$ 可以延拓到无穷测地线

$$\gamma : \mathbb{R} \to M.$$

关于指数映射 \exp_p，有下面的

引理 2 对每个 $p \in M$，映射 $$(q, X) \to \exp_p X$$ 在点 $(p, 0) \in TM$ 的某个开邻域 $V \subset TM$ 中定义，且是 C^∞ 的。

证明 设 $p \in M, U \subset M$ 为 p 的坐标邻域，$\{x^1, \cdots, x^n\}$ 为其局部坐标系。$\{x^1, \cdots, x^n, \alpha^1, \cdots, \alpha^n\}$ 为 $X = \sum_{i=1}^n \alpha^i \frac{\partial}{\partial x^i} \in T_p U = T_p M$ 关于 $TU \subset TM$ 的局部坐标。

设 $\gamma_x(t, q) = \exp_q t X$ 为过点 q 沿 X 方向的测地线，它是测地线方程(2 阶常微分方程组) 的解，C^∞ 依赖于初始点 q 和初始方向 X，因此，$(q, X) \to \exp_p X$ 是 C^∞ 映射。

引理 3 对每个 $p \in M$，存在 p 的开邻域 W 和数 $\varepsilon > 0$，使得
(1) 任何两点 \(q_1, q_2 \in W \)，可用 \(M \) 中的长度小于 \(\varepsilon \) 的唯一测地线相连接；

(2) 该测地线 \(C^\infty \) 依赖于两个点，即如果 \(t \mapsto \exp_t(tX), 0 \leq t \leq 1 \) 是连接 \(q_1 \) 和 \(q_2 \) 的测地线，则 \((q_1, X) \in TMC^\infty \) 依赖于 \((q_1, q_2)\)；

(3) 对每个 \(q \in W \)，映射 \(\exp_q \) 将 \(T_qM \) 中的 \(\varepsilon \) 开球 \(C^\infty \) 同胚地映到开集 \(U \ni W \) 上。

证明 考察 \(C^\infty \) 函数 \(F : V \rightarrow M \times M, F(q, X) = (q, \exp_q X) \)，其中 \(V \) 如引理 2 中所述。记 \(\{x^1, \ldots, x^n, x_1, \ldots, x^r\} \) 为 \(U \times U \subset M \times M \) 上的局部坐标，则 \(F \) 在 \((q, 0) \) 处的 Jacobi 矩阵为

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\]

即

\[
dF_0 \left(\frac{\partial}{\partial x^i} \right) = \frac{\partial}{\partial x^i},
\]

\[
dF_0 \left(\frac{\partial}{\partial x^r} \right) = \frac{\partial}{\partial x^1} + \frac{\partial}{\partial x^r}.
\]

因此，\(F \) 在 \((p, 0) \) 处是非异的。

由反函数定理知，\(F C^\infty \) 同胚地将 \((p, 0) \in TM \) 的某个开邻域 \(V = \{(q, X) | q \in U, \|X\| < \varepsilon\} \subset V \) 映到 \((p, p) \in M \times M \) 的某个开邻域 \(F(V) \) 上，选择 \(p \) 的较小的开邻域 \(W \)，使 \(F(V) \supset W \times W \)。由此，立即得出（1）、（2）和（3）。

引理 4 在引理 3 的 \(U_q \) 中，过 \(q \) 的测地线是超曲面

\[S_q(c) = \{\exp_q X | X \in T_qM, \|X\| = c(\text{常值})\}\]

的正交轨线。

证明 设 \(t \mapsto X(t) \) 为 \(T_pM \) 中的 \(C^\infty \) 曲线，其中 \(\|X(t)\| = 1 \)。令

\[f(r, t) = \exp_t(rX(t)), \quad 0 \leq r \leq \varepsilon.\]

显然，当 \(t \) 固定时，\(r \mapsto f(r, t) \) 为测地线，即 \(\nabla_{X(t)} \frac{\partial f}{\partial r} = 0 \)。又因为
\[\| \frac{\partial f}{\partial r} \| = \| X(t) \| = 1, \text{所以} \]
\[
\langle \frac{\partial f}{\partial r}, \nabla_{\frac{\partial f}{\partial r}} \frac{\partial f}{\partial r} \rangle = \langle \frac{\partial f}{\partial r}, \nabla_{\frac{\partial f}{\partial r}} \frac{\partial f}{\partial r} \rangle \\
= \frac{1}{2} \frac{d}{dt} \langle \frac{\partial f}{\partial r}, \frac{\partial f}{\partial r} \rangle = 0.
\]

于是
\[
\frac{\partial}{\partial r} \langle \frac{\partial f}{\partial r}, \frac{\partial f}{\partial r} \rangle = \langle \nabla_{\frac{\partial f}{\partial r}} \frac{\partial f}{\partial r}, \frac{\partial f}{\partial r} \rangle + \langle \frac{\partial f}{\partial r}, \nabla_{\frac{\partial f}{\partial r}} \frac{\partial f}{\partial r} \rangle \\
= \langle \frac{\partial f}{\partial r}, \frac{\partial f}{\partial r} \rangle + 0 = 0,
\]
\[
\langle \frac{\partial f}{\partial r}, \frac{\partial f}{\partial r} \rangle \text{与} r \text{无关，即} \\
\langle \frac{\partial f}{\partial r}, \frac{\partial f}{\partial r} \rangle = \langle \frac{\partial f}{\partial r}, \frac{\partial f}{\partial r} \rangle |_{(0,0)} = 0,
\]
其中 \(f(0,t) = \exp_q 0 = q, \frac{\partial f}{\partial r}(0,t) = 0 \). 这就证明了过 \(q \) 的测地线是超曲面 \(S_q(c) \) 的正交轨线。

引理 5 设 \(\omega: [a,b] \rightarrow U_q \setminus \{q\} \) 分段 \(C^\infty, \omega(t) \) 可唯一地表示成 \(\exp \tau(t) X(t), 0 < \tau(t) < c, \| X(t) \| = 1, X(t) \in T_q M \). 则
\[
\int_a^b \left\| \frac{d\omega}{dt} \right\| dt \geq |\tau(b) - \tau(a)|
\]
且等号成立当 \(\tau(t) \) 是单调的且 \(X(t) \) 是常向量。

因此，连接以 \(q \) 为中心的同心球壳的最短道路是径向测地线。

证明 设 \(f(r, t) = \exp_q (rX(t)), \omega(t) = f(r(t), t) = \exp_q (r(t)X(t)), \| X(t) \| = 1. \) 则
\[
\frac{d\omega}{dt} = \frac{\partial f}{\partial r} r'(t) + \frac{\partial f}{\partial \xi}.
\]
从 \(\left\langle \frac{\partial f}{\partial r}, \frac{\partial f}{\partial \xi} \right\rangle = 0 \) 和 \(\left\| \frac{\partial f}{\partial r} \right\| = 1 \) 得到
\[
\left\| \frac{d\omega}{dt} \right\|^2 = r'(t)^2 + \left\| \frac{\partial f}{\partial \xi} \right\|^2 \geq |r'(t)|^2.
\]
且等号成立 $\iff \frac{df}{dt} = 0 \iff X'(t) = 0$。于是

$$\int_a^b \| \frac{d\omega}{dt} \| \ dt \geq \int_a^b |r'(t)| \ dt \geq \int_a^b r'(t) \ dt = |r(b) - r(a)|.$$

且等号成立 $\iff r(t)$ 单调且 $X(t)$ 为常向量。

定理 1 设 W 和 e 如引理 3 中所述，$q, q_1 \in W, y : [0, 1] \rightarrow M$ 是连接 q 和 q_1 的长度小于 e 的测地线，$\omega : [0, 1] \rightarrow M$ 是连接 q 和 q_1 的任何分段 C^∞ 道路，$L(y)$ 和 $L(\omega)$ 分别为 y 和 ω 的长度。则

$$L(y) = \int_0^1 \| \frac{dy}{dt} \| \ dt \leq \int_0^1 \| \frac{d\omega}{dt} \| = L(\omega).$$

且等号成立 $\iff \omega = \exp_e (r(t) X(t))$ 中 $r(t)$ 单调，$X(t)$ 为常向量。此时，$\omega([0, 1]) = y([0, 1])$，而 y 为最短线。

证明 设 $q_1 = \exp_e (r X) \in U_\varepsilon, 0 < r < \varepsilon, \| X \|= 1$。则对任何 $\delta > 0, r(1) = r$，由引理 5，

$$L(\omega_\delta) = \int_a^b \| \frac{d\omega}{dt} \| \ dt \geq |r(1) - r(a)| = r - \delta,$$

令 $\delta \rightarrow 0$，则 $a \rightarrow 0^+$，有

$$L(\omega) = \int_0^1 \| \frac{d\omega}{dt} \| \ dt \geq r = L(y),$$

并且等号成立 $\iff r(t)$ 单调且 X 为常向量。

定义 2 设 $\{X_1, \ldots, X_n\}$ 为 $p \in M$ 的线性基架（即为 T,M 的基）。$\exp_p : U_\varepsilon \rightarrow V$ 为 C^∞ 微分同胚，$X = \sum_{i=1}^n x_i X_i$，用 $\{x_1, \ldots, x^n\}$ 表示

$\exp_p X = \exp_p \sum_{i=1}^n x_i X_i$ 的局部坐标，称 $\{x_1, \ldots, x^n\}$ 为正规（或法）坐标系。如果 $X = \sum_{i=1}^n \alpha^i \frac{\partial}{\partial x^i} \in T,M$ 为固定向量，则 $y(t) = \exp_p t X$ 为沿 X 方向的测地线。它在正规坐标系中表示为 $x^i = \alpha^i t, i = 1, \ldots, m$。

引理 6 设 ∇ 为 m 维 C^∞ Riemann 流形 $(M, \langle \cdot, \cdot \rangle)$ 的 Riemann 联络，其在 $p \in M$ 的正规坐标系 $\{x^1, \ldots, x^n\}$ 中的分量为 $\Gamma^i_{\alpha\beta}$。则

$$\Gamma^i_{\alpha\beta} + \Gamma^i_{\beta\alpha} = 0.$$
因此，在\(p \)点处，\(I^*_i = 0 \)。

证明 在正则坐标系\(\{x^1, \cdots, x^n\} \)中，由\(x^i = \alpha^i t, i = 1, \cdots, m \)表示的曲线是测地线。因此，由\(\frac{d^2x^i}{dt^2} = 0 \)和测地线方程得到
\[
\sum_{i,j=1}^n I^*_i(p) \alpha^i \alpha^j = \frac{d^2x^i}{dt^2} + \sum_{i,j=1}^n I^*_i(p) \frac{dx^i}{dt} \frac{dx^j}{dt} = 0.
\]
因为上式对每个\((\alpha_1, \cdots, \alpha_n) \)成立，所以在\(p \)点处，\(I^*_i + I^*_i = 0 \)。再由Riemann联络\(I^*_i \)是对称联络，即\(I^*_i = I^*_i \)。于是，\(I^*_i = 0 \)。

如果\(X_1, \cdots, X_n \)为\(TM \)的规范正交基，\(\{x^1, \cdots, x^n\} \)为\(p \)点处的正则坐标系，则\(\frac{\partial}{\partial x^i} = X_i \)。但是，在其他点处，\(\frac{\partial}{\partial x^i} \)可以不是规范正交基，通常在\(C^\infty \)Riemann流形上，都采用这种正则坐标系。

定义 3 设\(\rho(p, q) = \inf \{L(\tau) | \tau \text{为连接} p, q \text{的分段} C^\infty \text{曲线}\} \)，显然，\(\rho(p, q) \geq 0, \rho(p, q) = \rho(q, p) \)。对任给正数\(\varepsilon \)，取分段\(C^\infty \)曲线\(\tau_1 \)连接\(p \)和\(r \)，分段\(C^\infty \)曲线\(\tau_2 \)连接\(r \)和\(q \)，使得\(L(\tau_1) < \rho(p, r) + \frac{\varepsilon}{2}, L(\tau_2) < \rho(r, q) + \frac{\varepsilon}{2} \)。则
\[
\rho(p, q) = \inf \{L(\tau) | \tau \text{为连接} p, q \text{的分段} C^\infty \text{曲线}\}
\]
\[
\leq L(\tau_1 \cup \tau_2) = L(\tau_1) + L(\tau_2)
\]
\[
< \rho(p, r) + \rho(r, q) + \varepsilon,
\]
令\(\varepsilon \to 0^+ \)得到
\[
\rho(p, q) \leq \rho(p, r) + \rho(r, q).
\]
如果\(p \neq q \)，则引理3知\(\rho(p, q) > 0 \)。因此，\(\rho \)确为\((M, \langle \cdot, \cdot \rangle) \)的一个距离，再根据引理3，由距离\(\rho \)诱导的拓扑与\(C^\infty \)流形\(M \)上给定的拓扑相同。

如果连接\(p \)和\(q \)的测地线\(\gamma \)满足\(L(\gamma) = \rho(p, q) \)，则称\(\gamma \)为最短测地线。

引理 7 设\(\{x^1, \cdots, x^n\} \)为\(p \)处的正则坐标系，\(S_r(e) = \{\exp_p X | \| X \| = e\} = \{\exp_p X | \sum_{i=1}^n (x^i)^2 = e^2\} \)为球面。则存在\(e > 0 \)，使得当\(0 < e < c \)时，在点\(q \in S_r(e) \)处切于\(S_r(e) \)的测地线在\(S_r(e) \)。
证明 设 \(x^1 = x^i(t), k = 1, \cdots, m \) 为点 \(q = (x^1(0), \cdots, x^m(0)) \) 处切于 \(S_r(\varepsilon) (\varepsilon \text{ 下面将限制}) \) 的测地线. 令

\[
\varphi(t) = \sum_{i=1}^{m} (x^i(t))^2,
\]

则 \(\varphi(0) = \sum_{i=1}^{m} (x^i(0))^2 = \varepsilon^2, \)

\[
\varphi'(0) = 2 \left(\sum_{i=1}^{m} x^i(t) \frac{dx^i}{dt} \right) \bigg|_{t=0} = 2 \sum_{i=1}^{m} x^i(0) \frac{dx^i}{dt} \bigg|_{t=0}
= 0 \quad (x(t) \text{ 切于 } S_r(\varepsilon)),
\]

\[
\varphi''(0) = 2 \sum_{i=1}^{m} \left[\left(\frac{dx^i}{dt} \right)^2 + x^i(t) \frac{d^2x^i}{dt^2} \right]_{t=0}
= 2 \sum_{i=1}^{m} \left[\delta_{ij} - \sum_{k=1}^{m} I^k_{ij} x^k \right] \frac{dx^i}{dt} \frac{dx^j}{dt} \bigg|_{t=0}.
\]

根据引理6, \(I^k_{ij}(p) = 0 \), 故存在 \(c > 0 \), 使得二次型 \(\delta_{ij} - \sum_{k=1}^{m} I^k_{ij} x^k \)
在 \(B_r(c) = \{ \exp_p X \mid \| X \| < c \} \) 中是正定的. 如果 \(0 < \varepsilon < c \), 因为

\[
\frac{dX}{dt} = \sqrt{\sum_{i=1}^{m} \left(\frac{dx^i}{dt} \right)^2} = \text{ 常值} \neq 0, \text{ 故} \left. \frac{d^2\varphi}{dt^2} \right|_{t=0} > 0. \]

于是, 存在 \(\delta > 0 \), 当 \(t \in (-\delta, \delta) - \{0\} \) 时有

\[
\varphi(t) = \varphi(0) + \varphi'(0)t + \frac{1}{2!} \left(\varphi''(0) + \frac{o(t^2)}{t^2} \right) t^2
= \varepsilon^2 + \left[\sum_{i,j=1}^{m} (\delta_{ij} - \sum_{k=1}^{m} I^k_{ij} x^k) \frac{dx^i}{dt} \frac{dx^j}{dt} \bigg|_{t=0} + \frac{o(t^2)}{t^2} \right] t^2
> \varepsilon^2,
\]

即在点 \(q \in S_r(\varepsilon) \) 切于 \(S_r(\varepsilon) \) 的测地线 \(x(t) \) 在 \(S_r(\varepsilon) \) 的外部.

引理7 设 \(c \) 如引理7中所述, 则存在正数 \(a < c \), 使得

(1) \(B_r(a) \) 中任何两点可以由一条含于 \(B_r(c) \) 中的测地线相连接;

(2) \(B_r(a) \) 的每一点有正规则域邻域包含 \(B_r(a) \).

255
证明 用自然的方式将 M 视作 TM 的正则子流形，$q \in M$ 视作 $T_q M$ 的 0 向量。设 V 如引理 2 和 3 所述，它是 M 在 TM 中的一个开邻域。令

$$F : V \rightarrow M \times M$$

$$(q, X) \rightarrow F(q, X) = (q, \exp_q X), \quad X \in T_q M.$$

因为 F 在 $(p, 0)$ 的 Jacobi 映射 dF 是非共形的，故存在 $(p, 0)$ 是 TM 中的一个开邻域 $\tilde{V} \subset V$ 和正数 $a < c$，使得

$$F : \tilde{V} \rightarrow B_r(a) \times B_r(a)$$

为 C^∞ 同胚。取 \tilde{V} 和 a 充分小，使得 $\exp_q \tilde{V} \subset B_r(c)$，对任意 $X \in \tilde{V}$ 和 $|t| \leq 1$ 成立。

(1) 设 $q, r \in B_r(a)$，则 $X = F^{-1}(q, r) \in \tilde{V}$。于是，初始条件为 (q, X) 的测地线 $\exp_q t X, 0 \leq t \leq 1$ 连接 q 和 r 且含于 $B_r(c)$ 中。

(2) 对任意 $q \in B(p, a)$，设 $\tilde{V} = \tilde{V} \cap T_q M = B_0(a) = \{X \in T_q M \mid \|X\| < a\}$. 因为 $\exp : \tilde{V} \rightarrow B_r(a)$ 是 C^∞ 同胚，它给出了正规坐标邻域，从而证明了(2)。

定理 2(凸坐标区域的存在性) 设 $\{x^1, \cdots, x^n\}$ 是以 p 为原点的正规坐标系，$B_r(e) = \{\exp_q X \mid \|X\| = e\} = \{\exp_q X \mid X = \sum_{i=1}^m x_i^2 X_i, \sum_{i=1}^m (x_i)^2 = e^2\}$. 则存在正数 a，使得当 $0 < e < a$ 时，

(1) $B_r(e)$ 是凸坐标区域，即 $B_r(e)$ 中任何两点可以有一条含在 $B_r(e)$ 中的唯一的最短测地线相连接；

(2) $B_r(e)$ 的每个点有一个正规坐标区域包含 $B_r(e)$。

证明 (1) 设 r 如引理 8 所述，$0 < e < a, q, r \in B_r(e), x^i = x^i(t), i = 1, \cdots, m, 0 \leq t \leq 1$ 为 $B_r(e)$ 中连接 q 到 r 的测地线，下面将证明该测地线含在 $B_r(e)$ 中，令

$$F(t) = \sum_{i=1}^m (x^i(t))^2, 0 \leq t \leq 1.$$

用反证法。假设对某个 $t, F(t) \geq e^2$，即 $x(t)$ 躺在 $B_r(e)$ 的外

256
边). 设 \(t_0, 0 < t_0 < 1, F(t_0) = \max_{s \in [0, 1]} F(t) \), 则

\[
0 = \frac{dF}{dt} \bigg|_{t=t_0} = 2 \sum_{i=1}^{m} x'(t_0) \frac{dx_i}{dt} \bigg|_{t=t_0}.
\]

这就意味着测线点 \(x(t), 0 \leq t \leq 1 \) 在 \(x(t_0) \) 切于球面 \(B_r(\varepsilon_0) \), 其中 \(\varepsilon_0 = F(t_0) \). 但根据引理 7, 必存在 \(\delta > 0 \), 当 \(t \in (\delta, \delta - 0) \) 时有 \(F(t) > \varepsilon_0 = F(t_0) \). 由于 \(F(t) \) 是连续的, 故对任何 \(0 \leq t \leq 1, F(t) < \varepsilon_0 \), 即测线点 \(x(t), 0 \leq t \leq 1 \) 含在 \(B_r(\varepsilon) \) 中.

从引理 8 的证明中 \(\exp_{z} \tilde{V} \to B_r(\varepsilon) \) 为 \(C^\infty \) 同胚和反证法立即可推出连接 \(B_r(\varepsilon) \) 中两点的测线是唯一的. 根据定理 1, 只须取 \(\varepsilon \) 足够小, \(B_r(\varepsilon) \) 中的测线是最大测线.

(2) 由引理 8(2) 得.

定义 4 在距离空间 \((M, \rho)\) 中, 如果连续曲线 \(\gamma: [a, b] \to M \) 满足

\[
\rho(\gamma(t_1), \gamma(t_2)) + \rho(\gamma(t_2), \gamma(t_3)) = \rho(\gamma(t_1), \gamma(t_3)), \quad a \leq t_1 \leq t_2 \leq t_3 \leq b.
\]

则称曲线 \(\gamma \) 为线段.

定理 3 设 \(\rho \) 为 \(m \) 维 \(C^\infty \) Riemann 流形 \((M, \langle \cdot, \cdot \rangle)\) 诱导的距离函数. 则线段 \(\gamma: [a, b] \to M \) 作为点集是测线.

证明 由定理 2, 设 \(U \) 为 \(\gamma(a) \) 的凸正规等域, 则存在 \(\varepsilon > 0 \), 使得 \(\gamma([a, a + \varepsilon)) \subseteq U \). 令 \(\tau \) 为连接 \(\gamma(a) \) 到 \(\gamma(a + \varepsilon) \) 的最短测线, 则 \(\tau([a, a + \varepsilon)) = \gamma([a, a + \varepsilon]) \). (反证) 假设存在 \(\tau \), 使得 \(\tau(c) \subseteq \tau([a, a + \varepsilon]) \). 则由定理 1 得

\[
\rho(\gamma(a), \gamma(a + \varepsilon)) < \rho(\gamma(a), \gamma(c)) + \rho(\gamma(c), \gamma(a + \varepsilon)),
\]

这与 \(\gamma(t), a \leq t \leq a + \varepsilon \) 是线段相矛盾. 这就证明了 \(\gamma(t), a \leq t \leq a + \varepsilon \) 为测线. 作为点集是一致的. 设 \(\tau([a, c]) = \tau([a, c]) \cap [a \leq c \leq b] \), 易见 \(c = b \), 即 \(\gamma([a, b]) = \tau([a, b]) \).

注 1 如果 \(\gamma(t) \) 为连续曲线, 且对所有 \(t_1, t_2, t_3 < t_2, \rho(\gamma(t_1), \gamma(t_2)) = t_2 - t_1 \), 则 \(\gamma(t) \) 是以弧长为参数的测线. 因此, 定理 3
中，如果线段以弧长重新参数化，则它就成为参数测地线。

定理 4 设 \(y(t), a \leq t \leq b \) 为连接 \(p \) 到 \(q \) 的分段 \(C^1 \) 曲线。\(L(y) = \rho(p, q) \)，即 \(y \) 为最短线。则 \(y \) 作为点集是测地线。此外，若沿 \(y \)，\(\| y' \| \) 为常值，则 \(y \) 是参数测地线。

证明 根据定理 3，只须证明 \(y \) 为线段。设 \(a = t_0 \leq t_1 \leq t_2 \leq t_3 \leq t_4 = b \)，由 \(y(t_1), y(t_2), y(t_3) \) 将 \(y \) 划分为 \(y_1, y_2, y_3 \) 和 \(y_4 \)，且有
\[
\rho(y(t_i), y(t_{i+1})) \leq L(y_{i+1}), \quad i = 0, 1, 2, 3.
\]
所以
\[
\rho(p, q) = \rho(y(t_0), y(t_4)) \leq \sum_{i=0}^{3} \rho(y(t_i), y(t_{i+1})) \\
\leq \sum_{i=0}^{3} L(y_{i+1}) = L(y) = \rho(y(t_0), y(t_4)) = \rho(p, q).
\]
\[
\rho(y(t_i), y(t_{i+1})) = L(y_{i+1}).
\]
类似地，\(\rho(y(t_1), y(t_3)) = L(y_2 \cup y_3) \)。最后得到
\[
\rho(y(t_1), y(t_2)) + \rho(y(t_2), y(t_3)) \\
= L(y_2) + L(y_3) = L(y_2 \cup y_3) = \rho(y(t_1), y(t_3)).
\]
这证明 \(y \) 是线段，因而 \(y \) 作为点集是测地线。

再根据定理 3，\(y([a, a + \varepsilon]) = \tau([a, a + \varepsilon]), \) 其中 \(\tau \) 为连接 \(y(a) \) 到 \(y(a + \varepsilon) \) 的最短测地线。因为 \(\| y'(t) \| = \alpha(\text{常值}) \neq 0 \)，所以弧长
\[
s(t) = L(y'_{t}) = \int_{a}^{t} \| y'(t) \| \, dt = \int_{a}^{t} \alpha \, dt = \alpha(t - a),
\]
于是，
\[
\tau(s) = \tau(\alpha(t - a)) = y(t)
\]
\[
\gamma'(t) = \alpha \frac{dr}{ds}
\]
由 \(\tau \) 是 \(C^\infty \) 的立知 \(y \) 是 \(C^\infty \) 的，\(y \) 为参数测地线。

设 \((M, g)\) 为 \(m \) 维 \(C^\infty \) Riemann 度量，它诱导了 \(M \) 上的一个距离函数 \(\rho \)，使 \((M, \rho)\) 为距离空间。反过来，距离函数 \(\rho \) 也完全确定了 Riemann 度量 \(g \)(参阅[\(P\)])。

258
定理5（Myers–Steenrod[MS]）设 \((M, g)\) 和 \((\tilde{M}, \tilde{g})\) 为 \(m\) 维\(C^\infty\)Riemann 流形，\(\rho\) 和 \(\tilde{\rho}\) 分别为 \((M, g)\) 和 \((\tilde{M}, \tilde{g})\) 上诱导的距离函数。如果 \(f : M \to \tilde{M}\) 为满足映射，且对任何 \(p, q \in M, \rho(p, q) = \tilde{\rho}(f(p), f(q))\)。则 \(f\) 为 \(C^\infty\) 同胚，且 \(g = f^*\tilde{g}\)。

证明 由 \(\rho(p, q) = \tilde{\rho}(f(p), f(q))\) 知 \(f\) 为连续的单射。再由 \(f\) 为满射知 \(f\) 是一一映射和 \(f^{-1}\) 也是连续的。所以 \(f\) 为同胚。

设 \(p \in M, \tilde{p} = f(p)\)。对于 \(\tilde{p}\) 的正规坐标邻域 \(\tilde{U}, \tilde{U}\) 为 \(p\) 的正规坐标邻域，使得 \(f(U) \subset \tilde{U}\)。对任意 \(X \in T_p M, ||X|| = ||g(X, X)||^{1/2} = 1\)，令 \(\gamma\) 是 \(U\) 中以 \((p, X)\) 为初始条件的弧长 \(s\) 为参数的最短测地线。因为 \(\gamma\) 关于 \(\rho\) 是线段，所以 \(f(\gamma)\) 关于 \(\tilde{\rho}\) 也是线段，从而 \(f(\gamma)\) 作为点集是 \(\tilde{U}\) 中以 \(p\) 为初始点的测地线。从

\[
\tilde{\rho}(f(\gamma(s_1), \gamma(s_2))) = \rho(\gamma(s_1), \gamma(s_2)) = |s_2 - s_1|
\]

知 \(f(\gamma(s))\) 也是以弧长 \(s\) 为参数的。设 \(F(X)\) 是 \(\tilde{p}\) 点处切于 \(f(\gamma)\) 的单位切向量（注意还未知 \(f\) 是否为 \(C^\infty\) 或 \(C^1\), \(df(X) = f_*(X)\) 还无意义！）。因此，\(F\) 是 \(p\) 点处单位切向量的集合到 \(\tilde{p}\) 点处的单位切向量的集合的映射，它可以按比例扩张为 \(T_p M\) 到 \(T_{\tilde{p}} \tilde{M}\) 的映射，仍记为 \(F\)。因为 \(f\) 有逆映射 \(f^{-1}\)，所以 \(f^{-1}\) 也保距离，即

\[
\rho(f^{-1}(\tilde{p}), f^{-1}(\tilde{q})) = \tilde{\rho}(f(f^{-1}(\tilde{p})), f(f^{-1}(\tilde{q}))) = \tilde{\rho}(\tilde{p}, \tilde{q})
\]

\[
= \tilde{\rho}(f(p), f(q)) = \rho(p, q).
\]

清楚地，\(F : T_p M \to T_{\tilde{p}} \tilde{M}\) 为一一映射，且

\[
f \circ \exp = \exp_{\tilde{p}} \circ F,
\]

\[
||F(X)|| = ||X||, \quad X \in T_p M,
\]

其中 \(\exp_{\tilde{p}}\)（或 \(\exp_{\tilde{p}}\)）是 \(0 \in T_p M\)（或 \(T_{\tilde{p}} \tilde{M}\)）的一个开邻域到 \(U\)（或 \(\tilde{U}\)）上的指数映射。\(\exp\) 和 \(\exp_{\tilde{p}}\) 都是 \(C^\infty\) 同胚。显然，\(f : M \to \tilde{M}\) 是 \(C^\infty\) 的 \(\iff\) 对任意 \(p \in M, \exp_{f^{-1}p} \circ f \circ \exp = F\) 是 \(C^\infty\) 的。而 \(g = f^*\tilde{g}\)，即 \(g(X, Y) = f^*\tilde{g}(X, Y) = \tilde{g}(f_*(X), f_*(Y)) = \tilde{g}(F(X), F(Y))\)。故证明 \(F : T_p M \to T_{\tilde{p}} \tilde{M}\) 是线性同构就足够了。

先证明 \(g(X, Y) = \tilde{g}(F(X), F(Y))\)。因为对任意 \(X \in T_p M\) 及任意 \(c \in \mathbb{R}\) 有 \(F(cX) = cF(X)\)，所以假定 \(X\) 和 \(Y\) 都
是单位向量, $F(X)$ 和 $F(Y)$ 也是单位向量. 令

$$\cos \alpha = g(X,Y), \quad \cos \tilde{\alpha} = \tilde{g}(F(X),F(Y)).$$

$\gamma(s)$ 和 $\tau(s)$ 分别是以初始条件 (ρ, X) 和 (ρ, Y) 的测地线, 它们都是从 p 开始的以弧长为参数的. 易见 $\gamma(s) = f(\gamma(s))$ 和 $\tau(s) = f(\tau(s))$ 分别是以 $(\rho, F(X))$ 和 $(\rho, F(Y))$ 为初始条件的测地线, 它们也是以弧长为参数的. 根据下面的引理 9:

$$\sin \frac{\alpha}{2} = \lim_{s \to 0^+} \frac{1}{2s} \rho(\gamma(s), \tau(s)),

\sin \frac{\tilde{\alpha}}{2} = \lim_{s \to 0^+} \frac{1}{2s} \tilde{\rho}(\tilde{\gamma}(s), \tilde{\tau}(s)).$$

和 f 保持距离就得到

$$\sin \frac{\alpha}{2} = \sin \frac{\tilde{\alpha}}{2}.$$}

从而有

$$g(X,Y) = \cos \alpha = 1 - 2\sin^2 \frac{\alpha}{2} = 1 - 2\sin^2 \frac{\tilde{\alpha}}{2}$$

$$= \cos \tilde{\alpha} = \tilde{g}(F(X),F(Y)).$$

再证明 F 是线性的. 为此, 设 X_1, \cdots, X_m 为 T,M 的规范正交基. 则由 $g(X,Y) = \tilde{g}(F(X), F(Y))$ 立即得到 $\tilde{X}_i = F(X_i), i = 1, \cdots, m$ 形成了 T, \tilde{M} 的规范正交基. 对任意 $X, Y \in T, M$, 有

$$\tilde{g}(F(X+Y), \tilde{X}_i) = g(X+Y, X_i)$$

$$= g(X, X_i) + g(Y, X_i)$$

$$= \tilde{g}(F(X), \tilde{X}_i) + \tilde{g}(F(Y), \tilde{X}_i)$$

$$= \tilde{g}(F(X) + F(Y), \tilde{X}_i), \quad i = 1, \cdots, m.$$}

因此

$$F(X+Y) = F(X) + F(Y).$$

再结合对 $\forall X \in T, M, \forall c \in \mathbb{R}, F(cX) = cF(X)$, 就知 F 为线性映射. 又因 F 是一一的, 故 F 是线性同构.

引理 9. $\sin \frac{\alpha}{2} = \lim_{s \to 0^+} \frac{1}{2s} \rho(\gamma(s), \tau(s))$,

260
\[
\sin \frac{\alpha}{2} = \lim_{s \to 0^+} \frac{1}{2s} \rho(\gamma(s), \tau(s)).
\]

证明 设 \(U \) 为 \(p \) 点处正交坐标系 \(\{x^1, \cdots, x^n\} \) 的坐标邻域，\(h \) 为 \(U \) 中由 \(\sum_{i=1}^{n} dx^i \otimes dx^i \) 给出的 Riemann 度量，\(\delta(q, r) \) 为 \(q \) 和 \(r \) 关于 \(h \) 的距离。假设

\[
\lim_{s \to 0^+} \frac{1}{2s} \rho(\gamma(s), \tau(s)) > \sin \frac{\alpha}{2}.
\]

选 \(c > 1 \)，使

\[
\lim_{s \to 0^+} \frac{1}{2s} \rho(\gamma(s), \tau(s)) > c \sin \frac{\alpha}{2}.
\]

取 \(U \) 足够小，可假定在 \(U \) 上 \(\frac{h}{c} \leq g \leq c h \)，即

\[
\frac{1}{c} h(Z, Z) < g(Z, Z) < c h(Z, Z), \quad Z \in T, M, Z \neq 0, r \in U.
\]

从 \(\rho \) 和 \(\delta \) 的定义可以得到

\[
\frac{1}{c} \delta(q, r) < \rho(q, r) < c \delta(q, r).
\]

因此，对足够小的 \(s \)،

\[
c \sin \frac{\alpha}{2} = \frac{c}{2s} \delta(\gamma(s), \tau(s)) > \frac{1}{2s} \rho(\gamma(s), \tau(s)) > c \sin \frac{\alpha}{2},
\]

矛盾（因为 \(h \) 为 Euclid 度量，所以 \(\delta(\gamma(s), \tau(s)) = 2s \sin \frac{\alpha}{2} \)）。

同理，假设

\[
\lim_{s \to 0^+} \frac{1}{2s} \rho(\gamma(s), \tau(s)) < \sin \frac{\alpha}{2}.
\]

则选 \(c > 1 \)，使 \(\lim_{s \to 0^+} \frac{1}{2s} \rho(\gamma(s), \tau(s)) < \frac{1}{c} \sin \frac{\alpha}{2} \)。则对足够小的 \(s \)，

\[
\frac{1}{c} \sin \frac{\alpha}{2} = \frac{1}{2sc} \delta(q, r) < \frac{1}{2s} \rho(\gamma(s), \tau(s)) < \frac{1}{c} \sin \frac{\alpha}{2},
\]

又产生了矛盾。

综合上述，得到
$$\lim_{s \to 0^+} \frac{1}{2s} \rho(y(s), \tau(s)) = \sin \frac{a}{2}.$$

同理可证 \(\lim_{s \to 0^+} \frac{1}{2s} \rho(y(s), \tau(s)) = \sin \frac{a}{2} \)。所以

$$\lim_{s \to 0^+} \frac{1}{2s} \rho(y(s), \tau(s)) = \sin \frac{a}{2}.$$

完全一样地有

$$\lim_{s \to 0^+} \frac{1}{2s} \rho(\tilde{y}(s), \tilde{\tau}(s)) = \sin \frac{a}{2}.$$

在给出各种完备的等价性之前，我们先证两个引理。

引理 10 在 \(m \) 维 \(C^\infty \) 连通完备 (即测地完备) 的 Riemann 流形 \((M, g)\) 上，存在正连续函数 \(r(z), z \in M \) 使得 \(S_z(r(z)) = \{ y \in M | \rho(z, y) \leq r(z) \} \) 中任何两点必有一条最短测地线相连接。

证明 对 \(\forall z \in M \)，令

\[r(z) = \sup \{ r > 0 | \text{如果 } \rho(z, y) \leq r, \rho(z, \tilde{y}) \leq r, \text{必有最短测地线将 } y \text{ 和 } \tilde{y} \text{ 相连接} \}. \]

凸正规坐标邻域的存在性蕴含着 \(r(z) > 0 \)。如果对某个 \(z \in M \), \(r(z) = + \infty \)，则对 \(\forall y \in M, r(y) = + \infty \)。因此，\(M \) 上的任何正连续函数都满足引理中的条件。如果对每个 \(z \in M, r(z) < + \infty \)，我们将证明 \(|r(z) - r(y)| \leq \rho(z, y) \)，从而 \(r(z) \) 为 \(M \) 上的正连续函数。不失一般性，可以假定 \(r(z) > r(y) \)。如果 \(r(z) \leq \rho(z, y) \)，则 \(|r(z) - r(y)| \leq \rho(z, y) \)；如果 \(r(z) > \rho(z, y) \)，则 \(S_z(r(z) - \rho(z, y)) = \{ \tilde{y} \in M | \rho(y, \tilde{y}) \leq r(z) - \rho(z, y) \} \subset S_z(r(z)) \)。于是，由 \(r(y) \) 的定义立知

\[r(y) \geq r(z) - \rho(z, y), \text{即 } |r(z) - r(y)| \leq \rho(z, y). \]

再证明 \(r(z) = \max \{ r > 0 | \text{如果 } \rho(z, y) \leq r, \rho(z, \tilde{y}) \leq r, \text{必有最短测地线将 } y \text{ 和 } \tilde{y} \text{ 相连接} \} \)，即 \(S_z(r(z)) = \{ y \in M | \rho(z, y) \leq r(z) \} \) 中任何两点 \(y \) 和 \(\tilde{y} \) 必有一条最短测地线相连接。事实上，可选取 \(\{ y_i \} \) 和 \(\{ \tilde{y}_i \} \)，使得 \(y = \lim_{i \to +\infty} y_i, \tilde{y} = \lim_{i \to +\infty} \tilde{y}_i, \rho(z, y_i) \leq r < r(z), \rho(z, \tilde{y}_i) \leq r < r(z) \)。根据 \(r(z) \) 的定义，存在最短测地线 \(\exp_y sX, 0 \leq s \leq s, \| X, \| = 1 \) 将 \(y_i \) 与 \(\tilde{y}_i \) 相连接，即 \(\tilde{y}_i = \exp_y sX \)。不失一般性可假定

262
（如有必要选子序列）\(\lim_{t \to +\infty} X_t = X_0, \lim s_t = s_0 \). 显然
\[
 s_0 = \lim_{t \to +\infty} s_t = \lim_{t \to +\infty} \rho(y, \tilde{y}_t) = \rho(y, \tilde{y}).
\]
再由 \((M, g)\) 是测地完备的知
\[
 \exp_t s_0 X_t = \lim_{t \to +\infty} \exp_t s_t X_t = \lim_{t \to +\infty} \tilde{y}_t = \tilde{y}.
\]
即 \(\exp_t s X_t, 0 \leq s \leq s_0 \) 是连接 \(y \) 和 \(\tilde{y} \) 的最短测地线.

引理 11 设 \((M, g)\) 是 \(m \) 维 \(C^\infty \) 连通完备（即测地完备）的 Riemann 流形，\(x \in M, r > 0 \)，令
\[
 S(r) = \{ y \in M \mid \rho(x, y) \leq r \},
\]
\[
 E(r) = \{ y \in S(r) \mid \text{存在最短测地线连接} \ x \ \text{和} \ y \}.
\]
则 \(E(r) = S(r) \)，且是紧致的。

证明 设 \(\{ y_i \mid i = 1, 2, \cdots \} \) 为 \(E(r) \) 中的序列，且对每个 \(i, \tau_i \) 为从 \(x \) 到 \(y_i \) 的最短测地线，
\(X_i \) 为点 \(x \) 处切于 \(\tau_i \) 的单位向量，可以假定
（如有必要取子序列）\(\{ X_i \} \) 收敛于单位向量 \(X_0 \in T_x M \)，因为对任何
\(i, \rho(x, y_i) \leq r \)，故还可假定（如有必要取子序列）\(\rho(x, y_i) \) 收敛于非负数 \(r_0 \)。因为 \((M, g)\) 是 \(C^\infty \) 完备（测地完备）Riemann 流形，所以
\(\exp_t r_0 X_0 \) 是定义好的，且
\[
 \lim_{t \to +\infty} y_i = \lim_{t \to +\infty} \exp_t (\rho(x, y_i) X_i) = \exp_t (r_0 X_0) = y_0.
\]
因此，\(\rho(x, y_0) = \lim_{t \to +\infty} \rho(x, y_i) = r_0 \). 这蕴涵着测地线 \(\exp_t s X_t, 0 \leq s \leq r_0 \) 是最短的且 \(y_0 \in E(r) \)，所以 \(E(r) \) 是序列紧致的，从而是紧致的。

再证 \(E(r) = S(r), r > 0 \). 由 \(x \) 的正规坐标系和凸邻域的存在性立知，存在 \(\varepsilon > 0 \)，当 \(0 < r < \varepsilon \) 时，\(E(r) = S(r) \). 设 \(r^* = \sup \{ r_0 > 0 \mid E(r) = S(r), \forall r < r_0 \} \)，显然 \(r^* > 0 \). 我们证明 \(r^* = +\infty \). （反证）假设 \(r^* < +\infty \). 如果 \(y \in S(r^*) \)，选 \(y_i \)，使 \(\rho(x, y_i) < r^* \)，\(\lim y_i = y \)，（因为对任何 \(\varepsilon > 0 \) 存在 \(C^\infty \) 曲线 \(\tau \) 使 \(L(\tau) < \rho(x, y) + \varepsilon \)，所以 \(\{ y_i \} \) 总是存在的）。对每个 \(y_i \)，存在 \(r < r^* \) 使得 \(y_i \in E(r) \)，故 \(y_i \in E(r^*) \). 又因 \(E(r^*) \) 是紧致的，所以 \(y \in E(r^*) \). 这就证明了 \(S(r^*) \subset E(r^*) \). 另一方面，从 \(E(r^*) \) 的定义，自然有 \(E(r^*) \subset S(r^*) \). 于是
\(E(r^*) = S(r^*) \).
设 \(r(z) \) 为引理 10 中的连续函数, \(\delta \) 为 \(r(z) \) 在紧致集 \(E(r^*) \) 上的最小值. 由 \(E(r^* + \delta) \) 的定义, 显然 \(E(r^* + \delta) \subseteq S(r^* + \delta) \). 反过来, 对 \(\forall y \in S(r^* + \delta) \), 如果 \(y \in S(r^*) \), 则 \(y \in S(r^*) = E(r^*) \subseteq E(r^* + \delta) \); 如果 \(y \in S(r^*) \), 对每个自然数 \(k \), 选择从 \(x \) 到 \(y \) 的分段 \(C^\infty \) 曲线 \(\tau_i \), 使得 \(L(\tau_i) \leq \rho(x, y) + \frac{1}{k} \), 其中 \(L(\tau_i) \) 为 \(\tau_i \) 的长度. 设 \(y_i \) 为从 \(i \) 上属于 \(E(r^*) = S(r^*) \) 的最后一点, 则 \(\rho(x, y_i) = r^*, \rho(x, y_i) + \rho(y_i, x_i) \leq L(\tau_i) < \rho(x, y) + \frac{1}{k} \). 因为 \(E(r^*) \) 是紧致的, 所以可假定 (如有必要取子序列) \(\{y_i\} \) 收敛于点 \(\tilde{y} \in E(r^*) \). 易见, \(\rho(x, \tilde{y}) = r^* \) 和 \(\rho(x, y) \leq \rho(x, \tilde{y}) + \rho(\tilde{y}, y) \leq \rho(x, y) \), 从而 \(\rho(x, \tilde{y}) + \rho(\tilde{y}, y) = \rho(x, y) \). 设 \(\tilde{\tau} \) 是从 \(x \) 到 \(\tilde{y} \) 的最短测地线, 因为 \(\rho(\tilde{y}, y) \leq \rho(x, y) - \rho(x, \tilde{y}) \leq (r^* + \delta) - r^* = \delta \leq \tau(y) \), 所以, 存在从 \(\tilde{y} \) 到 \(y \) 的最短测地线 \(\tilde{\tau} \). 设 \(\tau = \tilde{\tau} \cup \tilde{\tau} \), 则 \(L(\tau) = L(\tilde{\tau}) + L(\tilde{\tau}) = \rho(x, \tilde{y}) + \rho(\tilde{y}, y) = \rho(x, y) \). 根据定理 4, \(\tau \) 为从 \(x \) 到 \(y \) 的最短测地线, 因此, \(y \in E(r^* + \delta) \), 而 \(E(r^* + \delta) = S(r^* + \delta) \). 这与 \(r^* \) 的定义相矛盾. 因而必有 \(r^* = + \infty \).

定理 6 (最短测地线存在性定理) 设 \((M, g) \) 是连通完备（测地完备）\(C^\infty \) Riemann 流形, 则 \(M \) 中任何两点 \(p, q \) 可有一条最短测地线连接. 由此立即得到: \(\exp_*: T_p M \to M \) 为满映射.

证明 由引理 11, 取 \(\tau = \rho(p, q) \), 则 \(q \in S(r) = E(r) \), 根据 \(E(r) \) 的定义, 必存在最短测地线连接 \(p \) 和 \(q \).

设 \(\gamma(t) \) 为连结 \(p \) 和 \(q \) 的最短测地线, 由 \((M, g) \) 完备, 存在单位切向量 \(X \in T_p M \), 使得 \(\exp_p X = \gamma(1) = q \) 和 \(\exp_*: T_p M \to M \) 为满映射.

定理 7 (Hopf-Rinow, 各种完备的等价性) 设 \((M, g) \) 为 \(m \) 维连通 \(C^\infty \) Riemann 流形, 下面的条件是彼此等价的:

1. \((M, g) \) 是完备 Riemann 流形, 即是测地完备的；
2. \((M, \rho) \) 是完备的距离空间, 其中 \(\rho \) 是由 \(g \) 诱导的距离函数；

264
(3) \((M, \rho)\) 的每个有界闭集是紧致的。

证明 \((1) \Rightarrow (3)\) \((M, g)\) 是测地完备的, 由引理 11, 对每个 \(r > 0, E(r) = S(r)\) 是紧致的, 而 \(M\) 的每个有界闭子集 \(A\) 必含在某个 \(S(r_0) = E(r_0), r_0 > 0\) 中。因此, 闭子集 \(A\) 也是紧致的。

\((3) \Rightarrow (2)\) 设 \(\{p_i\}\) 为 \(M\) 中的任一 Cauchy 序列。取 \(\varepsilon = 1\), 则存在自然数 \(N\), 当 \(i, j > N\) 时, \(\rho(p_i, p_j) < \varepsilon = 1\)。于是,
\[
\rho(p_i, p_{i+1}) < 1, \quad i > N
\]

和
\[
\rho(p_i, p_{i+1}) < 1 + \max_{1 \leq j \leq N} \{\rho(p_j, p_{N+1})\}.
\]

这就证明了 \(\{p_i\}\) 为有界集合。再证明 \(\{p_i\}\) 必收敛, 从而 \((M, \rho)\) 是完备的距离空间。反证法, 假设 \(\{p_i\}\) 不收敛, 则 \(\{p_i\}\) 无聚点（也无子列极限), 从而 \(\{p_i\}\) 为闭集, 由条件 (3), 有界闭集 \(\{p_i\}\) 是紧致的。另一方面, 对每个点 \(p\), 它不是 \(\{p_i\}\) 的子列的极限, 故必有开邻域 \(U_i\) 至多含有有限个 \(p\)。于是 \(\{U_i\}\) 为集合 \(\{p_i\}\) 的一个开覆盖。显然它无有限子覆盖, 即集合 \(\{p_i\}\) 不是紧致的。矛盾。

\((2) \Rightarrow (1)\) 设 \(\gamma(s), 0 \leq s \leq b\) 为测地线, \(s\) 为弧长参数。令 \(s, \uparrow b\), 则
\[
\rho(\gamma(s_i), \gamma(s_j)) \leq |s_i - s_j|
\]

和 \(\gamma(s_i)\) 为 \(M\) 中关于 \(\rho\) 的 Cauchy 序列。由于 \((M, \rho)\) 是完备距离空间, 故 \(\gamma(s_i)\) 收敛于点 \(p\)。易见极限点 \(p\) 与收敛于 \(b\) 的序列 \(s_i\) 的选择无关。令 \(\gamma(b) = p\), 在点 \(p\) 的正规坐标系中, 取 \(\varepsilon > 0\), 延拓该测地线到 \([b, b + \varepsilon]\)。由此和用反证法可证
\[
b^* = \text{Sup}\{b > 0 | \gamma(s), 0 \leq s \leq b\} = + \infty
\]

因此, \((M, g)\) 是测地完备的。

注 2 设 \((M, g)\) 为 \(m\) 维连通 Riemann 流形, \(x \in M\) 是一个固定点, 如果从该点 \(x\) 出发的每条测地线可以无限延拓到 \(R\), 则从引理 11 的证明知, 对 \(\forall r > 0, E(r) = S(r)\) 且是紧致的。在此条件下, 根据定理 7(1) \(\Rightarrow (3)\) 的证明, \((M, \rho)\) 中每个有界闭集是紧致的。从而 \((M, \rho)\) 是完备距离空间且 \((M, g)\) 是测地完备的。
注 3 如果删去定理 7 中“连通”的条件，则(3) \Rightarrow (2) \Rightarrow (1)，但(1) \nRightarrow (2)，(1) \nRightarrow (3)。

推论 1 每个 C^∞ 连致 Riemann 流形 (M, g) 是完备的。

证明 设 (M, ρ) 为 (M, g) 诱导的距离空间，由于 M 连致，故 M 中每个有界闭集 A 也必为连致集。根据定理 7，(M, ρ) 是完备距离空间，因而 (M, g) 是测地完备的。

定义 5 设 (M, g) 为 m 维 C^∞ Riemann 流形，如果 M 的等距变换（即保持度量张量 g 的变换）群在 M 上是可迁的，即 $\forall p, q \in M$，必有一个等距变换 $f: M \to M$，使得 $f(p) = q$，则称 (M, g) 为 C^∞ 齐性 Riemann 流形。

推论 2 每个 C^∞ 齐性 Riemann 流形 (M, g) 是完备的。

证明 设 $p \in M$，则存在 $r > 0$，使得对每个单位向量 $X \in T_pM$，测地线 $\exp_p sX, \ |s| \leq r$ 是定义好的。令 $\gamma(s), 0 \leq s \leq a$ 是以 s 为弧长的 M 中的任一测地线。记 $\gamma'(0) = X, \gamma(s) = \exp_p sX, 0 \leq s \leq a$。因为 (M, g) 是 C^∞ 齐性 Riemann 流形，所以存在等距变换 $g: M \to M$，使得 $g(p) = g(\gamma(0)) = \gamma(a)$。又因为 $\exp_p sX$ 是过 $p = \gamma(0)$ 的测地线，故 $g(\exp_p sX)$ 是过 $\gamma(a)$ 的测地线，且 $g_*(X) = g_*(\gamma'(0)) = \gamma'(a)$。根据测地线的唯一性定理，存在 $\varepsilon > 0$，使得

$$
\gamma(a + s) = \exp_p sX, \quad 0 \leq s \leq \varepsilon.
$$

于是，$\gamma(s), 0 \leq s \leq a + \varepsilon$ 是测地线。由此用反证法立得

$$
a^* = \sup\{a > 0 | \exp_p sX, 0 \leq s \leq a \text{ 为测地线}\} = + \infty.
$$

即 (M, g) 是测地完备的。

例 1 设 \mathbb{R}^n 为通常的 Euclid 空间，$\{x^1, \cdots, x^n\}$ 为通常的整体直角坐标系，$g = \sum_{i=1}^n dx^i \otimes dx^i$ 为其 C^∞ Riemann 度量，$\Gamma^i_{ij} = 0$。测地线

$$
\gamma: t \to (x_1(t), \cdots, x_n(t))
$$

满足测地线方程

$$
\frac{d^2 x^i}{dt^2} = 0,
$$

它的解是直线 $x^i = \alpha t + \beta^i, -\infty < t < +\infty, \alpha^i, \beta^i \in \mathbb{R}, i = 1, \cdots$,
弧长公式为

\[s(t) = \int \left[\sum_{i=1}^{n} \left(\frac{dx_i}{dt} \right)^2 \right]^{\frac{1}{2}} dt. \]

它是曲线的内接折线的长度之上确界。清楚地，直线具有最短长度，因此是测地线。

众所周知，\(\mathbb{R}^n \) 是测地完备的，也是完备距离空间，并且 \(\mathbb{R}^n \) 中的有界闭集 \(A \subseteq A \) 紧致。

值得注意的是，\(\mathbb{R}^n - \{0\} \) 不是测地完备的（测地线（s = 1, 0, \ldots, 0）0 ≤ s < 1 不能无限延拓），也不是完备距离空间（\(\{(\frac{1}{n}, 0, \ldots, 0) | n = 1, 2, \ldots \} \) 为 Cauchy 序列，但不收敛）。此外，有界闭集

\[\{(x^1, \ldots, x^n) \in \mathbb{R}^n - \{0\} | \sum_{i=1}^{n} (x^i)^2 \leq 1 \} \]

不是紧致的。

例 2 由于任何测地线是大圆，也就是 \(S^n \) 与过其中心的 2 维平面的交。通过 2 维平面 \(\mathbb{R}^2 \) 的反射是一个等距变换 \(f: S^n \to S^n \)，它的不动点集是 \(C = S^n \cap \mathbb{R}^2 \)。设 \(x, y \in C \)，若它们之间有唯一的最短测地线 \(\bar{C} \)，因为 \(f \) 是等距变换，\(f(\bar{C}) \) 和 \(\bar{C} \) 是连接 \(f(x) = x \) 和 \(f(y) = y \)

的具有相同长度的测地线，所以 \(f(\bar{C}) = \bar{C} \)。这蕴含着 \(\bar{C} \subseteq C \)。

球面 \(S^n \) 上的对径点之间最短测地线有无穷多条，所有连接这两个对径点的半大圆都是最短测地线。而非对径点之间的最短测地线只有唯一的一条（不计参数的线性变换）。

因为 \(S^n \) 紧致，所以它是测地完备的，也是完备距离空间。

例 3 正圆柱面 \(M = S^1 \times \mathbb{R} \) 上的测地线是母线，由垂直于母线的 2 维平面切割得到的圆以及 \(M \) 上的螺旋线。

如果 \(p, q \) 在同一母线上，则该母线上介于 \(p \) 和 \(q \) 之间的直线段就是最短测地线；如果 \(p, q \) 未在同一母线上，则连接它们的最短测地线是一条螺旋线。如果沿过 \(p \) 点的母线 \(L \) 切开正圆柱面 \(M \)，再通过它到 \(\mathbb{R}^2 \) 上的滚动建立一个等距变换 \(f \)，则 \(\mathbb{R}^2 \) 上连接 \(f(p) \) 和 \(f(q) \) 的直线在 \(f^{-1} \) 下的像正好是连接 \(p \) 和 \(q \) 的唯一的最短测地线。
易见 $M = S^1 \times \mathbb{R}$ 是实地完备的, 也是完备距离空间。且 M 中的有界闭集 $A \supseteq A$ 是紧致的。

3.2 Jacobi 场、共轭点和割迹

定义 1 设 $(M, \langle \cdot, \cdot \rangle)$ 为 m 维 C^∞ Riemann 流形, ∇ 为相应的 Riemann 联络。如果沿 M 的测地线 $\gamma = \gamma(t), t \in [a, b]$ 的一个 C^∞ 向量场 $X = X(t)$ 满足 2 阶线性常微分方程：

$$\nabla^2 \gamma X + R(X, \gamma') \gamma' = 0,$$

则称 X 为 Jacobi 场, 称上述方程为 Jacobi 方程, 其中 $\gamma'(t)$ 为 γ 在 $\gamma(t)$ 处的切向量。用 J, 记沿 γ 的 Jacobi 场的全体, 它形成了一个实向量空间。

 Jacobi 方程可以写成更加熟悉的方程, 为此, 令 e_1, \cdots, e_m 为沿 γ 的规范正交的平行基向量场，则 $X(t) = \sum_{i=1}^m f^i(t)e_i(t)$,

$$\frac{d^2 f^i}{dt^2} + \sum_{j=1}^m \langle R(e_j, \gamma') \gamma', e_i \rangle f^j(t) = 0, \quad i = 1, \cdots, m.$$

引理 1 沿 γ 的 Jacobi 场 X 由 X 和 $\nabla_\gamma X$ 在一个点 $\gamma(a)$ 处的值唯一确定。特别地有 $\text{dim}J_\gamma = 2m$。

证明 由 Jacobi 方程是 2 阶线性常微分方程立即可得。

下面给出 Jacobi 场的几何解释。

定义 2 测地线 $\gamma = \gamma(t), t \in [a, b]$ 的测地线变分是测地线的单参数族 $\tilde{\gamma}(u), u \in (- \varepsilon, \varepsilon)$, 使得 $\tilde{\gamma}(0) = \gamma$. 更确切地说, 它是一个 C^∞ 映射 $\tau: (- \varepsilon, \varepsilon) \times [a, b] \to M, (u, t) \to \tau(u, t), \tilde{\gamma}(u)(t) = \tau(u, t)$, 使得

1. 对任何固定的 $u \in (- \varepsilon, \varepsilon), \tilde{\gamma}(u) \text{ 为测地线}$；
2. $\tilde{\gamma}(0) = \gamma$, 即 $\tilde{\gamma}(0)(t) = \gamma(t), \forall t \in [a, b]$。

如果沿测地线 γ 的 C^∞ 向量场 X 是由 γ 的某个变分 τ 所诱导，即 $X(t) = \frac{\partial}{\partial u} \tau(u, t) \big|_{u=0} = \frac{\partial \tau}{\partial u}(0, t), t \in [a, b]$, 则称 X 为测地线 γ 的
无穷小变换.

定理 1 设 $y = y(t), t \in [a, b]$ 为测地线，X 为沿 y 的 Jacobi 场 $\Leftrightarrow X$ 为 y 的一个无穷小变分．

证明 (\Leftarrow) 设 τ 为 y 的测地线变分，则 $\nabla_{\frac{\partial}{\partial u}} = 0$．因此，从

$$
\nabla_{\frac{\partial}{\partial u}} \frac{\partial \tau}{\partial u} = \nabla_{\frac{\partial}{\partial u}} \frac{\partial \tau}{\partial x} + [\frac{\partial \tau}{\partial u}, \frac{\partial \tau}{\partial x}] = 0
$$

得到

$$
0 = \nabla_{\frac{\partial}{\partial u}} \frac{\partial \tau}{\partial u} = \nabla_{\frac{\partial}{\partial u}} \frac{\partial \tau}{\partial x} + \nabla_{\frac{\partial}{\partial u}} [\frac{\partial \tau}{\partial x}, \frac{\partial \tau}{\partial u}] + R(\frac{\partial \tau}{\partial u}, \frac{\partial \tau}{\partial x}) \frac{\partial \tau}{\partial u}
$$

$$
= \nabla_{\frac{\partial}{\partial u}} \frac{\partial \tau}{\partial u} + R(\frac{\partial \tau}{\partial u}, \frac{\partial \tau}{\partial x}) \frac{\partial \tau}{\partial u}
$$

$$
\frac{\partial ^2 \tau}{\partial u^2} + R(\frac{\partial \tau}{\partial u}, y') y'' = 0,
$$

即 $X(t) = \frac{\partial \tau}{\partial u}(0, t)$ 为沿 y 的 Jacobi 场．

(\Rightarrow) 选 $y(a)$ 的开邻域 U，使得 U 中任何两点可唯一地用一条最小测地线相连接（它 C^∞ 依赖于端点）．假定 $y(t) \in U, t \in [a, a + \delta]$．我们先构造一个沿 $y|_{[a, a + \delta]}$ 的 Jacobi 场 W 以 $t = a$ 和 $t = a + \delta$ 处任意预先给定的值．选 C^∞ 曲线 $\alpha:(-\varepsilon, \varepsilon) \to U$ 使得 $\alpha(0) = y(a)$，

$$
\frac{d\alpha}{du}(0) = T_{y(a)}M
$$

为预先给定的向量．类似选 $\beta:(-\varepsilon, \varepsilon) \to U, \beta(0) = y(a + \delta), \frac{d\beta}{du}(0) = T_{y(a + \delta)}M$ 中预先给定的向量．通过将每个固定的 u 令 $\tau(u)$ 为从 $\alpha(u)$ 到 $\beta(u)$ 的唯一的最小测地线，我们定义一个变分

$$
\tau:(-\varepsilon, \varepsilon) \times [a, a + \delta] \to M
$$

根据充分性，$t \to \frac{\partial \tau}{\partial u}(0, t)$ 确定了一个已给条件的 Jacobi 场．沿 $y|_{[a, a + \varepsilon]}$ 的任何 Jacobi 场可由这种方式得到．如果 J_y 表示沿 y 的所有 Jacobi 场的向量空间，则

$$
l: J_y \to T_{y(a)}M \times T_{y(a + \delta)}M
$$
为线性映射，上面已证 l 是满射。因为 J_y 和 $T_{\gamma(a)} M \times T_{\gamma(a+\delta)} M$ 都是 $2m$ 维的实向量空间，故 l 为同构。也就是 Jacobi 场由它在 $\gamma(a)$ 和 $\gamma(a+\delta)$ 处的值完全确定。所以，上面的构造产生了沿 $\gamma|_[,a+\delta]$ 的所有 Jacobi 向量场。从而 $X|_[,a+\delta]$ 由 $(X(a), X(b))$ 完全确定，而相应的变分为 $\tilde{\tau}(u)$ (或 τ)。由于 $[a, b]$ 紧致，$\tilde{\tau}(u)$ 可以延拓到整个 $\gamma = \gamma|_[,]$. 这就产生了测地线变分（仍记为 τ），

$$
\tau: (-\epsilon, \epsilon) \times [a, b] \to M,
$$

以已给的 Jacobi 场 X 作为它的变分向量场。

定义 3 设 γ 为 M 中的测地线，p 和 q 为 γ 上的两个点，如果存在沿 γ 的非零 Jacobi 场 X，它在 p 和 q 处为 0，则称点 p 和 q 是共轭的。

下面将用指数映射 $\exp: T_T M \to M$ 来解释共轭点。

定理 2 设 $(M, (\cdot, \cdot))$ 是完备的，$p \in M, Z \in T_T M$，则映射 $(\exp)_* Z$ 在 Z 是奇异的 $\iff q = \exp Z$ 为 p 的共轭点。

证明 (\Rightarrow) 如果 \exp 在 X 的微分或切映射

$$(\exp)_* Z: T_X(T_T M) \to T_p M = T_{\exp Z} M$$

是奇异的，则在 $T_p M$ 中，存在通过点 Z 的直线，它在 Z 处的切向量在映射 $(\exp)_* Z$ 下的象为零。设此直线为 $Z(u)$，其中 $Z(0) = Z$。于是 $\tau(u, t) = \exp_z(tZ(u))$，$(u, t) \in (-\epsilon, \epsilon) \times [0, 1]$ 是 $\gamma(t) = \exp_z(tZ(0)) = \exp_z(tZ)$ 的测地线变分。清楚地，由 $\tilde{\tau}(u)$ 或 $\tau(u, t)$ 诱导的 Jacobi 场 $\frac{\partial}{\partial u}(0, t)$ 在 p 和 $q = \exp Z$ 处为零。此外，由于 \exp 在 0 附近为 C^∞ 微分同胚，故 $\frac{\partial}{\partial u}(0, t) \equiv 0, t \in [0, 1]$。这就证明了 $q = \exp Z$ 与 p 是共轭的。

(\Leftarrow) 设 $q = \exp Z$ 为 p 的共轭点，则存在沿测地线 $\gamma(t) = \exp_z(tZ), t \in [0, 1]$ 的 Jacobi 场 $Y(t) \equiv 0$，且 $Y(0) = 0, Y(1) = 0$. 记 $\tau: (-\epsilon, \epsilon) \times [0, 1] \to M$ 为 $\tau(0, t) = \gamma(t) = \exp_z(tZ)$ 的测地线变分而 Y 为其变分向量场。于是，在 $T_p M$ 中通过 Z 有一 C^∞ 曲线 $Z(u)$。
使得 $Z(0) = Z'$ 而 $Z''(0) \neq 0$，且必有 $\tau(u, t) = \exp_x(tZ(u))$。因为 C^∞ 曲线 $Z(u)$ 在 $Z(0) = Z$ 处的切向量 $Z'(0) \neq 0$ 在 $(\exp_x)_{*Z}$ 下映为 $(\exp_x)_{*Z}(Z'(0)) = \frac{\partial}{\partial u}(0, 1) = Y(1) = 0$。所以 $(\exp_x)_{*Z}$ 是异常的。

注 1 设 $\gamma(t) = \exp_x(tZ(t)), t \in [0, +\infty)$ 为测地线，其中 $Z \in T_0M$。因为 \exp_x 在点 $0 \in T_0M$ 是非异常的，所以存在 $a > 0$，使得在 $\gamma(t), t \in [0, a]$ 上无 p 的共轭点。如果在 γ 上存在 p 的共轭点，令 $S = \{u > 0 | \gamma(u) = p$ 沿 $\gamma(t), t \in [0, u]$ 的共轭点 $\}$ 及 $b = \inf S$。显然，$b < 0$。由 $(\exp_x)_{*}$ 的连续性、下确界的定义及定理 2 知 \exp_x 在 bZ 是异常的。再由定理 2 就得 $\gamma(b)$ 为 $p = \gamma(0)$ 的共轭点，称它为 p 沿 γ 的第 1 个共轭点。

设 $\gamma(t), t \in [0, b]$ 为 $(M, \langle \cdot, \cdot \rangle)$ 上的测地线，t 为其弧长。X 为沿 γ 的 C^∞ 向量场。记 $X' = \nabla_\gamma X, X'' = \nabla_\gamma^2 X = \nabla_\gamma \nabla_\gamma X$。因为

$$\nabla_\gamma^2 \gamma' + R(\gamma', \gamma') \gamma' = 0$$

和

$$\nabla_\gamma^2 (t \gamma') + R(t \gamma', \gamma') \gamma' = \nabla_\gamma (\gamma' + t \nabla_\gamma \gamma') + t R(\gamma', \gamma') \gamma'$$
$$= \nabla_\gamma \gamma' + 0 = 0.$$

所以 $\gamma'(t)$ 和 $t \gamma'(t)$ 都是沿 γ 的 Jacobi 场。关于沿 γ 的 Jacobi 场有如下的分解定理。

定理 3 沿 C^∞ Riemann 流形 $(M, \langle \cdot, \cdot \rangle)$ 上的测地线 $\gamma(t), t \in [0, b]$ 的每个 Jacobi 场 $X(t)$ 可以分解成下列形式

$$X = \lambda \gamma' + \mu \gamma'' + Y.$$

其中 $\lambda, \mu \in \mathbb{R}, Y$ 为沿 γ 的 Jacobi 场，且对任何 $t \in [0, b], Y(t) \perp \gamma'(t)。$ 更进一步，上面形式的分解是唯一的。

证明 令 $\lambda = \langle \gamma'(0), X(0) \rangle, \mu = \langle \gamma''(0), X'(0) \rangle, Y = X - \lambda \gamma' - \mu \gamma''$。因为 X, γ', γ'' 都是沿 γ 的 Jacobi 场，所以 Y 也是，且

$$\langle Y'', \gamma' \rangle = \langle Y'', \gamma' \rangle + 0$$
$$= \langle Y'', \gamma' \rangle + \langle R(\gamma', \gamma') \gamma', \gamma' \rangle$$

271
\[= \langle Y'' + R(Y, y') y', y' \rangle = \langle 0, y' \rangle = 0. \]

再由 \(\nabla y' = 0 \) 和 Riemann 联络的性质，可有

\[
\frac{d^2}{dt^2} \langle Y, y' \rangle = \frac{d}{dt} \left(\langle Y', y' \rangle + \langle Y, \nabla y' \rangle \right) \\
= \frac{d}{dt} \langle Y', y' \rangle = \langle Y'', y' \rangle + \langle Y', \nabla y' \rangle \\
= 0 + \langle Y', 0 \rangle = 0.
\]

因此，\(\langle Y, y' \rangle = At + B \)，其中 \(A, B \) 为常数。因为 \(t y'(t) |_{t=0} = 0 \)，故有

\[
B = \langle Y(0), y'(0) \rangle = \langle X(0), \lambda y'(0), y'(0) \rangle \\
= \langle X(0), y'(0) \rangle - \langle \lambda y'(0), y'(0) \rangle \\
= \lambda - \lambda = 0,
\]

由于 \(y \) 是测地线，所以 \(Y' = X' - \mu y' \)，从而

\[
A = \frac{d}{dt} \langle Y, y' \rangle |_{t=0} = \langle Y', y' \rangle |_{t=0} \\
= \langle X', y' \rangle |_{t=0} - \mu \langle y', y' \rangle |_{t=0} \\
= \mu - \mu = 0.
\]

于是 \(\langle Y, y' \rangle = 0 \)，即 \(Y \perp y' \)。

更进一步来证明唯一性。假设 \(X \) 有另一分解使得 \(\bar{Y} \perp y' \)。则对每个 \(t \)，有

\[
(\lambda + \mu t) y'(t) + Y = X(t) \\
= (\bar{\lambda} + \bar{\mu} t) y'(t) + \bar{Y}(t)
\]

因为 \(Y(t) \perp y'(t), \bar{Y}(t) \perp y'(t) \)，所以

\[
\begin{align*}
\lambda + \mu t &= \bar{\lambda} t,
Y(y) &= \bar{Y}(t).
\end{align*}
\]

从而 \(\lambda = \bar{\lambda}, \mu = \bar{\mu}, Y = \bar{Y} \)，即分解是唯一的。

由此，可以导出下面几个有用的结果。

定理 4 如果 \(X \) 为沿测地线 \(y \) 的 Jacobi 场，且 \(X(t_0) \perp y'(t_0) \)，

\(X(t_1) \perp y'(t_1), t_0, t_1 \in [0, b], t_0 \neq t_1 \)，则对所有的 \(t \in [0, b], X(t) \perp y'(t) \)。
证明 由定理 3，X 可分解为

$$X = \lambda y' + \mu t y' + Y.$$

则

$$\begin{align*}
\begin{cases}
(\lambda + \mu t_0) y'(t_0) = 0 \\
(\lambda + \mu t_1) y'(t_1) = 0.
\end{cases}
\end{align*}$$

因为 $y'(t_0) \neq 0$, $y'(t_1) \neq 0$, 所以

$$\begin{align*}
\begin{cases}
\lambda + \mu t_0 = 0 \\
\lambda + \mu t_1 = 0
\end{cases}
\end{align*}$$

$\lambda = \mu = 0$, 于是得 $X(t) = Y(t), \forall t \in [0, b]$.

定理 5 设 X 和 Y 分别是沿测地线 y 的 Jacobi 场和分段 C^∞ 向量场. 则对于 t 的任意两个参数值 a 和 b, 有

$$\langle X', Y \rangle|_a^b - \int_a^b [\langle X', Y' \rangle - \langle R(X, y') y', Y \rangle] dt = 0$$

证明 由于 X 为 Jacobi 场，故

$$\frac{d}{dt} \langle X', Y \rangle = \langle X', Y' \rangle + \langle X'', Y \rangle$$

$$= \langle X', Y' \rangle - \langle R(X, y') y', Y \rangle.$$

两边积分就得

$$\langle X', Y \rangle|_a^b = \int_a^b \frac{d}{dt} \langle X', Y \rangle dt$$

$$= \int_a^b [\langle X', Y' \rangle - \langle R(X, y') y', Y \rangle] dt,$$

移项就得所需的公式.

定理 6 设 X 和 Y 为沿连通的测地线 y 的 Jacobi 场，则

$$\langle X, Y' \rangle - \langle X', Y \rangle = \text{常值}.$$

特别地，如果对参数 t 的某个值 t_0 有 $X(t_0) = 0, Y(t_0) = 0$, 则

$$\langle X, Y' \rangle - \langle X', Y \rangle \equiv 0.$$

证明 由定理 5 的证明得

$$\frac{d}{dt} \langle X', Y \rangle = \langle X', Y' \rangle - \langle R(X, y') y', Y \rangle,$$
\[
\frac{d}{dt} \langle X, Y' \rangle = \langle X', Y' \rangle - \langle R(Y, y''), y', X \rangle.
\]
但 \(\langle R(X, y''), y', Y \rangle = \langle R(Y, y''), y', X \rangle \)，故
\[
\frac{d}{dt} [\langle X, Y' \rangle - \langle X', Y' \rangle] = 0,
\]
即 \(\langle X, Y' \rangle - \langle X', Y' \rangle = \) 常值。

例 1 设 \((M, \langle, \rangle)\) 为 \(m\) 维 \(C^\infty\) Riemann 流形，它具有正 Riemann 常截曲率 \(c, y\) 为测地线，\(y'(0), Y_1, \cdots, Y_{m-1}\) 为 \(T_{y(0)}M\) 中的规范正交基。通过沿 \(y\) 的平移，延拓 \(Y_1, \cdots, Y_{m-1}\) 到沿 \(\tau\) 的平行向量场 \(Y_1(t), \cdots, Y_{m-1}(t)\)，使得在每个点 \(y(t), y'(t), Y_1(t), \cdots, Y_{m-1}(t)\) 为 \(T_{y(t)}M\) 的规范正交基。由于 \(M\) 具有常截曲率 \(c\)，故

\[
R(X, Y)Z = c \langle (Z, Y) X \rangle - \langle Z, X \rangle Y \rangle.
\]
应用该公式可验证

\[
U_i(t) = \sin(\sqrt{c} t) Y_i(t),
\]
\[
V_i(t) = \cos(\sqrt{c} t) Y_i(t), \quad i = 1, \cdots, m - 1
\]
为沿 \(y\) 的 Jacobi 场。事实上，

\[
U_i''(t) + R(U_i(t), y'(t)) y''(t)
= U_i''(t) + c \langle (y'(t), y''(t)) U_i(t) - \langle y'(t), U_i(t) \rangle y'(t) \rangle
= U_i''(t) + c U_i(t)
= (\sqrt{c} \cos(\sqrt{c} t) Y_i(t))' + c U_i(t)
= c \sin(\sqrt{c} t) Y_i(t) + c U_i(t) = 0,
\]
\[
V_i''(t) + R(V_i(t), y'(t)) y''(t)
= V_i''(t) + c \langle (y'(t), y''(t)) V_i(t) - \langle y'(t), V_i(t) \rangle y'(t) \rangle
= V_i''(t) + c V_i(t)
= (\sqrt{c} \cos(\sqrt{c} t) Y_i(t))' + c \cos(\sqrt{c} t) Y_i(t) = 0.
\]
应用引理 1，容易验证，\(y', ty', U_1, \cdots, U_{m-1}, V_1, \cdots, V_{m-1}\) 恰好形成沿 \(y\) 的 Jacobi 场的空间的一个基。此外，由于非零 Jacobi 场 \(U_i\) 满足
\[
U_i(n \pi / \sqrt{c}) = 0, n = \pm 1, \pm 2, \cdots.
\]
故 \(y(n \pi / \sqrt{c}), n = \pm 1, \pm 2, \cdots\)。
为 $y(0)$ 的全部共轭点.

我们将给出有关 Riemann 截曲率和 Ricci 曲率对相邻共轭点之间距离的上界有影响的几个重要定理. 为此, 先介绍二个引理.

设 X 为沿测地线 y 的分段 C^{∞} 向量场, 即 $X(t), t \in [a, b]$ 是连续的, 且存在 $[a, b]$ 的一个分割 $a = t_0 < t_1 < \cdots < t_h < t_{h+1} = b$, 使得 X 在每个 $[t_i, t_{i+1}]$ 上是 C^{∞} 的, $i = 0, \cdots, h$. 令

$$l^*_i(X) = \int_{t_i}^{t_{i+1}} \left[\langle X', X' \rangle - \langle R(X', y'), y' \rangle, X \rangle \right]dt.$$

引理 2 设 $y(t), a \leq t \leq b$ 为 m 维 C^{∞} Riemann 流形 (M, \langle, \rangle) 中的测地线, 沿 $y(t), a \leq t \leq b, y(a)$ 无共轭点, X 和 Y 分别为沿 y 的分段 C^{∞} 向量场和 Jacobi 场, 且 $X \perp y', Y \perp y', X(a) = 0, Y(a) = 0$. 如果 $X(b) = Y(b)$, 则

$$l^*_i(Y) \leq l^*_i(X),$$

且等号成立 $\iff X = Y$.

特别地, 如果 $X(b) = 0$, 则 $l^*_i(X) \geq 0$, 且 $l^*_i(X) = 0 \iff X = 0$.

如果沿 $y(t), a \leq t \leq b$ 仅含共轭点 $y(b)$, 则上述结论仍成立 (读者自证).

证明 由引理 1, $\dim \{Z \mid Z$ 为沿 y 的 Jacobi 场, $z(a) = 0\} = m$, 又根据定理 3, $\dim J_{y,a} = m - 1$, 其中 $J_{y,a} = \{Z \mid Z$ 为沿 y 的 Jacobi 场, $Z(a) = 0, Z \perp y'\}$. 设 Y_1, \cdots, Y_{m-1} 为 $J_{y,a}$ 的一个基, 则对任意 $Y \in J_{y,a}$, 有

$$Y = \sum_{i=1}^{m-1} \lambda_i Y_i,$$

其中 $\lambda_1, \cdots, \lambda_{m-1}$ 为常数. 因为在 $y(t), a \leq t \leq b$ 上无 $y(a)$ 的共轭点, 故 $Y_1(t), \cdots, Y_{m-1}(t)$ 都是线性无关的, $a < t \leq b$. 因此, 存在分段 C^{∞} 函数 $f_1(t), \cdots, f_{m-1}(t)$ 使得

$$X = \sum_{i=1}^{m-1} f_i Y_i.$$

容易看出

275
\[-\langle R(X, y')y', X \rangle = -\sum_{i=1}^{n-1} f_i \langle R(Y_i, y')y', X \rangle \]
\[= \sum_{i=1}^{n-1} f_i \langle Y_i', X \rangle = \left(\sum_{i=1}^{n-1} f_i Y_i', \sum_{i=1}^{n-1} f_i Y_i \right), \]
\[\langle X', X' \rangle = -\langle R(X, y')y', X \rangle \]
\[= \left(\sum_{i=1}^{n-1} f_i Y_i', \sum_{i=1}^{n-1} f_i Y_i \right) + 2 \left(\sum_{i=1}^{n-1} f_i Y_i, \sum_{i=1}^{n-1} f_i Y_i \right) \]
\[+ \left(\sum_{i=1}^{n-1} f_i Y_i', \sum_{i=1}^{n-1} f_i Y_i \right) + \left(\sum_{i=1}^{n-1} f_i Y_i, \sum_{i=1}^{n-1} f_i Y_i \right) \]
\[= \left(\sum_{i=1}^{n-1} f_i Y_i', \sum_{i=1}^{n-1} f_i Y_i \right) + \frac{d}{dt} \left(\sum_{i=1}^{n-1} f_i Y_i, \sum_{i=1}^{n-1} f_i Y_i \right) \]
\[+ \sum_{i,j=1}^{n-1} f_i f_j \left[\langle Y_i, Y_j \rangle - \langle Y_j, Y_i \rangle \right] \]
\[= \left(\sum_{i=1}^{n-1} f_i Y_i', \sum_{i=1}^{n-1} f_i Y_i \right) + \frac{d}{dt} \left(\sum_{i=1}^{n-1} f_i Y_i, \sum_{i=1}^{n-1} f_i Y_i \right). \]

其中 \(\langle Y_i, Y_j \rangle - \langle Y_j, Y_i \rangle = \langle Y_i(a), Y_j(a) \rangle - \langle Y_j(a), Y_i(a) \rangle = 0 \) 从定理 6 得到的。

\[
L_2(X) = \int_a^b [\langle X', X' \rangle - \langle R(X, y')y', X \rangle] dt
\]
\[= \int_a^b \left[\left(\sum_{i=1}^{n-1} f_i Y_i', \sum_{i=1}^{n-1} f_i Y_i \right) + \frac{d}{dt} \left(\sum_{i=1}^{n-1} f_i Y_i, \sum_{i=1}^{n-1} f_i Y_i \right) \right] dt \]
\[= \int_a^b \left(\sum_{i=1}^{n-1} f_i Y_i', \sum_{i=1}^{n-1} f_i Y_i \right) dt + \left(\sum_{i=1}^{n-1} f_i Y_i, \sum_{i=1}^{n-1} f_i Y_i \right) \bigg|_{t=b}. \]
类似地，

\[P^*_b(Y) = \int_a^b \left(\sum_{i=1}^{m-1} \lambda_i Y_i + \sum_{i=1}^{m-1} \lambda_i' Y_i' \right) dt + \left(\sum_{i=1}^{m-1} \lambda_i Y_i + \sum_{i=1}^{m-1} \lambda_i' Y_i' \right) \bigg|_{t=b} \]

\[= \left(\sum_{i=1}^{m-1} \lambda_i Y_i + \sum_{i=1}^{m-1} \lambda_i' Y_i' \right) \bigg|_{t=b} \]

（注意其中 \(\lambda_i \) 为常值，故 \(\lambda_i' = 0 \)）

由题设 \(X(b) = Y(b) \)，故有 \(\lambda_i = f_i(b) \), \(i = 1, \ldots, m - 1 \)，因此

\[P^*_b(X) - P^*_b(Y) = \int_a^b \left(\sum_{i=1}^{m-1} f_i Y_i + \sum_{i=1}^{m-1} f_i' Y_i' \right) dt \geq 0 \]

即 \(P^*_b(Y) \leq P^*_b(X) \)，且等号成立 \(\iff P^*_b(X) - P^*_b(Y) = 0 \iff \sum_{i=1}^{m-1} f_i Y_i \),

\(\sum_{i=1}^{m-1} f_i' Y_i' = 0 \iff \sum_{i=1}^{m-1} f_i Y_i = 0 \iff f_i'(t) = 0,a < t \leq b \iff f_i = \) 常值，即

\(f_i(t) = f_i(b) = \lambda_i,a < t \leq b,i = 1, \ldots, m - 1 \)。于是在 \((a,b) \) 上，\(X = Y \)。再根据连续性，在 \([a,b] \) 上，\(X = Y \)。

特别地，如果取 \(X = 0 \) 则

\[0 = P^*_0(0) = P^*_b(Y) \leq P^*_b(X) \]

且 \(P^*_b(X) = P^*_b(Y) = 0 \iff X = Y = 0 \)。

引理 3 设 \((M, \langle , \rangle) \) 为 \(m \) 维 \(C^\infty \) Riemann 流形，\(\gamma(t), a \leq t \leq b \)

为 \(M \) 中的测地线，则沿 \(\gamma \) 存在 \(\gamma(a) \) 的一个共轭点 \(\gamma(c), a < c \leq b \iff \)

沿 \(\gamma \) 存在分段 \(C^\infty \) 向量场 \(X \) 满足

(1) \(X \perp \gamma' \)

(2) \(X(a) = X(b) = 0 \)

(3) \(P^*_b(X) \leq 0 \)

证明 （\(\Leftarrow \)）设存在分段 \(C^\infty \) 向量场 \(X \) 满足 (1)、(2)、(3)。（反证）如果 \(\gamma(t), a < t < b \) 不存在 \(\gamma(a) \) 的共轭点，根据引理 2，就有

\(P^*_b(X) \geq 0 \)，与条件 (3) \(P^*_b(X) < 0 \) 相矛盾。因此，沿 \(\gamma \) 必存在 \(\gamma(a) \) 的共轭点 \(\gamma(c), a < c < b \)。

（\(\Rightarrow \)）设 \(\gamma(c), a < c < b \) 为 \(\gamma(a) \) 沿 \(\gamma \) 的一个共轭点，则存在非零的 Jacobi 场 \(Y, Y(a) = Y(c) = 0 \)。根据定理 4，\(Y \perp \gamma' \)。取 \(\gamma(c) \) 的凸
开邻域 U，使得 U 中每个点有一个正规（或法）坐标邻域包含 U（参阅 3.1 引理 1(3))，且设 $\delta > 0$，使得 $\gamma(c - \delta), \gamma(c + \delta) \in U$.

因为沿 γ 从 $\gamma(c - \delta)$ 到 $\gamma(c + \delta)$ 的一段 $\tilde{\gamma}$，$\gamma(c + \delta)$ 不是 $\gamma(c - \delta)$ 的共轭点，所以，线性映射

$$
J_{\tilde{\gamma}} \rightarrow T_{\gamma(c-\delta)}M \oplus T_{\gamma(c+\delta)}M
Z \rightarrow (Z(c-\delta), Z(c+\delta))
$$

是一一对应（注意两个向量空间都是 $2m$ 维的）。因此，存在 Jacobi 场在两个端点 $\gamma(c - \delta)$ 和 $\gamma(c + \delta)$ 具有预先指定的值。现在 $\tilde{\gamma}$ 上选定 Jacobi 场 Z，使得 $Z(c - \delta) = Y(c - \delta)$ 及 $Z(c + \delta) = 0$。

沿 γ 定义分段 C^∞ 向量场 X 如下:

$$
X = \begin{cases}
Y, & \text{从 } \gamma(a) \text{ 到 } \gamma(c - \delta), \\
Z, & \text{从 } \gamma(c - \delta) \text{ 到 } \gamma(c + \delta), \\
0, & \text{从 } \gamma(c + \delta) \text{ 到 } \gamma(b).
\end{cases}
$$

根据定理 5，有

$$
I^{*,-\delta}_* (Y) + I^{*,-\delta}_{-\delta}(Y) = I^*_* (Y)
= \int_0^c \left[\langle Y', Y' \rangle - \langle R(Y, \gamma') \gamma', Y \rangle \right] dt
= \int_0^c \left[\langle Y', Y' \rangle - \langle R(Y, \gamma') \gamma', Y \rangle \right] dt - \langle Y', Y \rangle|_{\tilde{\gamma}}
= 0.
$$

再由引理 2 得

$$
I_*(X) = I^*_*(X) - I^*_*(Y)
= I^{*,-\delta}_*(Y) + I^{*,-\delta}_{-\delta}(Z) - I^{*,-\delta}_*(Y) - I^{*,-\delta}_{-\delta}(Y)
= I^{*,-\delta}_*(Z) - I^{*,-\delta}_{-\delta}(Y)
= I^{*,-\delta}_*(Z) - I^{*,-\delta}_{-\delta}(\tilde{Y}) < 0.
$$

其中

$$
\tilde{Y} = \begin{cases}
Y, & \text{从 } \gamma(c - \delta) \text{ 到 } \gamma(c), \\
0, & \text{从 } \gamma(c) \text{ 到 } \gamma(c + \delta),
\end{cases}
$$

为沿 $\tilde{\gamma}$ 的分段 C^∞ 向量场.
定理 7(Cartan-Hadamard) 设 \((M, \langle \cdot, \cdot \rangle)\) 为 \(m\) 维 \(C^\infty\) Riemann 流形，如果对沿测地线 \(\gamma\) 的任一向量场 \(Y, \langle R(Y, \gamma') \gamma', Y \rangle \leq 0\)，则沿 \(\gamma\)，无两点是共轭的。特别地，具有非正截曲率的 \(C^\infty\) Riemann 流形没有共轭点。

证明 1 设 \(X\) 为沿测地线 \(\gamma\) 的 Jacobi 场，且 \(X(a) = 0, X(b) = 0\)，其中 \(a\) 和 \(b\) 为 \(\gamma\) 的两个参数值。在定理 5 中，令 \(Y = X\)，就得到
\[
0 = \langle X', X \rangle |^b_a - \int_a^b \left[\langle X', X' \rangle - \langle R(X, \gamma') \gamma', X \rangle \right] dt \\
= \int_a^b \langle R(X, \gamma') \gamma', X \rangle dt - \int_a^b \langle X', X' \rangle dt.
\]
再由题设 \(\langle R(X, \gamma') \gamma', X \rangle \leq 0\) 代入得
\[
0 \leq \int_a^b \langle X', X' \rangle dt = \int_a^b \langle R(X, \gamma') \gamma', X \rangle dt \leq 0.
\]
于是 \(\int_a^b \langle X', X' \rangle dt = 0\)，从而有 \(\langle X', X' \rangle = 0\)，进而 \(X' = 0\)，即 \(X\) 为平行向量场，且 \(\langle X, X' \rangle = 2 \langle X', X \rangle = 2 \langle 0, X \rangle = 0, \langle X, X \rangle = \langle X(a), X(a) \rangle = 0, X = 0\)。这就蕴含着沿测地线 \(\gamma\) 无两点是共轭的。

证明 2 因为
\[
\langle X', X' \rangle = \langle X'' + X', X \rangle + \langle X', X' \rangle \\
= - \langle R(X, \gamma') \gamma', X \rangle + \langle X', X' \rangle \geq 0
\]
所以，\(\langle X', X \rangle\) 是关于 \(t\) 的单调增函数。如果 \(X(a) = 0, X(b) = 0, a < b\)，则 \(\langle X'(a), X(a) \rangle = 0 = \langle X'(b), X(b) \rangle\)，从而 \(\langle X'(t), X(t) \rangle \equiv 0, t \in [a, b]\)，这就蕴含着 \(\langle X(t), X(t)' \rangle = 2 \langle X'(t), X(t) \rangle \equiv 0, \langle X(t), X(t) \rangle \equiv \langle X(a), X(a) \rangle = 0, X(t) \equiv 0, t \in [a, b]\)，即沿测地线 \(\gamma\) 无两点是共轭的。

定理 8 设 \((M, \langle \cdot, \cdot \rangle)\) 为 \(m\) 维 \(C^\infty\) Riemann 流形，其截曲率 \(k \geq c > 0\)，则对 \(M\) 的每条测地线 \(\gamma\)，沿 \(\gamma\) 的两个相邻共轭点的距离不大于 \(\pi \sqrt{c}\)。

证明 设 \(\gamma(t), a \leq t \leq b_0\) 为测地线，\(\gamma(b_0)\) 为 \(\gamma(a)\) 的第一个共
设 $a < b < b_0$, Y 为沿 y 的平行单位向量场, $Y \perp y'$. 取 $f(t) = \sin \frac{t-a}{b-a} \pi$, 显然, $f(a) = f(b) = 0$. 于是 $(t$ 为弧长, $\| y' \| = 1)$,

$$0 \leq l^y(fY) = \int_a^b \left[\langle fY', (fY)' \rangle - \langle R(fY, y') y', fY \rangle \right] dt$$

$$= \int_a^b \left[\langle f'Y, f'Y \rangle - f'^2 \langle R(Y, y') y', Y \rangle \right] dt$$

$$\leq \int_a^b (f'^2 - cf^2) dt$$

$$= \int_a^b \left[\left(\frac{\pi}{b-a} \cos \frac{t-a}{b-a} \pi \right)^2 - c \left(\sin \frac{t-a}{b-a} \pi \right)^2 \right] dt$$

$$= \int_a^b \left(\frac{\pi}{b-a} - \frac{b-a}{\pi-c} \right) \frac{\pi}{2}$$

即 $b - a \leq \pi / \sqrt{c}$. 令 $b \to b_0^{-}$ 得到 $b_0 - a \leq \pi / \sqrt{c}$. 由于 $y(t)$ 以弧长为参数, 故 $y(a)$ 和 $y(b_0)$ 之间的距离

$$\rho(y(a), y(b_0)) \leq b_0 - a \leq \pi / \sqrt{c}.$$

类似可证下面更强的结果.

定理 9 设 $(M, \langle \cdot, \cdot \rangle)$ 为 m 维 C^∞ Riemann 流形, 其 Ricci 张量是正定的, 且任一特征值 $\lambda \geq (m-1)c > 0$, 则 M 中每条测地线 y 上的任何两个相邻共轴点间的距离至多为 π / \sqrt{c}.

证明 设 $y(t), a \leq t \leq b_0$ 为测地线, $y(b_0)$ 为 $y(a)$ 的第一个共轴点, $a < b < b_0$. 选 Y_1, \cdots, Y_{m-1} 为沿 y 的平行向量场, 使得 $y'(t)$, $Y_1(t), \cdots, Y_{m-1}(t)$ 为 $T_{y(t)}M$ 的规范正交基. 令

$$f(t) = \sin \frac{t-a}{b-a} \pi,$$

显然 $f(a) = f(b) = 0$. 于是 $(t$ 为弧长, $\| y' \| = 1)$,

$$0 \leq \sum_{i=1}^{m-1} l^y(fY_i).$$

280
\[
\begin{aligned}
&= \int_a^b \left[\sum_{i=1}^{n-1} \langle f_i Y_i, f_i' Y_i \rangle - f' \sum_{i=1}^{n-1} \langle R(Y_i, \gamma') \gamma', Y_i \rangle \right] dt \\
&\leq \int_a^b (m - 1)(f'^2 - cf^2) dt \\
&= (m - 1) \left(\frac{\pi}{b - a} - \frac{b - a}{\pi c} \right) \frac{\pi}{2},
\end{aligned}
\]
即 \(b - a \leq \pi / \sqrt{c} \). 令 \(b \to b_0^- \) 得 \(b_0 - a \leq \pi / \sqrt{c} \). 从而

\[
\rho(\gamma(a), \gamma(b_0)) \leq b_0 - a \leq \pi / \sqrt{c}.
\]

注 2 如果截曲率 \(k \geq c > 0 \), 则对任何单位切向量 \(X, \) 选规范正交基 \(Y_1 = X, Y_2, \cdots, Y_n, \) 则有

\[
\text{Ric}(X, X) = \sum_{i=1}^n \langle R(Y_i, X) X, Y_i \rangle \\
= \sum_{i=1}^n \langle R(Y_i, Y_i) Y_1, Y_i \rangle \\
\geq \sum_{i=1}^n c = (m - 1)c.
\]
因此, 定理 9 是定理 8 的推广.

设 \(\gamma \) 为 \(m \) 维 \(C^\infty \) 完备 Riemann 流形 \((M, \langle , \rangle) \) 上连接 \(p \) 和 \(q \) 的测地线, 如果它的长度 \(L(\gamma) = \rho(p, q) \), 则称 \(\gamma \) 是最短的. 3.1 定理 6 指出, \(M \) 中任何两点可以用一条最短测地线相连接. 在本节, 下面我们总假定 Riemann 流形是完备的.

定义 4 \(p \in M \) 为一点, 测地线 \(\gamma(t), 0 \leq t < \infty \) 从 \(\gamma(0) = p \) 出发 (\(t \) 是弧长参数). 令

\[
A = \{ s > 0 \} \text{ 从 } \gamma(0) \text{ 到 } \gamma(s) \text{ 沿 } \gamma \text{ 的曲线段 } \gamma|_{[0,s]} \text{ 是最短的, 即 } L(\gamma|_{[0,s]}) = \rho(\gamma(0), \gamma(s)),
\]
则 \(A \) 具有性质: (1) 如果 \(s \in A, t < s \), 则 \(t \in A \)（可反证）; (2) 如果 \(c > 0 \), 使得对任何 \(s, 0 < s < c \), 必有 \(s \in A \), 则

\[
\rho(\gamma(0), \gamma(c)) = \lim_{s \to c^-} \rho(\gamma(0), \gamma(s)) = \lim_{s \to c^-} s = c,
\]
即 \(c \in A \). 这两个性质蕴含着 \(A = (0, + \infty) \) 或 \(A = (0, c] \), 其中 \(c \)
为某个正数. 如果 \(A = (0, c] \), 则点 \(y(c) \) 称为 \(y(0) \) 沿 \(y \) 的割点 (或最小点); 如果 \(A = (0, + \infty) \), 则称 \(y(0) \) 沿 \(y \) 无割点.

定理 10 设 \(y(c) \) 为 \(y(0) \) 沿测地线 \(y(t), 0 \leq t < + \infty \) 的割点.
则下面两结论中至少有一个 (可能两者都) 成立:

(1) \(y(c) \) 为 \(y(0) \) 沿 \(y \) 的第 1 个共轭点；

(2) 至少存在两条从 \(y(0) \) 到 \(y(c) \) 的最短测地线.

证明 设 \(t_1, t_2, \cdots \) 为实数的单调减序列，且 \(\lim_{t \to +\infty} t_k = c \), 对每个自然数 \(k \), 设 \(\exp t_k X_k, 0 \leq t \leq c_k \) 为从 \(y(0) \) 到 \(y(t_k) \) 的最短测地线，其中 \(X_k \) 是 \(y(0) \) 处的单位切向量，而 \(c_k = \rho(y(0), y(t_k)) \). 设 \(X \) 为 \(y(0) \) 处的单位切向量，\(y(t) = \exp t X, t \in (0, + \infty) \). 因为 \(y(c) \) 为 \(y(0) \) 沿 \(y \) 的割点及 \(t_k \) 趋于 \(c \)，故有 \(X \neq X_k, t_k \to c \). 由于 \(c_k = \rho(y(0), y(t_k)) \)，所以 \(c = \lim c_k \). 因此 \(\{c_k X_k | k = 1, 2, \cdots \} \) 包含在 \(T_{y(0)} M \) 的某个紧致子集中. 不失一般性 (必要时选子序列)，假定序列 \(c_1 X_1, c_2 X_2, \cdots \) 收敛于某个长度为 \(c \) 的向量，记为 \(cX \)，其中 \(Y \) 是单位向量. 因为 \(\exp cX = \lim_{t \to +\infty} \exp c_t X_t = \lim_{t \to +\infty} y(t_k) = y(c) \)，故 \(\exp cX, 0 \leq t \leq c \) 是从 \(y(0) \) 到 \(y(c) \) 的测地线. 它的长度为 \(c \)，因此是最小的. 假设 \(X \neq Y \)，则 \(\exp t X \) 和 \(\exp t Y \), \(0 \leq t \leq c \) 是两条连接 \(y(0) \) 和 \(y(b) \) 不同的最短测地线，即 (2) 成立; 假设 \(X = Y \) 和 \(y(c) \) 沿 \(y \) 不共轭于 \(y(0) \)，则 \(\exp : T_{y(0)} M \to M \) 的微分 \(\exp_y(x) \) 在 \(cX \) 是非异的. \(\exp \) 将 \(cX \) 在 \(T_{y(0)} M \) 中的一个开邻域 \(UC^\infty \) 同胚地映到 \(y(c) \) 在 \(M \) 中的一个开邻域上. 设 \(k \) 为充分大的自然数，使得 \(t_k X \) 和 \(c_k X_k \) 两者都在 \(U \) 中. 因为 \(\exp t_k X = y(t_k) = \exp c_k X_k \)，所以 \(t_k X = c_k X_k \)，这与 \(X \neq X_k \) 相矛盾. 因此，当 \(X = Y \) 时，\(y(b) \) 沿 \(y \) 是共轭于 \(y(0) \) 的. 另一方面，沿 \(y \) 在 \(y(b) \) 之间没有 \(y(0) \) 的共轭点. 的确，如果 \(y(s), 0 \leq s < c \) 沿 \(y \) 共轭于 \(y(0) \)，根据下面 3.3 定理 10，\(y \) 不是最短的，这与 \(c \) 的定义相矛盾. 所以 \(y(c) \) 是 \(y(0) \) 沿 \(y \) 的第一个共轭点，即 (1) 成立.

定理 11 设 \(y(c) \) 为 \(y(0) \) 沿测地线 \(y(t), 0 \leq t < + \infty \) 的割点，则 \(y(0) \) 是 \(y(c) \) 沿 \(y \) 的相反方向 \(y^- \) 的割点.
证明 在相反方向延拓测地线 γ, 可以假定 $\gamma(t)$ 对 $-\infty < t < +\infty$ 有定义。

设 $a > 0$, 可以证明 $\gamma|_{[a,c]}$ 不是最短的, 事实上因为 $\gamma(c)$ 为 $\gamma(0)$ 沿 γ 的割点, 根据定理 9, 可能有两种情形, 情形 1, $\gamma(c)$ 为 $\gamma(0)$ 的第 1 个共轭点, 共轭点的定义表明 $\gamma(0)$ 也是 $\gamma(c)$ 沿 γ^{-} 的第 1 个共轭点, 再由下面的 3.3 定理 10 知 $\gamma|_{[-\infty,c]}$ 不是最短的; 情形 2, τ 为连接 $\gamma(0)$ 和 $\gamma(c)$ 的异于 $\gamma|_{[0,c]}$ 的最短测地线, 当然 $\gamma(0) \neq \tau(0)$. 于是 $\gamma|_{[0,c]}$, 不是最短的 (因在 $t = 0$ 处不是 C^1 的!) 这蕴涵着 $L(\gamma|_{[a,c]}) = c + a = L(\gamma|_{[-\infty,c]}) \neq \rho(\gamma(-a), \gamma(c))$, 即 $\gamma|_{[-\infty,c]}$ 不是最短的。

综上所述, $\gamma(c)$ 沿 γ^{-} 的割点 $\gamma(b)$ 满足 $0 \leq b < c$. 再证 $b = 0$ (反证) 如果 $0 < b < c$, 再用定理 9, $\gamma(b)$ 沿 γ^{-} 共轭于 $\gamma(c)$, 或者存在从 $\gamma(c)$ 到 $\gamma(b)$ 的另一条最短测地线, 类似上面证法, 对任何 $a < b, \gamma|_{[a,c]}$ 不是最短的. 特别地, $\gamma|_{[0,c]}$ 不是最短的, 这与 c 的定义相矛盾. 因此, $b = 0$.

定义 5 设 $S_\tau = \{ X \in T,M \mid \| X \| = 1 \}, R^+ = \{ x \mid x > 0 \} \subset R$. 令

$$
\mu : S_\tau \to R^+ \cup \{ +\infty \}
$$

$$
X \mapsto \mu(X),
$$

$$
\mu(X) = \begin{cases} c, & \text{如果 expc} X \text{为沿} \gamma \text{的割点,} \\
+\infty, & \text{如果} p \text{沿} \gamma \text{无割点,}
\end{cases}
$$

其中 $\gamma(t) = \exp tX = \exp_{\tau} tX, 0 \leq t < +\infty$. 在 $R^+ \cup \{ +\infty \}$ 中, 拓扑 τ 由拓扑基 $\tau^* = \{ (a, b) \text{和} (a, +\infty) = (a, +\infty) \cup \{ +\infty \} \mid a, b \in R \}$ 所诱导. 设

$$
\mathcal{C}(p) = \{ \mu(X)X \mid X \in T,M, \| X \| = 1, \quad 0 < \mu(X) < +\infty \},
$$

则

$$
C(p) = \exp \mathcal{C}(x)
$$

是沿 p 出发的所有测地线的一切割点组成的集合. 称 $C(p)$ 为 p 的割迹, 而称 $\mathcal{C}(p)$ 为 p 在 T,M 中的割迹. 关于函数 μ 和割迹, 有
定理 12 函数 \(\mu : S \rightarrow \mathbb{R}^+ \cup \{+\infty\} \) 是连续的。

证明（反证）如果 \(\mu \) 在点 \(X \in S \)，不连续，则存在序列 \(X_k \in S \)，使得 \(\lim_{k \to +\infty} X_k = X \) 且 \(\mu(X) \neq \lim_{k \to +\infty} \mu(X_k) \)（简单起见，\(\lim_{k \to +\infty} \) 简记为 \(\lim \)）。

一般地，\(\lim \mu(X_k) \) 甚至可以不存在。但是，因为必要时可取子序列，所以可假设 \(\lim \mu(X_k) \) 在 \(\mathbb{R}^+ \cup \{+\infty\} \) 中是存在的。

先设 \(\mu(X) > \lim \mu(X_k) \)，则 \(\exp \lim \mu(X_k)X \) 不能沿测地线 \(\exp tX \) 共轭于 \(p \)。由定理 2，\(\exp : T_p M \rightarrow M^{C^\infty} \) 同胚地将 \(\lim \mu(X_k)X \) 的一个开邻域 \(U \) 映到 \(\exp \lim \mu(X_k)X \) 的一个开邻域 \(\exp U \) 上，至多省略有限多个 \(\mu(X_k)X_k \)，我们可以假定所有的 \(\mu(X_k)X_k \in U \)。因为 \(\exp : U \rightarrow \exp U \) 为 \(C^\infty \) 同胚，根据定理 2，\(\exp \mu(X_k)X_k \) 沿测地线 \(\exp tX_k \) 不共轭于 \(p \)。定理 10 指出，存在从 \(p \) 到 \(\exp \mu(X_k)X_k \) 的另一条最短测地线，换言之，对每个 \(k \)，存在 \(p \) 处的单位向量 \(Y_k \neq X_k \)，使得

\[
\exp \mu(X_k)Y_k = \exp \mu(X_k)X_k.
\]

由于 \(\exp : U \rightarrow \exp U \) 是一一映射，故对任何 \(k \)，\(\mu(X_k)Y_k \in U \)。我们可以假定 \(\lim Y_k = Y \)（如有必要，取 \(Y_k \) 的子序列）。显然 \(\| Y \| = \lim \| Y_k \| = \lim 1 = 1 \)。即 \(Y \in S \)。于是，\(\lim \mu(X_k)Y = \lim \mu(X_k)Y_k \in U \)。此外，从

\[
\exp \lim \mu(X_k)Y = \exp(\lim \mu(X_k)Y_k) = \exp(\lim \mu(X_k)Y_k) = \lim \exp(\mu(X_k)Y_k) = \lim(\exp \mu(X_k)X_k) = \exp \lim \mu(X_k)X
\]

知 \(Y \neq X \)。因此，\(\exp tX \) 和 \(\exp tY, 0 \leq t \leq \lim \mu(X_k) \) 是两条连续至 \(\exp \lim \mu(X_k)X = \exp \lim \mu(X_k)Y \) 的不同的最短测地线。这就蕴含着，如果 \(b > \lim \mu(X_k) \)，则测地线 \(\exp tX, 0 \leq t \leq b \) 不再是最短的。特别取 \(b = \mu(X) > \lim \mu(X_k) \)，就与 \(\exp tX, 0 \leq t \leq \mu(X) \) 是最短的相矛盾。

再设 \(\mu(X) < \lim \mu(X_k) \)，则取 \(b > 0 \) 且 \(\lim \mu(X_k) > \mu(X) + b \)。可以假定（至多省略有限多个 \(X_k \)），对任意 \(k \)，

\[
\mu(X_k) > \mu(X) + b.
\]

根据 \(\mu(X) \) 的定义，存在 \(X_k \in S \)，使得 \(X_k \neq X \) 且 \(\exp tX_k, 0 \leq t \leq 284 \)。
\[\mu(X) + b \] 为连接 \(p \) 到 \(\exp(\mu(X) + b)X \) 的最短测地线, 其中 \(b < \) (注意 \(b \) 可以是负数). 特别地,

\[\exp(\mu(X) + b) = \exp(\mu(X) + b_1)X_1. \]

令 \(c = \frac{1}{2} (b - b_1) > 0 \). 因为

\[\lim \exp(\mu(X) + b)X_i = \exp(\mu(X) + b)X, \]

可以假定 (如有必要, 省略有限多个)

\[\rho(\exp(\mu(X) + b)X, \exp(\mu(X) + b)X_i) < c. \]

对每个固定的 \(k \), 由连接 \(p \) 到 \(\exp(\mu(X) + b_1)X_1 = \exp(\mu(X) + b)X \) 的测地线 \(\exp tX_1, 0 \leq t \leq \mu(X) \) 和连接 \(\exp(\mu(X) + b)X \) 到 \(\exp(\mu(X) + b)X_1 \) 的最短测地线组成的连接 \(p \) 到 \(\exp(\mu(X) + b)X_1 \) 的曲线, 其长度小于 \(\mu(X) + b_1 + c = \mu(X) + b - c \). 这意味着测地线 \(\exp tX_1, 0 \leq t \leq \mu(X) + b \) 不是最短的. 因此,

\[\mu(X_i) = \rho(p, \exp \mu(X_i)X_i) \leq \mu(X) + b, \]

这与假设 \(\mu(X_i) > \mu(X) + b \) 相矛盾.

综上所述, 对任何序列 \(X_i \in \mathcal{S}_\pi \), 使得 \(\lim X_i = X \), 必有 \(\mu(X) = \lim \mu(X_i) \). 即 \(\mu: \mathcal{S} \to \mathbb{R}^+ \cup \{+\infty\} \) 是连续的.

定理 13 设 \(E = \{tX \mid X \in \mathcal{S}_\pi, 0 \leq t < \mu(X)\} \). 则

(1) \(E \) 为 \(T, M \) 中的开胞腔;

(2) \(\exp: E \to \exp E \subset M \) 为 \(C^\infty \) 同胚, 这里 \(\exp E \) 为 \(M \) 中的开子集, 它是 \(p \) 点附近可定义正规 (法) 坐标系的 \(M \) 的最大开子集;

(3) \(M = \exp E \Perp C(p), \Perp \) 表示不交并.

证明 (1) 由定理 12 立即得到.

(2) 显然, \(\exp: E \to \exp E \subset M \) 为一一映射, 根据下面 3.3 定理 10, 在 \(E \) 中不存在 \(p \) 的共轭点, 因此, 映射 \(\exp \) 在 \(E \) 的每一点处是非异的, 从而 \(\exp: E \to \exp E \subset M \) 为 \(C^\infty \) 同胚.

(3) 由 \(\tilde{C}(p) \) 和 \(C(p) \) 的定义得到 \(E \cap \tilde{C}(p) = \emptyset, \exp E \cap C(p) = \emptyset \).

设 \(q \in M, \exp tX, 0 \leq t \leq a \) 为连接 \(p \) 和 \(q \) 的最短测地线, 其中
设 M 为 \mathbb{C}^ω-Riemann 流形，$p \in M$。则（1）M 紧致

$$
\Rightarrow (2) \text{ 对任意 } X \in S, \mu(X) < + \infty.
$$

$$
\Rightarrow (3) C(p) \text{ 同胚于 } S^{a-}.
$$

证明（1）$\Rightarrow (2)$ 设 M 紧致，d 为 M 的直径。如果 $a > d$，则 $\exp tX, 0 \leq t \leq a$ 从 p 到 $\exp xX$ 的最短测地线，其中 $X \in S$，于是，$\mu(X) \leq d < + \infty$。

（1）$\Rightarrow (2)$ 设对任意 $X \in S, \mu(X) < + \infty$。由定理 12 知 $\mu; S \to \mathbb{R}^+ \cup \{+ \infty\}$ 是连续的。因此，

$$
b = \sup_{X \in S} \mu(X) < + \infty
$$

和

$$
E \cup C(p) \subset B(b) = \{X \in T,M | \|X\| \leq b\}.
$$

根据定理 13(3)，

$$
M = \exp E \cup C(p)
$$

$$
= \exp E \cup \exp C(p) = \exp (E \cup C(p))
$$

$$
\subset \exp B(b) \subset M,
$$

$M = \exp B(b)$ 为紧致集。

（2）$\Leftrightarrow (3)$ 显然。

例 2 设 $M = S^a$ 为通常的 m 维单位球面，$p \in S^a$ 为北极，p 在 T,S^a 中的割点 $C(p)$ 是中心在 T,S^a 中的原点、半径为 π 的 $m - 1$ 维球面。p 在 S^a 中的割点 $C(p)$ 恰为南极。

例 3 设 S^a 为 m 维单位球面，g 为其通常的 C^ω-Riemann 度量。对 $x,y \in S^a$，如果 $y = - x$，则称 $y \sim x$。易见 \sim 为一个等价关系。令 $[x] = \{y \in S^a | y \sim x\} = \{x, - x\}$ 为 x 的等价类 $\mathbb{P}^a(\mathbb{R}) = S^a/\sim = \{[x] | x \in S^a\}$ 为 m 维实射影空间，$\pi; S^a \to \mathbb{P}^a(\mathbb{R}), x \to \pi(x) = [x]$ 为相应的投影。易见，$\tau; S^a \to S^a, \tau(x) = - x$ 为等距变换，且 $\tau_*(X)$
\[= -X, g(\tau_*(X), \tau_*(Y)) = g(-X, -Y) = g(X, Y) \]。因此，\(S^n \) 上的 Riemann 度量 \(g \) 诱导了 \(M = P^n(R) \) 上的一个 Riemann 度量 \(\tilde{g} \)，使得 \(g = \pi^* \tilde{g} \)，且 \(\pi: S^n \to P^n(R) \) 为局部等距映射。\([p] \in P^n(R) \) 在 \(T_\pi P^n(R) \) 中的割迹 \(\overline{C}[p] \) 是 \(T_\pi P^n(R) \) 中以原点为中心，\(\frac{\pi}{2} \) 为半径的 \(m - 1 \) 维球面。如果 \(p \) 为北极，则 \([p] = \{p, -p\} \) 在 \(P^n(R) \) 中的割迹 \(C[p] \) 是 \(\pi(y) \)，其中 \(y = \{x^1, \cdots, x^n, 0\} \in S^n \) 为 \(S^n \) 的 \(m - 1 \) 维赤道。所以，\(C[p] \) 自然为嵌入 \(P^n(R) \) 的 \(m - 1 \) 维实射影空间。

例 4 设 \((x, y) \) 为 \(R^2 \) 的整体直角坐标。将正方形 \([0, 1] \times [0, 1] \) 中的点 \((x, 0) \) 和 \((x, 1) \) 叠合，\((0, y) \) 和 \((1, y) \) 叠合得到的商空间就是 2 维环面 \(M \)。在 \(R^2 \) 上的自然 Riemann 度量诱导了 \(M \) 上的一个 Riemann 度量。设 \(p = (\frac{1}{2}, \frac{1}{2}) \)，则 \(p \) 在 \(T_M \) 中的割迹 \(\overline{C}(p) \) 就是 \(T_M \) 中以原点为中心，1 为边长的正方形。而 \(p \) 在 \(M \) 中的割迹 \(C(p) \) 为两条闭曲线组成，它们形成了 \(H_1(M, Z) \approx Z \oplus Z \) 的基。

关于共轭点和割迹的进一步结果可参阅 \([Kob],[Wa],[Wei]\) 和 \([Won]\)。

3.3 长度的第 1 和第 2 变分公式

设 \((M, \langle , \rangle) \) 为 \(m \) 维 \(C^\infty \) Riemann 流形。给定一条曲线 \(\gamma:[a, b] \to M \) 后，如何去确定在连接 \(\gamma(a), \gamma(b) \) 的所有曲线之中，\(\gamma \) 是否具有最短长度？一般情形下，这个整体问题是没有解的。但如果限于 \(\gamma \) 邻近的那些曲线，则微积分提供下面的回答：将 \(\gamma \) 嵌入到一个单参数曲线族 \(\{\tau(u)\} | u \in (-\epsilon, \epsilon) \)，使 \(\tau(0) = \gamma \)，且对任意 \(u \in (-\epsilon, \epsilon) \)，

\[
\tau(u)(a) = \gamma(a), \quad \tau(u)(b) = \gamma(b).
\]

并验证由 \(\tau(u) \) 的长度 \(L(u) \) 定义的函数 \(L:(-\epsilon, \epsilon) \to R \) 在 0 处是否局部极小。例如，\(L'(0) = 0 \)（0 为 \(L \) 的驻点或临界点），\(L''(0) > 0 \)。
则

\[L(u) = L(0) + L'(0)u + \left[\frac{1}{2} L''(0) + \frac{o(u^2)}{u^2} \right]u^2 \]

\[= L(0) + \left[\frac{1}{2} L''(0) + \frac{o(u^2)}{u^2} \right]u^2 \]

在 \(u = 0 \) 处达到局部极小。

设 \(p, q \) 为 \(M \) 中的两个（不必不同）点。从 \(p \) 到 \(q \) 的分段 \(C^\infty \) 道路（曲线）是一个连续映射 \(\gamma : [a, b] \to M \)，使得

(1) \(\gamma(a) = p, \gamma(b) = q \);

(2) 存在 \([a, b]\) 的分割 \(a = t_0 < t_1 < \cdots < t_{n+1} = b \)，使每个 \(\gamma|_{[t_i, t_{i+1}]} \) 是 \(C^\infty \) 的。

记 \(\Omega(M; p, q) = \{ \gamma | \gamma \) 为 \(M \) 中连接 \(p, q \) 的分段 \(C^\infty \) 道路 \}，有时为简单起见，将它记为 \(\Omega(M) \) 或 \(\Omega \)。

如果将 \(\Omega \) 视作“无限维流形”，类似流形，可以定义 \(\forall \in \Omega \) 处的切空间

\[T, \Omega = \{ X | \) 沿 \(\gamma \) 的分段 \(C^\infty \) 切向量场，且 \(X(a) = 0, X(b) = 0 \} \]。

因此，\(T, \Omega \) 中的元素即视作 \(\gamma \) 处的切向量。这样做，是采用了通常流形中有关的一些思想和方法。

定义 1 曲线 \(\gamma \) 的（单参数）正常变分是单参数曲线族 \(\tilde{\tau}(u), u \in (-\epsilon, \epsilon), \tilde{\tau} : (-\epsilon, \epsilon) \to \Omega \) 满足

(1) \(\tilde{\tau}(u) \in \Omega = \Omega(M; p, q), u \in (-\epsilon, \epsilon) \);

(2) \(\tilde{\tau}(0) = \gamma \);

(3) 存在 \([a, b]\) 的一个分割：\(a = t_0 < t_1 < \cdots < t_{n+1} = b \)，使 \(\tilde{\tau} : (-\epsilon, \epsilon) \times [a, b] \to M, (u, t) \to \tau(u, t) = \tilde{\tau}(u)(t) \) 在矩形 \((-\epsilon, \epsilon) \times [a, b]\) 上是连续的，而在每个小矩形 \((-\epsilon, \epsilon) \times [t_i, t_{i+1}]\) 上是 \(C^\infty \) 的。

显然，\(\frac{\partial \tau}{\partial u}(0, a) = 0, \frac{\partial \tau}{\partial u}(0, b) = 0 \)，故 \(\frac{\partial \tau}{\partial u}(0, t) \in T, \Omega \)。设 \(X \in T, \Omega \)，如果对每个固定的 \(t \in [a, b] \)，以 \(u \) 为参数的曲线的切向量 \(\frac{\partial \tau}{\partial u} \)
在点 \(y(t) = \tau(0)(t) = \tau(0, t) \) 与 \(X(t) \) 一致，即 \(X(t) = \frac{\partial \tau}{\partial u}(0, t) \)，则称为 \(X \) 为联系于正常分点 \(\tau \) 或 \(\tau \) 的一个正常分向量场。称此正常分点为基曲线，\(X \) 也称为此正常分点的横截向量场。如果只要求条件 (2)、(3)，就称 \(\tau \) 或 \(\tau \) 为 \(y \) 的变分。

引理 1 \(X \in T, \Omega \) 为正常分向量场。

证明 设 \(\tau(u)(t) = \exp_{r(t)}(uX(t)) \) 则 \(X \) 为联系于正常分点 \(\tau \) 的正常分向量场。

定义 2 设 \(F: \Omega \rightarrow \mathbb{R} \) 为实值函数，对 \(y \in \Omega \)，定义 \(F \) 的“微分”或“切映射”为

\[
dF = F_*: T_y \Omega \rightarrow T_{F(y)} \mathbb{R}
\]

\[
X \rightarrow F_*(X) = dF(X) = \left. \frac{d(F(\tau(u))))}{du} \right|_{u=0} \left(\frac{d}{dt} \right)_{F(y)},
\]

其中，\(\tau(u) \) 为联系于 \(X \) 的变分，而 \(\tau(0) = y, \frac{d\tau}{du}(0) = X \)。这里，我们不去研究导数的存在性以及导数是否与 \(\tau \) 的选取有关。但有下面的定义。

定义 3 设 \(F: \Omega \rightarrow \mathbb{R} \) 为实函数，如果对 \(y \in \Omega \) 的每个正常分点 \(\tau \)，都有 \(\frac{dF(\tau(u))}{du} \bigg|_{u=0} = 0 \) 则称 \(y \) 为 \(F \) 的临界道路。

例 1 如果 \(F \) 在 \(y \in \Omega \) 达到最小值，且导数 \(\frac{dF(\tau(u))}{du} \) 在 \(u = 0 \) 总是存在的，则 \(y \) 必为临界道路。

引理 2 设 \(M \) 为 \(m \) 维 \(C^\infty \) 流形，\(\tau: (a, b) \times (c, d) \rightarrow M \) 为 \(C^\infty \) 映射，则 \(\nabla \frac{\partial \tau}{\partial u} = \nabla \frac{\partial \tau}{\partial x} \).

证明 设 \(\{x'(u, t)\} \) 为 \(\tau(u, t) \) 的局部坐标，则

\[
\frac{\partial \tau}{\partial x} = \sum_{i=1}^{n} \frac{\partial x^i}{\partial x} \frac{\partial}{\partial x^i}, \quad \frac{\partial \tau}{\partial u} = \sum_{j=1}^{n} \frac{\partial x^j}{\partial u} \frac{\partial}{\partial x^j}.
\]

再从 \(\frac{\partial x^j}{\partial u \partial x^i} = \frac{\partial x^j}{\partial u} \) 和 \(\nabla \frac{\partial \tau}{\partial x^j} = \nabla \frac{\partial \tau}{\partial x^j} + \left[\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^i} \right] = \nabla \frac{\partial \tau}{\partial x^j} \) 得到
\[\nabla \frac{\partial \tau}{\partial u} = \sum_{j=1}^{n} \left(\frac{\partial x^j}{\partial u} \frac{\partial}{\partial x^i} \right) + \sum_{i=1}^{n} \frac{\partial x^i}{\partial u} \left(\nabla \frac{\partial^2}{\partial x^i} \right) \]

\[= \sum_{i=1}^{n} \frac{\partial x^i}{\partial u} \frac{\partial}{\partial x^i} + \sum_{i=1}^{n} \frac{\partial x^i}{\partial u} \left(\nabla \frac{\partial^2}{\partial x^i} \right) \]

\[= \nabla \frac{\partial \tau}{\partial u}. \]

定理 1 (长度第 1 变分公式) 设 \(y \in \Omega, \tau; (-\varepsilon, \varepsilon) \times [a, b] \rightarrow M, \tilde{\tau}(u)(t) = \tau(u, t) \) 为 \(y \) 的 \(C^\infty \) 变分，\(y(t) \) 参数正比于弧长，即

\[\| y'(t) \| = R \] 为常数，且 \(X(t) = \frac{\partial}{\partial u} \tau(u, t) \) | \(u = 0 \)，则

\[\frac{dL(\tilde{\tau}(u))}{du} \bigg|_{u=0} = \frac{1}{R} \left(\| y' \| \right)^{n} - \int_{a}^{b} \langle \nabla y', X \rangle dt, \]

其中 \(L(\tilde{\tau}(u)) = \int_{a}^{b} \sqrt{\langle \frac{\partial \tau}{\partial t}, \frac{\partial \tau}{\partial t} \rangle} dt \) 为 \(\tilde{\tau}(u) \) 的长度。

证明

\[\frac{dL(\tilde{\tau}(u))}{du} \]

\[= \frac{d}{du} \int_{a}^{b} \sqrt{\langle \frac{\partial \tau}{\partial t}, \frac{\partial \tau}{\partial t} \rangle} dt \]

\[= \int_{a}^{b} \frac{d}{du} \sqrt{\langle \frac{\partial \tau}{\partial t}, \frac{\partial \tau}{\partial t} \rangle} dt \]

\[= \int_{a}^{b} \frac{1}{\| \frac{\partial \tau}{\partial t} \|} \langle \frac{\partial \tau}{\partial t}, \nabla \frac{\partial \tau}{\partial u} \rangle dt \]

\[= \int_{a}^{b} \frac{1}{\| \frac{\partial \tau}{\partial t} \|} \langle \frac{\partial \tau}{\partial t}, \nabla \frac{\partial \tau}{\partial u} \rangle dt, \]

特别，当 \(u = 0 \) 时，

\[\frac{dL(\tilde{\tau}(u))}{du} \bigg|_{u=0} = \int_{a}^{b} \frac{1}{\| y' \|} \langle y', \nabla X \rangle dt \]

\[= \int_{a}^{b} \frac{1}{\| y' \|} \left(\langle y', y \rangle - \langle \nabla y', X \rangle \right) dt \]

290
\[
\begin{align*}
&= \frac{1}{R} \int_a^b \left\{ \frac{d}{dt} \langle \gamma', X \rangle - \langle \nabla_x \gamma', X \rangle \right\} \, dt \\
&= \frac{1}{R} \left\{ \langle \gamma', X \rangle \bigg|_a^b - \int_a^b \langle \nabla_x \gamma', X \rangle \, dt \right\}.
\end{align*}
\]

定理 2 (一般的长度第 1 变分公式) 设 \(\gamma \in \Omega \),
\[\tau := (\varepsilon, e) \times [a, b] \to M, \quad \tau(u)(t) = \tau(u, t)\]
为 \(\tilde{\tau}(0) = \gamma \) 的连续变分，且 \(\tau \) 在每个 \((\varepsilon, e) \times [t_j, t_{j+1}] \) 上是 \(C^\infty \)
的，其中 \(a = t_0 < t_1 < \cdots < t_{n+1} = b \) 为 \([a, b] \) 的一个分割，\(\gamma(t) \) 的参数 \(t \) 正比于弧长，即 \(\| \gamma'(t) \| = R \) 为常数，\(X(t) = \frac{\partial}{\partial u} \tau(u, t) \big|_{u=0} \),
则
\[
\frac{dL(\tilde{\tau}(u))}{du} = \frac{1}{R} \left\{ \langle \gamma'(b), X(b) \rangle - \langle \gamma'(a), X(a) \rangle \\
+ \sum_{j=1}^h \langle \gamma'(t_j^-) - \gamma'(t_j^+), X(t_j) \rangle - \int_a^b \langle \nabla_x \gamma', X \rangle \, dt \right\}.
\]

证明 在每个 \((\varepsilon, e) \times [t_j, t_{j+1}] \) 上应用定理 1 得到
\[
\frac{dL(\tilde{\tau}(u))}{du} \bigg|_{u=0} = \frac{d}{du} L \left(\sum_{j=0}^h \tilde{\tau}_{[t_j, t_{j+1}]}(u) \right) \bigg|_{u=0} = \sum_{j=0}^h \left. \frac{d}{du} L \left(\tilde{\tau}_{[t_j, t_{j+1}]}(u) \right) \bigg|_{u=0} \right.
\]
\[
= \sum_{j=0}^h \frac{1}{R} \left\{ \langle \gamma'(b), X(b) \rangle \bigg|_{t_j}^{t_{j+1}} - \int_{t_j}^{t_{j+1}} \langle \nabla_x \gamma', X \rangle \, dt \right\}
\]
\[
= \frac{1}{R} \left\{ \langle \gamma'(b), X(b) \rangle - \langle \gamma'(a), X(a) \rangle \\
+ \sum_{j=0}^h \langle \gamma'(t_j^-) - \gamma'(t_j^+), X(t_j) \rangle - \int_a^b \langle \nabla_x \gamma', X \rangle \, dt \right\}.
\]

注 1 定理 1 和定理 2 中不要求 \(X(a) = 0 \) 和 \(X(b) = 0 \). 此外，从公式看出 \(\frac{dL(\tilde{\tau}(u))}{du} \) 与所选的变分 \(\tilde{\tau} \) 无关。所以，可写作
\[
\frac{dL(X)}{du} = L_*(X) = \frac{dL(\tilde{\tau}(u))}{du} \bigg|_{u=0} \left(\frac{d}{dt} \right)_{L(\gamma)}.
\]

定理 3 曲线 \(\gamma \in \Omega \) 为测地线 \(\Leftrightarrow \) 任意 \(X \in T_*(\Omega), dL(X) = 0 \).
即 γ 为 L 在 Ω 上的临界道路。

证明 (⇒) 如果 γ ∈ Ω 为测地线，则 γ′ 是 C∞ 的，当然是连续的，此时 γ 的参数必正比于弧长。根据引理 1，对任意 X ∈ T,(Ω)，可以构造与 X 相联系的正常变分 ť，再由定理 2 并注意到 X(b) = 0, X(a) = 0, γ′(t) = γ′(t) = 0, (γ′(t)) = 0, 就有 dL(X) =
\frac{dL(\bar{\tau}(u))}{du} \left|_{u=0} \left(\frac{d}{dt} \right)_{\nu(t)} = 0.\right.

(⇐) 设 γ ∈ Ω 在每个区间[tj−1, tj] 上是 C∞ 的，j = 0, 1, ..., h，其中 a = t0 < t1 < ... < th+1 = b。令 f 为沿 γ 的连续函数，它在[tj, tj+1] 中是 C∞ 的。f(t0) = f(t1) = ... = f(th+1) = 0，且 f 在[a, b]−{t0, t1, ..., th+1} 上是正的。则
X = f γ′ ∈ Tγ(Ω).
代入定理 2 的公式中得到
\frac{dL(\bar{\tau}(u))}{du} \left|_{u=0} \right. = -\frac{1}{R} \int_a^b \left< \nabla γ′, \nabla γ′ \right> dt ≤ 0,
这就蕴涵着在 γ′ 存在之处（即 (tj, tj+1) 上，j = 0, 1, ..., h），有 γ′(tj) = γ′(tj+1)，有 γ′(tj) = γ′(tj+1) = 0。换句话说，γ 是测地线。为了证明 γ 在[a, b] 上是 C′ 的，对每个固定的 j(= 1, ..., h)，选择一个向量场 X ∈ Tγ(Ω) 使得 X(tj) = γ′(tj) = γ′(tj+1)，X(tk) = 0, k ≠ j，将它们代入定理 2 中的公式，就得到
\frac{dL(\bar{\tau}(u))}{du} \left|_{u=0} \right. = \frac{1}{R} \left< γ′(tj), γ′(tj) \right> = γ′(tj) = γ′(tj+1).
于是，γ(t) 在[a, b] 上连续，即 γ 是 C′ 的。再由测地线的存在唯一性定理知 γ 在[a, b] 上是 C∞ 的。

定理 4 设 N 为(M, ⟨ , ⟩) 的闭 C∞ Riemann 正则子流形，p ∈ 292
N, ρ 为由 \langle, \rangle 诱导的距离函数, 显然, 存在 $q \in N$, 使得
$$\rho(p, q) = \rho(p, N) = \inf\{\rho(p, x) | x \in N\}.$$
设 $\gamma: [a, b] \to M$ 为连接 p 到 q 的一条以弧长为参数的最短测地线. 则 $\gamma'(b) \perp T_p N$.

证明 设 $Y \in T_p N, \xi; [0, \varepsilon] \to N$, 使得 $\xi'(0) = Y, \tau(u) = \tau(0) = \gamma$ 的任一单参数变分 (易证这样的变分必存在), 对每个 $u \in [0, \varepsilon], \tau(u)$ 连接 p 到 $\xi(u)$. 因为 $\tau(u)'(a) = p$, 所以 $\frac{\partial}{\partial u}\tau(0, a) = 0$, 进而, 由于 γ 是测地线, 故 $\nabla\gamma' = 0$. 根据一般的长度第 1 变分公式得到

$$0 = \left. \frac{dL(\tau(u))}{du} \right|_{u=0} = \langle \gamma'(b), \frac{\partial}{\partial u}\tau(0, b) \rangle - \int_{\varepsilon}^{0} \langle \nabla\gamma', \frac{\partial}{\partial u}\tau(0, t) \rangle dt = \langle \gamma'(b), \frac{\partial}{\partial u}\tau(0, b) \rangle = \langle \gamma'(b), \frac{d\xi}{du}(0) \rangle = \langle \gamma'(b), Y \rangle.$$

于是, $\gamma'(b) \perp T_p M$.

定理 5 (长度第 2 变分公式) 如果 $\gamma(t), t \in [a, b]$ (弧长) 为测地线, $\tau(u), -\varepsilon < u < \varepsilon$ 为 $\tau(0) = \gamma$ 的 C^∞ 变分, $X(t) = \frac{\partial}{\partial u}\tau(0, t), \gamma'(t) = \frac{\partial}{\partial t}\tau(0, t)$, 其中 $\tau(u, t) = \tau(u)(t)$. 则

$$\left. \frac{d^2}{du^2} L(\tau(u)) \right|_{u=0} = \langle \nabla^2 X, \gamma' \rangle + \int_{-\varepsilon}^{\varepsilon} \left(\left\| X' \right\|^2 - \langle R(X, \gamma') \gamma', X \rangle \right) dt - \left[\langle \gamma', X' \rangle \right]^2 dt$$

证明 由 γ 是测地线及定理 3 得到 $\left. \frac{d}{du} L(\tau(u)) \right|_{u=0} = 0$. 进一步计算并应用引理 2 有

$$\frac{d}{du} \left(\frac{1}{\left\| \frac{\partial}{\partial t} \right\|} \langle \frac{\partial}{\partial t}, \nabla\frac{\partial}{\partial u} \rangle \right) =$$

293
\[\begin{align*}
&= -\frac{1}{\| \frac{\partial \tau}{\partial \xi} \|^3} \langle \frac{\partial \tau}{\partial \xi}, \nabla_{\frac{\partial \tau}{\partial \xi}} \frac{\partial \tau}{\partial \xi} \rangle + \frac{1}{\| \frac{\partial \tau}{\partial \xi} \|^3} \langle \nabla_{\frac{\partial \tau}{\partial \xi}} \frac{\partial \tau}{\partial \xi}, \frac{\partial \tau}{\partial \xi} \rangle \\
&\quad + \frac{1}{\| \frac{\partial \tau}{\partial \xi} \|^2} \langle \nabla_{\frac{\partial \tau}{\partial \xi}} \frac{\partial \tau}{\partial \xi}, \frac{\partial \tau}{\partial \xi} \rangle \\
&= -\frac{1}{\| \frac{\partial \tau}{\partial \xi} \|^3} \langle \frac{\partial \tau}{\partial \xi}, \frac{\partial \tau}{\partial \xi} \rangle - \langle \nabla_{\frac{\partial \tau}{\partial \xi}} \frac{\partial \tau}{\partial \xi}, \frac{\partial \tau}{\partial \xi} \rangle^2 \\
&\quad + \frac{1}{\| \frac{\partial \tau}{\partial \xi} \|^2} \langle \nabla_{\frac{\partial \tau}{\partial \xi}} \frac{\partial \tau}{\partial \xi}, \frac{\partial \tau}{\partial \xi} \rangle \\
&\quad + \frac{1}{\| \frac{\partial \tau}{\partial \xi} \|^2} \langle \langle R \left(\frac{\partial \tau}{\partial \xi}, \frac{\partial \tau}{\partial \xi} \right), \frac{\partial \tau}{\partial \xi}, \frac{\partial \tau}{\partial \xi} \rangle + \langle \nabla_{\frac{\partial \tau}{\partial \xi}} \nabla_{\frac{\partial \tau}{\partial \xi}} \frac{\partial \tau}{\partial \xi}, \frac{\partial \tau}{\partial \xi} \rangle \rangle \\
&\quad (\text{这里用到} \left[\frac{\partial \tau}{\partial \xi}, \frac{\partial \tau}{\partial \xi} \right] = 0). \text{ 注意到} \ u = 0 \text{ 时,} \\
&\quad \nabla_{\frac{\partial \tau}{\partial \xi}} \frac{\partial \tau}{\partial \xi} = \nabla, y^\prime = 0, \| \frac{\partial \tau}{\partial \xi} \| = \| y^\prime \| = 1 \\
\end{align*} \]

及

\[\langle \nabla_{\frac{\partial \tau}{\partial \xi}} \nabla_{\frac{\partial \tau}{\partial \xi}} \frac{\partial \tau}{\partial \xi}, \frac{\partial \tau}{\partial \xi} \rangle = \langle \nabla, X \rangle, y^\prime \rangle = \langle \nabla, X, y^\prime \rangle, \]

就有

\[\frac{d^2}{du^2} L(\tau(u)) \big|_{u=0} = \int_a^b \frac{d}{du} \left(\frac{1}{\| \frac{\partial \tau}{\partial \xi} \|} \langle \frac{\partial \tau}{\partial \xi}, \nabla_{\frac{\partial \tau}{\partial \xi}} \frac{\partial \tau}{\partial \xi} \rangle \right) dt \]

\[= \int_a^b \left\{ \| X^\prime (t) \|^2 + \langle R(X(t), y^\prime (t))X(t), y^\prime (t) \rangle \right. \]

\[- \left[\langle y^\prime (t), X(t) \rangle \right]^2 + \langle \nabla X, y^\prime \rangle (t) \rangle dt \]

\[= \langle \nabla X, y^\prime \rangle \big|_a^b + \int_a^b \left\{ \| X^\prime (t) \|^2 - \langle R(X, y^\prime) y^\prime, X \rangle \right. \]

\[- \left[\langle y^\prime , X \rangle \right]^2 \right\} dt \]

定理 6(长度第 2 变分公式的另两种形式)

294
\[
\frac{d^2}{du^2} L(\tilde{\tau}(u)) \big|_{u=0} \\
= \langle \nabla_X X, y' \rangle \big|_a^b + \int_a^b \| X_{\perp} \|^2 - \langle R(X_{\perp}, y') y', X_{\perp} \rangle \, dt \\
= \langle \nabla_X X, y' \rangle \big|_a^b + \langle X_{\perp}, X_{\perp} \rangle \big|_a^b - \int_a^b \langle X_{\perp}, R(X_{\perp}, y') y', X_{\perp} \rangle \, dt.
\]

证明 由于 \(X(t) = X(t) + f(t)y(t) \)（其中 \(\langle X(t), y(t) \rangle = 0 \), 故 \(f(t) = \langle X(t), y(t) \rangle \) 为 \([a, b]\) 上的 \(C^\infty \) 函数. 于是,
\[
\| X'(t) \|^2 - \left[\langle y'(t), X(t)y' \rangle \right]^2 \\
= \| X_{\perp}(t) + f'(t)y(t) \|^2 - \left[\langle y'(t), X(t)y' \rangle \right]^2 \\
= \| X_{\perp}(t) \|^2 + f'^2(t) - f'^2(t) = \| X_{\perp}(t) \|^2.
\]

由曲率张量 \(R \) 的反称性得到
\[
\langle R(X_{\perp}, y')y', y' \rangle = \langle R(y', y')y', X_{\perp} \rangle = 0,
\]
\[
\langle R(X_{\perp}, y')y', X_{\perp} \rangle = \langle R(X_{\perp} + fy', y')y', X_{\perp} + fy' \rangle \\
= \langle R(X_{\perp}, y')y', X_{\perp} \rangle + fR(X_{\perp}, y')y', y' \rangle \\
+ \langle fR(y', y')y', X_{\perp}, fy' \rangle \\
= \langle R(X_{\perp}, y')y', X_{\perp} \rangle.
\]

根据上式和 \(\langle X_{\perp}, X_{\perp} \rangle = \langle X_{\perp}, X_{\perp} \rangle - \langle X_{\perp}, X_{\perp} \rangle \) 以及定理 5 得到
\[
\frac{d^2}{du^2} L(\tilde{\tau}(u)) \big|_{u=0} \\
= \langle \nabla_X X, y' \rangle \big|_a^b + \int_a^b \| X_{\perp} \|^2 - \langle R(X_{\perp}, y') y', X_{\perp} \rangle \, dt \\
= \langle \nabla_X X, y' \rangle \big|_a^b + \langle X_{\perp}, X_{\perp} \rangle \big|_a^b - \int_a^b \langle X_{\perp}, R(X_{\perp}, y') y', X_{\perp} \rangle \, dt.
\]

定理 7（一般的长度第 2 变分公式） 设 \(\gamma \in \Omega(M; p, q) \) 是以弧长 \(t \) 为参数的测地线, \(\gamma: [a, b] \to M, \gamma(a) = p, \gamma(b) = q, X \in T_t \Omega, \gamma(u)(t) = \tau(u, t), (u, t) \in (\gamma, e) \times [a, b] \) 为 \(X \) 的分段 \(C^\infty \) 单参数正常变分, 即 \(a = t_0 < t_1 < \cdots < t_s < t_{s+1} = b \) 为 \([a, b]\) 的分割, 使得 \(X \) 在每个 \([t_j, t_{j+1}] \) 上是 \(C^\infty \) 的, \(j = 0, 1, \cdots, s \). 则

295
\[
\frac{d^2 L(\tilde{\tau}(u))}{du^2} \bigg|_{u=0} = \int_0^1 \{ ||X\| X' \} - \langle R(X', y'), y', X\rangle \} dt
\]

\[
= \sum_{j=1}^A \langle X_{i+} - X_{i-}, X_i \rangle_{ij}
\]

\[
- \int_0^b \langle X' + R(X', y'), y', X\rangle_{ij} dt
\]

证明 由题设, \(X(a) = 0, X(b) = 0, \tau(u, a) = \gamma(a) = p, \tau(u, b) = \gamma(b) = q\). 于是 \(\frac{\partial}{\partial u} \tau(u, a) = 0, \frac{\partial}{\partial u} \tau(u, b) = 0\),

\[
\nabla X|_a = \nabla X_{a1} \frac{\partial \tau}{\partial u}(u, a) = 0,
\]

\[
\nabla X|_b = \nabla X_{b1} \frac{\partial \tau}{\partial u}(u, b) = 0,
\]

且 \(\nabla X|_{i+} = \nabla X|_{i-}\). 根据定理 6, 立即就推出定理的结论.

定义 4 设 \(\gamma \in \Omega = \Omega(M; p, q)\) 是以弧长为参数的测地线 \((\Leftrightarrow dL(X) = 0, \forall X \in T, \Omega)\). 记

\[
I(X, X) = \frac{d^2 L(\tilde{\tau}(u))}{du^2} \bigg|_{u=0}
\]

（由定理 7, 它与 \(X\) 的分段 \(C^\infty\) 正常变量 \(\tilde{\tau}(u)(t) = \tau(u, t)\) 的选择无关）. 则称

\[
I: T_v \Omega \times T_v \Omega \to \mathbb{R}
\]

为长度函数 \(L\) 在 \(v \in \Omega\) 处的 Hesse 泛函或指数形式, 其中

\[
I(X, Y) = \frac{1}{2} [I(X + Y, X + Y) - I(X, X) - I(Y, Y)].
\]

显然, \(I(X, Y) = I(Y, X)\).

从 \(I(X, Y)\) 的定义和定理 5, 6 及 7 立即得到

定理 8 设 \(\gamma, X, Y\) 如定义 4 所述, \(\tilde{\tau}(u)(t) = \tau(u, t)\) 为 \(X\) 的分段 \(C^\infty\) 正常变量, 它在每个 \([t_i, t_{i+1}]\) 上是 \(C^\infty\) 的, 其中 \(a = t_0 < t_1 < \cdots < t_n < t_{n+1} = b\) 是 \([a, b]\) 的分割. 则

296
$$I(X,Y) = \int_0^b \{ \langle X', Y' \rangle - \langle R(X, y') y', Y \rangle \\
- \langle y', X' \rangle \langle y', Y' \rangle \} dt$$
$$= \int_0^b \{ \langle X'^{\perp}, T^{\perp} \rangle - \langle R(X^{\perp}, y') y', Y^{\perp} \rangle \} dt$$
$$= \sum_{j=1}^b \langle X'^{\perp}, Y^{\perp} \rangle |_{i_j} - \int_0^b \langle X'^{\perp} + R(X^{\perp}, y') y', Y^{\perp} \rangle dt.$$

证明 由定理 5 知

$$I(X,Y) = \frac{1}{2} \left[I(X + Y, X + Y) - I(X, X) - I(Y, Y) \right]$$

$$= \frac{1}{2} \int_0^b \{ \langle (X + Y)', (X + Y)' \rangle - \langle R(X + Y, y') y', X + Y \rangle \\
- \langle y', X + Y' \rangle^2 - \langle X', X' \rangle + \langle R(X, y') y', X \rangle \\
+ \langle y', (X')^2 \rangle - \langle Y', Y' \rangle + \langle R(Y, y') y', Y \rangle \\
+ \langle y', (Y')^2 \rangle \} dt$$

$$= \int_0^b \{ \langle X', Y' \rangle - \langle R(X, y') y', Y \rangle - \langle y', X' \rangle \langle y', Y' \rangle \} dt.$$

再由定理 6 和 7 就得

$$I(X,Y) = \frac{1}{2} \left[I(X + Y, X + Y) - I(X, X) - I(Y, Y) \right]$$

$$= \frac{1}{2} \int_0^b \{ \langle (X + Y)^{\perp}, (X + Y)^{\perp} \rangle \\
- \langle R((X + Y)^{\perp}, y') y', (X + Y)^{\perp} \rangle - \langle (X^{\perp}, X^{\perp}) \rangle \\
+ \langle R(X^{\perp}, y') y', X^{\perp} \rangle - \langle Y^{\perp}, Y^{\perp} \rangle \\
+ \langle R(Y^{\perp}, y') y', Y^{\perp} \rangle \} dt$$

$$= \int_0^b \{ \langle X^{\perp}, Y^{\perp} \rangle - \langle R(X^{\perp}, y') y', Y^{\perp} \rangle \} dt$$

$$= \int_0^b \{ \langle X^{\perp}, Y^{\perp} \rangle' - \langle X^{\perp}, Y^{\perp} \rangle - \langle R(X^{\perp}, y') y', Y^{\perp} \rangle \} dt$$

$$= \sum_{j=0}^b \langle X^{\perp}, Y^{\perp} \rangle |_{j+1} - \int_0^b \langle X^{\perp} + R(X^{\perp}, y') y', Y^{\perp} \rangle dt$$
\[= \sum_{j=1}^{b} \langle X_{1} - X_{1}^{-}, Y \rangle |_{t_{j}} - \int_{a}^{b} \langle X_{1} + R(X_{1}, \gamma') \gamma', Y \rangle dt. \]

定理 9 设 \(\gamma \in \Omega = g(M; p, q) \) 是以弧长为参数的测地线，\([a, b] \rightarrow M, \gamma(a) = p, \gamma(b) = q \). \(X \in T_{\gamma} \Omega \)，则 \(X_{1} \) 为 Jacobi 场 \(\Leftrightarrow \) 对任意 \(Y \in T_{\gamma} \Omega, I(X, Y) = 0. \)

证明 \((\Rightarrow)\) 设 \(X_{1} \) 为 Jacobi 场，故 \(X_{1} \) 是 \(C^{\infty} \) 的，且满足 Jacobi 方程

\[X_{1} + R(X_{1}, \gamma') \gamma' = 0. \]

因此，由定理 8，对任意 \(Y \in T_{\gamma} \Omega \)，有

\[I(X, Y) = \int_{a}^{b} \langle X_{1} + R(X_{1}, \gamma') \gamma', Y \rangle dt = 0. \]

\((\Leftarrow)\) 由条件知对任意 \(Y \in T_{\gamma} \Omega, I(X, Y) = 0. \) 在定理 8 中，选沿

\(\gamma \) 的分段 \(C^{\infty} \) 函数 \(f \)，使得 \(f(t_{0}) = f(t_{1}) = \cdots = f(t_{b}) = f(t_{b+1}) = 0 \) (其中 \(a = t_{0} < t_{1} < \cdots < t_{b} < t_{b+1} = b \) 为 \([a, b]\) 的分割)，而在其它点 \(t, f(t) > 0. \) 令 \(Y = f[X_{1} + R(X_{1}, \gamma') \gamma'] \). 于是

\[0 = I(X, Y) \]

\[= \int_{a}^{b} f \langle X_{1} + R(X_{1}, \gamma') \gamma', X_{1} + R(X_{1}, \gamma') \gamma' \rangle dt \]

\(\Leftrightarrow \) 在每个 \([t_{j}, t_{j+1}](j = 0, 1, \cdots, b) \) 上，\(X_{1} \) 满足 Jacobi 方程：

\[X_{1} + R(X_{1}, \gamma') \gamma' = 0. \]

为了证明 \(X_{1} \) 在整个 \([a, b]\) 上是 Jacobi 场，根据定理 3 充分性的证明，只须证明 \(X_{1} \) 在每个 \(t_{j}(j = 1, \cdots, b) \) 处是 \(C^{1} \) 的。为此，对每个固定的 \(j \)，选择分段 \(C^{\infty} \) 向量场 \(Y \in T_{\gamma} \Omega \) 使得在 \(t_{j}, Y = X_{1}^{-} = X_{1}^{+} \)，而在 \(t_{k}(k \neq j), Y = 0. \) 于是，定理 8 中的公式成为

\[0 = I(X, Y) = \langle X_{1}^{+} - X_{1}^{-}, Y \rangle \big|_{t_{j}} \]

\[= \langle X_{1}^{+} - X_{1}^{-}, X_{1}^{+} - X_{1}^{-} \rangle \big|_{t_{j}}, \]

即在 \(t_{j} \) 处，\(X_{1}^{+} = X_{1}^{-} \)，也就是 \(X_{1} \) 在 \(t_{j} \) 是连续的或 \(X_{1} \) 是 \(C^{1} \) 的。

注 2 定理 7 中得到的积分公式是众所周知的 Synge 公式（参阅 [Sy]），而这一节的公式主要基于 [Am].

298
定理 10 设 $\gamma(t), a \leq t \leq b$ 是测地线。如果沿 γ 存在 $\gamma(a)$ 的共轭点 $\gamma(c), a < c < b$, 则 γ 不是连接 $\gamma(a)$ 和 $\gamma(b)$ 的最短测地线，即 γ 的长度大于 $\gamma(a)$ 和 $\gamma(b)$ 之间的距离。

证明 由 3.2 引理 3, 存在沿 γ 的分段 C^∞ 向量场 X 具有下列性质:

(1) $X \perp \gamma'$;
(2) $X(a) = 0, X(b) = 0$;
(3) $I(X, X) < 0$.

设 $\bar{\tau}(u), -\varepsilon < u < \varepsilon$ 是从 $\gamma(a)$ 到 $\gamma(b)$ 的分段 C^∞ 的单参数变分。因为 $\bar{\tau}(0) = \gamma$ 是测地线，所以

$$
\frac{dL(\bar{\tau}(u))}{du} \bigg|_{u=0} = 0, \quad \frac{d^2L(\bar{\tau}(u))}{du^2} \bigg|_{u=0} = I(X, X) < 0.
$$

这就证明了，对充分小的 $u \neq 0, \gamma(a), \gamma(b)$ 的距离

$$
\rho(\gamma(a), \gamma(b)) \leq L(\bar{\tau}(u))
$$

$$
= L(\bar{\tau}(0)) + \frac{dL(\bar{\tau}(0))}{du} u + \left(\frac{1}{2} \frac{d^2L(\bar{\tau}(0))}{du^2} + \frac{o(u^2)}{u^2} \right) u^2
$$

$$
= L(\bar{\tau}(0)) + \left(\frac{1}{2} \frac{d^2L(\bar{\tau}(0))}{du^2} + \frac{o(u^2)}{u^2} \right) u^2
$$

$$
< L(\bar{\tau}(0)).
$$

注 3 定理 10 中，若 $\gamma(b)$ 为 $\gamma(a)$ 沿测地线 $\gamma(t), a \leq t \leq b$ 的仅有的共轭点，γ 有可能为连接 $\gamma(a)$ 和 $\gamma(b)$ 的最短测地线。例如，$\gamma(t), 0 \leq t \leq \pi$ 为单位球面 $S^2 \pi$ 的测地线大圆。

定理 11 (Bonnet-Meyers) 设 (M, g) 为 m 维连通完备的 C^∞ Riemann 流形，其截曲率 $k \geq c > 0$ (或更一般地，其 Ricci 张量是正定的，且任意特征值 $\geq (m - 1)c > 0$)，则

(1) M 的直径 $\sup\{\rho(p, q) | p, q \in M\} \leq \pi/\sqrt{c}$, 其中 ρ 为由 g 诱导的距离函数；
(2) M 是紧致的；
(3) 基本群 $\pi_1(M)$ 是有限的。

证明 (1) 设 $p, q \in M, \gamma$ 为连接 p 和 q 的最短测地线。由定理
10 和 3.2 定理 8 和 9,\(y \) 的长度 \(L(y) \leq \pi / \sqrt{c} \)。因此
\[
\rho(p, q) \leq L(y) \leq \pi / \sqrt{c},
\]
\[
\sup \{\rho(p, q) | p, q \in M \} \leq \pi / \sqrt{c}.
\]

(2) 因为 M 是有界和完备的, 根据 3.1 定理 7(3), 它是紧致的.

(3) 在 M 的有奇覆盖空间 \((\tilde{M}, p)\) 上 \(p: \tilde{M} \to M\) 为其投影映射 (参阅第 5 章 5.1 定义 1)), 自然诱导了 Riemann 度量 \(\tilde{g} = p^* g\), 它也满足本定理的条件, 故 \(\tilde{M}\) 也是紧致的。因此, \((\tilde{M}, p)\) 的重数 (或层数) 是有限的 (反证)。若不然, 对 \(x \in M, p^{-1}(x)\) 是无限的, 则 \(p^{-1}(x)\) 将有一个聚点 \(\tilde{x}\), 这样, 在 \(\tilde{x}\) 的任何开邻域中至少有不同的两点 \(\tilde{x}_1, \tilde{x}_2 \in p^{-1}(x)\), 即 \(p(\tilde{x}_1) = p(\tilde{x}_2)\), 从而在 \(\tilde{x}\) 处 \(p\) 就不是一个局部 \(C^\infty\) 微分同胚, 矛盾。根据 [Spa], p73, 9 Theorem, \(\pi_1(M)\) 是有限的。

定义 5 设 \(\gamma \subset \Omega = \Omega(M; p, q)\) 为测地线，
\[
\gamma: [a, b] \to M, \quad \gamma(a) = p, \quad \gamma(b) = q,
\]
\[
T_{\Omega} = \{X | X(a) = 0, X(b) = 0, X \text{ 为沿} \gamma \text{ 的分段} C^\infty \text{ 向量场} \}.
\]
如果 \(\gamma(b)\) 沿 \(\gamma\) 共轭于 \(\gamma(a)\), 则称

\[
\mu = \dim \{X \in T_{\Omega} | X \text{ 为 Jacobi 场} \}
\]
为 \(\gamma(b) = q\) 关于 \(\gamma(a)\) 共轭的重数, 此时 \(\mu > 0\); 如果 \(\mu = 0\), 即不存在非 0 的 Jacobi 场 \(X \in T_{\Omega}\), 此时, \(\gamma(b) = q\) 不共轭于 \(\gamma(a)\)。记

\[
T_{\Omega} = \{X \in T_{\Omega} | X \perp \gamma \}
\]

\[
= \{X | X \text{ 为沿} \gamma \text{ 的分段} C^\infty \text{ 向量场}, X \perp \gamma', X(a) = 0, X(b) = 0, \}
\]

\[
I|_{T_{\Omega} \times T_{\Omega}}: T_{\Omega} \times T_{\Omega} \to \mathbb{R}
\]
为长度函数 \(L\) 在 \(\gamma \subset \Omega\) 处限制到 \(T_{\Omega}\) 上的 Hessian 或指数形式, 称 \(\{X \in T_{\Omega} | I(X, Y) = 0, \forall Y \in T_{\Omega}\}\) 为 \(I|_{T_{\Omega}}\) 的零化空间。由定理 8,

\[
I(X, Y) = I(X, Y').
\]

300
再由定理 9 和 3.2 定理 4 得到 $I_{T^\perp,\Omega}$ 的零化数（零化空间的维数）:

$$n(I_{T^\perp,\Omega}) = \dim \{ X \in T^\perp,\Omega | I(X,Y) = 0, \forall Y \in T^\perp,\Omega \}$$

$$= \dim \{ X \in T,\Omega | X \text{ 为沿 } \gamma \text{ 的 Jacobi 场} \}$$

$$= \mu.$$

注 4 由于

$$I(fy',Y) = I((fy')^2,Y^\perp) = 0, \forall Y \in T,\Omega.$$

所以 I 的零化数

$$n(I) = \dim \{ X \in T,\Omega | I(X,Y) = 0, \forall Y \in T,\Omega \}$$

$$\geq \dim \{ X \in T,\Omega | I(X,Y) = 0, \forall Y \in T,\Omega \}$$

$$= \dim \{ X \in T,\Omega | I(X,Y) = 0, \forall Y \in T^\perp,\Omega \}$$

$$= \mu.$$

定理 12 上述的共轭重数 μ 满足 $0 \leq \mu \leq m = \dim M$. 更进一步, $0 \leq \mu \leq m - 1$.

证明 因为 $\dim \{ X \in J,| X(a) = 0 \} = m = \dim M$, 所以 $\mu \leq m$.

我们构造一个特殊的 Jacobi 场 Y, 使得 $Y(a) = 0$, 但 $Y(b) \neq 0$. 这就蕴涵着 $\mu \leq m - 1$. 事实上, 令

$$Y(t) = (t - a)\gamma'(t).$$

则

$$Y'(t) = \gamma'(t) + (t - a)\gamma''(t) = \gamma'(t),$$

从而 $Y''(t) = \gamma''(t) = 0$. 此外, 由 \mathbf{R} 的反称性知 $R(Y,\gamma')\gamma' = (t - a)R(\gamma',\gamma')\gamma' = 0$, 这就证明了 Y 满足 Jacobi 方程

$$Y'' + R(Y,\gamma')\gamma' = 0.$$

例 2 设 M 是平坦的, 即曲率张量 R 恒为零 (或 Riemann 截曲率恒为零). 则沿测地线 $\gamma: [a,b] \to M$ 的 Jacobi 方程为

$$X'' = 0.$$
令 \(x = \sum_{i=1}^{m} f_i(t) P_i(t) \)，其中 \(P_i(t) \) 是沿 \(y \) 的平行向量场，则

\[
\frac{d^2 f_i}{dt^2} P_i(t) = X'' = 0 \iff \frac{d^2 f_i}{dt^2} = 0, \text{ 即 } f_i' = c't + d', \quad i = 1, \ldots, m.
\]

显然，如果 \(X(a) = 0, X(b) = 0 \)，则

\[
0 = f'(a) = c' a + d' \\
0 = f'(b) = c'b + d'
\]

\(\iff c' = d' = 0 (\text{ 注意 } b - a \neq 0) \)。于是 \(X(t) = 0, \forall \ t \in [a, b] \)。因此，沿 \(y \) 无 \(y(a) \) 的共轭点。

如通常的 \(\mathbf{R}^n \) 就是平坦的。无共轭点的事实也可由 \(\mathbf{R}^n \) 中任何测地线都是最短测地线和定理 10 立即得到。

例 3 设 \(S^n \subset \mathbf{R}^{n+1} \) 为单位球面，\(p, q \in S^n \) 为对径点，\(y \) 为连接 \(p \) 和 \(q = -p \) 的大圆弧（它就是 \(S^n \) 上的测地线），则 \(p \) 和 \(q \) 是共轭的，且具有重数 \(m - 1 \)。此例表明，\(l \) 的极大数 \(n \) 达到最大可能的值 \(m - 1 \)。为此，旋转球面 \(S^n \)，使 \(p \) 和 \(q \) 保持不动，沿 \(y \) 产生的正常变分向量场是在 \(p \) 和 \(q \) 为零的 Jacobi 场（见 3.2 定理 1）。在 \(m - 1 \) 个不同方向上旋转产生了 \(m - 1 \) 个线性无关的 Jacobi 场。因此，\(p \) 和 \(q \) 沿 \(y \) 是具有重数 \(m - 1 \) 共轭的。

设 \(y \) 为连接 \(p \) 和 \(q = -p \) 的测地线（大圆弧），显然它是最小测地线，即 \(L(y) = \rho(p, q) \)。根据定理 10，\(y \) 上介于 \(p \) 和 \(q = -p \) 之间不再有 \(p \) 的共轭点（否则 \(L(y) > \rho(p, q) \)）。因此，\(q = -p \) 为沿 \(y \) 的第 1 个共轭点；同时，容易看出，连接 \(p \) 和 \(q = -p \) 的最小测地线有无穷多（至少 2 条）。这是 3.2 定理 10 中 (1) (2) 两者都成立的例子。

最后，我们将 3.2 引理 2、引理 3 用在 \(T^+_y \Omega \) 上的指数形式重新表述出来，并给出一些几何解释。

推论 1 如果正规测地线（弧长为参数）\(y : [a, b] \to M \) 无共轭点（即不含 \(y(a) \) 的共轭点），则指数形式 \(I|_{y^2 \Omega} \) 是正定的。

证明 1 由 3.2 引理 2，对 \(\forall X \in T^+_y \Omega \)，有

\[
I(X, X) = l^2(X) \geq 0
\]
且 \(I^c(X) = I(X, X) = 0 \Leftrightarrow X = 0 \)，即 \(I_{\nu}^c \) 是正定的。

证明 2 不失一般性，可以假设正规曲线 \(\gamma \) 定义在 \([0, b] \) 上。设 \(p = \gamma(0) \)，且令 \(\tilde{\gamma} : [0, b] \to T_M \) 为 \(T_M \) 中由 \(\tilde{\gamma}(t) = t\gamma'(0) \) 所定义的径向线。由假设无共轭点，因此 \(\exp_{\gamma} \) 在 \(\tilde{\gamma} \) 上非异，于是在 \(T_M \) 中存在着 \(\tilde{\gamma}([0, b]) \) 的一个开邻域 \(U \)，使得 \(\exp_U : U \to M \) 为一个 \(C^\infty \) 浸入。现在我们看到，如果 \(\sigma : [0, b] \to \exp_M \) 是 \(\exp_U \) 中连接 \(p = \gamma(0) \) 到 \(\gamma(b) \) 的任何分段 \(C^\infty \) 曲线，通过完全类似于 3.1 引理 5 的证明得到：\(L(\sigma) \geq L(\gamma) \)，且等号成立当且仅当 \(\sigma = \gamma \) 的一个单调的重新参数化（留作习题）。特别地，设 \(\{\gamma_u\} (- \varepsilon \leq u \leq \varepsilon) \) 为 \(\gamma \) 的一个变分，取 \(\varepsilon \) 充分小，可以假定每个 \(\gamma_u \) 位于 \(\exp_U \) 中，所以由上述知 \(L(\gamma_u) \geq L(\gamma) \)，或简记为 \(L(u) \geq L(0) \)。因为 \(L \) 是一个 \(C^\infty \) 函数，所以

\[
\frac{L(-s) + L(s) - 2L(0)}{s^2} \geq 0,
\]

\[
L''(0) = \lim_{s \to 0} \frac{L(-s) + L(s) - 2L(0)}{s^2} \geq 0.
\]

于是，对 \(\forall X \in T^\perp \Omega \)，取一个变分 \(\gamma \)，以 \(X \) 为变分向量场，则有

\[
I(X, X) = L''(0) \geq 0.
\]

显然，当 \(X = 0 \) 时，\(I(X, X) = I(0, 0) = 0 \)。相反地，可证 \(I(X, X) = 0, X \in T^\perp \Omega \)，必有 \(X = 0 \)。

事实上，对 \(\forall Y \in T^\perp \Omega \) 及 \(\forall \varepsilon > 0 \)，有

\[
0 \leq I(X - \varepsilon Y, X - \varepsilon Y) = I(X, X) - 2\varepsilon I(X, Y) + \varepsilon^2 I(Y, Y) = -2\varepsilon I(X, Y) + \varepsilon^2 I(Y, Y),
\]

令 \(\varepsilon \to 0^+ \) 就得 \(I(X, Y) \leq 0, \forall Y \in T^\perp \Omega \)。同样，用 \(X + \varepsilon Y \) 代替 \(X - \varepsilon Y \) 就又得

\[
I(X, Y) \geq 0, \ \forall \ Y \in T^\perp \Omega.
\]

综合起来即有

\[
I(X, Y) = 0, \ \forall \ Y \in T^\perp \Omega.
\]

303
从而
\[I(X,Y) = 0, \quad \forall \ Y \in T,\Omega. \]
由定理 9，X 为 Jacobi 场。因为 \(X \in T^\perp,\Omega \)，所以
\[X(0) = X(b) = 0, \]
但 \(y(b) \) 不共轭于 \(y(0) \)，故有 \(X \equiv 0. \)

注 5 推论 1 指出，如果 \(y \) 不含共轭点，则对 \(X \neq 0 \) 有 \(L''(0) = I(X,X) > 0 \)，所以，当 \(u \) 充分小时，
\[
L(u) = L(0) + L'(0)u + \left[\frac{L''(0)}{2} + \frac{o(u^2)}{u^2} \right]u^2 \\
= L(0) + \left[\frac{L''(0)}{2} + \frac{o(u^2)}{u^2} \right]u^2 > L(0),
\]
即 \(y \) 在邻近曲线中最短的。

推论 2(Jacobi 场的极小性) 设 \(y : [a,b] \to M \) 为正规测地线，
它无共轭点。设 \(X, Y \) 为沿 \(y \) 的分段 \(C^\infty \) 向量场，\(X, Y \perp y \)，\(X(0) = Y(a), X(b) = Y(b) \)，\(Y \) 为 Jacobi 场，则有
\[I(Y,Y) \leq I(X,X), \]
等号成立 \(\iff X = Y. \)

证明 1 由 3.2 引理 2，
\[I(Y,Y) = I_2(Y) \leq I_2(X) = I(X,X). \]
等号成立 \(\iff X = Y. \)

证明 2 因为 \(X - Y \in T^\perp,\Omega \)，有推论 1 和定理 8 得到
\[
0 \leq I(X - Y, X - Y) \\
= I(X,X) - 2I(X,Y) + I(Y,Y) \\
= \langle Y', Y \rangle_\perp^b - 2\langle Y', X \rangle_\perp^b + I(X,X) \\
= -\langle Y', Y \rangle_\perp^b + I(X,X) \\
= -I(Y,Y) + I(X,X),
\]
\[I(Y,Y) \leq I(X,X). \]
再由推论 1 得到
\[I(Y,Y) = I(X,X) \iff 0 = -I(Y,Y) + I(X,X) \]
304
注 6 推论 1 和 2 中的证明 1，就是 3.2 引理 2 中先证一般再得到特殊情形，而推论 1 和 2 中的证明 2 是先证特殊再证一般情形。此法取自 [GKM]。

推论 3 设 \(\gamma(b) \) 共轭于 \(\gamma(a) \)，但任意 \(t \in (a,b) \)，\(\gamma(t) \) 不共轭于 \(\gamma(a) \)，则指数形式 \(I \) 在 \(T_{y} \perp \Omega \) 上是半正定的，但不是正定的。

证明 不失一般性，假设正规测地线 \(\gamma \) 定义在 \([0,b]\) 上。由题设 \(\gamma(b) \) 是 \(\gamma(0) \) 沿 \(\gamma \) 的唯一的共轭点，下证 \(I(X,X) \geq 0, X \in T_{y} \perp \Omega \)。为此，沿 \(\gamma \) 先取定一个平行标架场 \(\{X_{1}(t), \cdots, X_{m}(t)\} \)，使得 \(X_{1}(t) = \gamma'(t) \)。记

\[
X(t) = \sum_{i=2}^{m} f_{i}(t)X_{i}(t).
\]

对 \(\beta < b \)，令

\[
\tau_{\beta}(X)(t) = \sum_{i=2}^{m} f_{i}(\frac{t}{\beta})X_{i}(\frac{t}{\beta}),
\]

则 \(\tau_{\beta}(X) \in T_{y} \perp \Omega \), 于是得到一个映射

\[
\tau_{\beta} : T_{y} \perp \Omega \rightarrow T_{y} \perp \Omega
\]

\(X \rightarrow \tau_{\beta}(X) \)。

由推论 1, \(I_{\beta} (\tau_{\beta}(X), \tau_{\beta}(X)) \geq 0 \), 所以

\[
I(X,X) = \lim_{\beta \to b^{-}} I_{\beta} (\tau_{\beta}(X), \tau_{\beta}(X)) \geq 0.
\]

由 \(I(X,Y) = I(X^{\perp}, Y^{\perp}) \) 和定理 9, \(\gamma(b) \) 共轭于 \(\gamma(a) \) 蕴涵着存在非零 Jacobi 场 \(X \in T_{y} \perp \Omega \)，使得 \(I(X,X) = 0 \)，从而 \(I|_{T_{y} \perp \Omega} \) 不是正定的。

推论 4 \(\gamma(c) \) 沿 \(\gamma \) 共轭于 \(\gamma(a)(a < c < b) \Leftrightarrow \) 存在 \(X \in T_{y} \perp \Omega \)，使得 \(I(X,X) < 0 \)。

证明 由引理 3, 存在 \(X \in T_{y} \perp \Omega \) 使得

\[
I(X,X) = I_{\beta}(X) < 0.
\]

注 7 推论 4 指出, 由 \(I(X,X) < 0 \)，存在 \(\gamma \) 的变分, 使得当 \(u \) 充分小时, 有

305
\[L(u) = L(0) + L'(0)u + \left[\frac{L''(0)}{2} + \frac{0(u^2)}{u^2} \right]u^2 \]

即超过共轭点后，\(v \) 即使在近迹曲线中也不是最短的。

由推论 1, 2, 3, 4, \(I |_{\tau^{+}, \rho} \) 正定, 严格半正定, 非半正定分别刻划了 \(y |_{(\alpha, \beta]} \) 中无共轭点, 恰有一个共轭点 \(y(b) \), \(y |_{(\alpha, \beta)} \) 中有共轭点。

3.4 体积分的第 1, 第 2 变分
公式和极小子流形

这一节是测地线的高维推广，将寻找曲线长度函数的临界点 (临界道路，即测地线) 换成寻找 \(k \) 维子流形体积函数的临界点 (\(k \) 维极小子流形)。

定义 1 设 \((M, g)\) 和 \((\tilde{M}, \tilde{g})\) 分别为维和 \(\tilde{m} \) 维 \(C^\infty \) Riemann 流形, \(\nabla \) 和 \(\tilde{\nabla} \) 分别为它们的 Riemann 联络, \(f: M \to \tilde{M} \) 为 \(C^\infty \) 浸入, \(g = f^* \tilde{g} \), \(M \) 是紧致可定向带边流形, 边界为 \(\partial M \) (可能 \(\partial M = \emptyset \))。

\[f \text{ 的 } C^\infty \text{ 正常变分是一个 } C^\infty \text{ 映射: } \]
\[F: (\varepsilon, \varepsilon) \times M \to \tilde{M}, \quad \varepsilon > 0 \]

满足:

1. 对每个固定的 \(t \in (\varepsilon, \varepsilon), f_t = F(t, \cdot): M \to \tilde{M} \) 为 \(C^\infty \) 浸入；
2. \(f_0 = f \);
3. 对任意 \(t \in (\varepsilon, \varepsilon), f_t|_{\partial M} = f|_{\partial M} \).

设 \(\frac{\partial}{\partial t} \) 为 \((\varepsilon, \varepsilon)\) 上的典型 \(C^\infty \) 向量场, \(W = F_r(\frac{\partial}{\partial t}) \bigg|_{t=0} = \frac{\partial F(t, x)}{\partial t} \bigg|_{t=0} \) 称为正常变分 \(F \) 诱导的变分向量场，它是 \(M \to TM \oplus T_{\perp} M = T\bar{M} \) 的 \(C^\infty \) 截面。

设 \(dV \) 为浸入 \(f \) 诱导的 Riemann 度量 \(f^* \tilde{g} \) 相应的体积元素，而 \(M \) 在 \(t \) 处的体积为

306
$$V(t) = \int_M dV_t.$$

为了导出体积的第 1 变分公式，先证两个引理。

引理 1 设 $A(t) = (a_{ij}(t)), t \in (-\varepsilon, \varepsilon)$ 是 $m \times m$ 矩阵的 C^∞ 族，$A(0) = I(m \times m$ 单位矩阵。) 则

$$\left. \frac{d}{dt} \det(A(t)) \right|_{t=0} = \text{trace}(A'(0)).$$

证明

$$\left. \frac{d}{dt} \det(A(t)) \right|_{t=0} = \frac{d}{dt} \left(\sum_{(i_1, \ldots, i_m)} a_{i_1i_2} \cdots a_{i_mi_m} \right) \bigg|_{t=0}$$

$$= \sum_{(i_1, \ldots, i_m)} \sum_{k=1}^m a_{i_1i_k} \cdots a'_{i_ki_m} \cdots a_{i_mi_m} \bigg|_{t=0}$$

$$= \sum_{k=1}^m a'_{i_ki_1}(0) \cdots a'_{i_ki_m}(0)$$

$$= \text{trace}(A'(0)).$$

引理 2

$$\left. \frac{d}{dt} V_t \right|_{t=0} = -\langle H, W \rangle dV_0 + d\Omega,$$

其中 Ω 为 M 上的 C^∞ $m - 1$ 形式，且 $\Omega|_M = 0$。

证明 设 ω 为 M 上的 $C^\infty 1$ 形式，它由

307
\[\omega(X) = \langle W, X \rangle \]

给出, 这里 \(X \) 为 \(M \) 上的 \(C^\infty \) 切向量场. 则应用 \(\ast \) 算子定义

\[\Omega = \ast \omega. \]

因为 \(W_{i=0} = \frac{\partial F(t, x)}{\partial x} \bigg|_{x=0} = \frac{\partial f(t, x)}{\partial x} \bigg|_{x=0} = 0 \), 故 \(\omega_{i=0} = 0 \), \(\Omega_{i=0} = 0. \)

设 \(p \in M, C^\infty(TU) \) 为 \(p \) 点某个开邻域 \(U \) 中的 \(C^\infty \) 向量场的全体, 取 \(e_1, \ldots, e_m \in C^\infty(TU) \) 使得

(1) \(e_1, \ldots, e_m \) 在 \(f^\ast \tilde{g} \) 下是点式规范正交的；

(2) \((\nabla_{e_i} e_j), = (\tilde{\nabla}_{e_i} f_0 \ast e_j)_{f_0(p)} = 0, \forall i, j = 1, \ldots, m. \) （例如，从 \(T, M \) 中的一个规范正交基沿从 \(p \) 点出发的某开邻域 \(U \) 中的测地线平行移动得到 \(e_1, \ldots, e_m \).）令 \(\omega^1, \ldots, \omega^m \) 为对偶于 \(e_1, \ldots, e_m \) 的 \(C^\infty \) 形式. 于是, 相应于 \(f^\ast \tilde{g} \) 的第 1 基本形式为

\[f^\ast \tilde{g} = \sum_{i,j=1}^m g_{ij}(t) \omega^i \otimes \omega^j, \]

其中, \(g_{ij}(t) = f^\ast \tilde{g}(e_i, e_j) = \tilde{g}(f_1 \ast (e_i), f_1 \ast (e_j)) \). 因此,

\[dV_i = \sqrt{\text{det}(g_{ij}(t))} \omega^1 \wedge \cdots \wedge \omega^m = \sqrt{\text{det}(g_{ij}(t))} dV_0. \]

用自然的方式将 \(e_1, \ldots, e_m \) 延拓到 \((-\varepsilon, \varepsilon) \times U \subseteq (-\varepsilon, \varepsilon) \times M \) 上, 注意 \([\frac{\partial}{\partial x}, e_j] = 0, k = 1, \ldots, m. \) 记 \(\tilde{W} = f_1 \ast (\frac{\partial}{\partial x}), \tilde{e}_k = f_1 \ast (e_k), \tilde{g} = \langle \cdot, \cdot \rangle \), 则

\[g_{kk}(t) = \langle f_1 \ast (e_k), f_1 \ast (e_k) \rangle = \langle \tilde{e}_k, \tilde{e}_k \rangle, \]

\[\frac{dg_{kk}(t)}{dt} = \tilde{W}(\tilde{e}_k, \tilde{e}_k) = 2 \langle \tilde{e}_k, \tilde{W} \rangle = 2 \langle \tilde{e}_k, \tilde{W} \rangle = 2 [\langle \tilde{e}_k, \tilde{W} \rangle - \langle \tilde{W}, \tilde{e}_k \rangle]. \]

令 \(t = 0, \) 得

\[\frac{1}{2} \sum_{k=1}^m \frac{dg_{kk}(0)}{dt}(0) \]
\[
\begin{align*}
&= - \braket{\sum_{k=0}^{m} \nabla e_k, W} + \sum_{k=1}^{m} e_k \braket{e_k, W} \\
&= - \braket{\sum_{k=1}^{m} (\nabla e_k)^\perp, W} + \sum_{k=1}^{m} e_k \braket{e_k, W} \\
&= - m \braket{H, W} + \sum_{k=1}^{m} e_k \braket{e_k, W}.
\end{align*}
\]

因为 \(\omega = \sum_{i=1}^{m} \braket{W, e_i} W_i \) 和 \([e_i, e_j]_r = (\nabla e_i), -(\nabla e_j), = 0\)，所以

\[
\Omega = * \omega = \sum_{i=0}^{m} (-1)^{i+1} \braket{W, e_i} \omega^1 \wedge \cdots \wedge \omega^j \wedge \cdots \wedge \omega^m,
\]

\[
d\Omega(e_1, \cdots, e_m)
\]

\[
= \sum_{i=1}^{m} (-1)^{i+1} e_i \Omega(e_1, \cdots, e_i, \cdots, e_m)
\]

\[
+ \sum_{i<j} (-1)^{i+j} \Omega([e_i, e_j], e_1, \cdots, \wedge e_i, \cdots, e_j, \cdots, e_m)
\]

\[
= \sum_{i=1}^{m} (-1)^{i+1} e_i \sum_{i=0}^{m} (-1)^{i+1} \braket{W, e_i} \omega^1 \wedge \cdots \wedge \omega^j \wedge \cdots \wedge \omega^m(e_1, \cdots, e_i, \cdots, e_m)
\]

\[
= \sum_{k=1}^{m} e_k \braket{W, e_k},
\]

\[
d\Omega = \sum_{k=1}^{m} e_k \braket{W, e_k} dV_0.
\]

应用定理 1 得

\[
\frac{d}{dt} dV \bigg|_{t=0} = \frac{d}{dt} \sqrt{\det(g_{ij}(t))} \bigg|_{t=0} dV_0
\]

\[
= \frac{1}{2} \sqrt{\det(g_{ij}(0))} \frac{d(\det(g_{ij}(t)))}{dt} \bigg|_{t=0} dV_0
\]

\[
= \frac{1}{2} \sum_{k=1}^{m} \frac{dg_{ij}(0)}{dt} dV_0
\]
\[
= \left[-m\langle H, W \rangle + \sum_{k=1}^{n} e_k \langle e_k, W \rangle \right] dV_0
\]

\[-m\langle H, W \rangle dV_0 + d\Omega.
\]

从引理1和2立即可推出

定理1（体积第1变分公式）

\[
\left. \frac{dV_i}{dt} \right|_{t=0} = -m \int_M \langle H, W \rangle dV_0,
\]

其中H为M在\bar{M}中的平均曲率向量场.

证1

\[
\left. \frac{dV_i}{dt} \right|_{t=0} = \frac{d}{dt} \int_M dV_i \left|_{t=0} \right. = \int_M \frac{d}{dt} dV_i \left|_{t=0} \right.
\]

\[
= \int_M \left[-m\langle H, W \rangle dV_0 + d\Omega \right]
\]

\[-m \int_M \langle H, W \rangle dV_0 + \int_{\partial M} \Omega
\]

\[-m \int_M \langle H, W \rangle dV_0,
\]

其中第2个等式是利用了通常微积分中含参数积分的求导公式以及C^∞单位分解将M上的积分化为坐标邻域中的积分的事实，根据引理2，$\Omega|_{\partial M} = 0$，故$\int_{\partial M} \Omega = 0$．

证2 设$\{x^i\}$为p点处的局部坐标系，则

\[g_{ij}(t) = f^*_i \bar{g} \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right)
\]

\[= \bar{g} (f_i^* \left(\frac{\partial}{\partial x^i} \right), f_j^* \left(\frac{\partial}{\partial x^j} \right)).
\]

\[f^*_i \bar{g} = \sum_{i,j=1}^{n} g_{ij}(t) dx^i \otimes dx^j
\]

\[dV_i = \sqrt{\text{det}(g_{ij}(t))} dx^1 \wedge \cdots \wedge dx^n.
\]

记

\[\langle X_1 \wedge \cdots \wedge X_m, Y_1 \wedge \cdots \wedge Y_m \rangle
\]

310
\[
\begin{vmatrix}
\langle X_1, Y_1 \rangle & \cdots & \langle X_1, Y_m \rangle \\
\vdots & \ddots & \vdots \\
\langle X_m, Y_1 \rangle & \cdots & \langle X_m, Y_m \rangle
\end{vmatrix},
\]

则 \(\det(g_{ij}(t)) = \langle \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^m}, \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^m} \rangle \).

因为 \(f: M \rightarrow \tilde{M} \) 是 \(C^\infty \) 浸入，它在 \(p \) 的一个开邻域 \(U \) 中是一个 \(C^\infty \) 嵌入，可将 \(U \) 与 \(f(U) \) 等同，于是 \(\langle \cdot, \cdot \rangle \) 恰好是 \(f(U) \) 上诱导的度量，所以 \(\frac{\partial}{\partial x^i} \bigg|_{t=0} \) 等同于 \(F_* \left(\frac{\partial}{\partial x^i} \bigg|_{t=0} \right) \equiv W \). 设 \(W = W^T + W^\perp, W^T = \tau \) 和 \(W^\perp = \nu \) 是分别关于 \(f(M) \) 的切分量和法分量，则有

\[
\tilde{\nabla}_W \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^m} \\
= \sum_{i=1}^{n} \frac{\partial}{\partial x^1} \wedge \cdots \wedge \tilde{\nabla}_W \frac{\partial}{\partial x^i} \wedge \cdots \wedge \frac{\partial}{\partial x^m} \\
= \sum_{i=1}^{n} \frac{\partial}{\partial x^1} \wedge \cdots \wedge \tilde{\nabla} \tau \wedge \cdots \wedge \frac{\partial}{\partial x^m} \\
+ \sum_{i=1}^{n} \frac{\partial}{\partial x^1} \wedge \cdots \wedge \tilde{\nabla} \nu \wedge \cdots \wedge \frac{\partial}{\partial x^m} \\
= \{\text{trace}(X \rightarrow \tilde{\nabla}_W \tau) + \text{trace}(X \rightarrow \tilde{\nabla}_W \nu)\} \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^m} \\
= (\text{div} \tau + \text{trace}A_\nu) \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^m}.
\]

于是，立即有

\[
\frac{d}{dt} dV_{i} |_{t=0} = \frac{d}{dt} \sqrt{\det(g_{ij}(t))} |_{t=0} dx^1 \wedge \cdots dx^m \\
= \frac{1}{\sqrt{\det(g_{ij}(0))}} \langle \tilde{\nabla}_W \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^m}, \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^m} \rangle |_{t=0} \\
= \frac{1}{\sqrt{\det(g_{ij}(0))}} (\text{div} \tau + \text{trace}A_\nu) \langle \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^m}, \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^m} \rangle |_{t=0}
\]

311
\[
= (\text{div} \tau + \text{trace}A_i) \sqrt{\det(g_v(0))} dx^1 \wedge \cdots \wedge dx^n
\]

两边对 \(t \) 积分，得到

\[
\frac{dV}{dt} \bigg|_{t=0} = \frac{d}{dt} \int_M dV_t = \int_M \frac{d}{dt} dV_t,
\]

\[
= \int_M \text{div}W^T dV_0 - m \int_M \langle H, W \rangle dV_0
\]

\[
= \int_{\partial M} \langle W^T, n \rangle dV_{\partial M} - m \int_M \langle H, W \rangle dV_0
\]

\[
= -m \int_M \langle H, W \rangle dV_0.
\]

注 1 如果 \(W \) 沿 \(f_0(M) \) 为法向量场，则

\[
\omega(X) = \langle W, X \rangle = 0,
\]

\[\Omega = 0.\]

所以，在 \(\partial M \) 上不必加条件 \(f_i|_{\partial M} = f|_{\partial M} \)，体积第 1 变分公式仍成立。

定义 2 设 \(\frac{dV}{dt}(0) = 0 \) 时，称 \(M \) 关于 \(f_i(M) \) 是稳态的，精确地说

\(C^\infty \) 浸入 \(f: M \rightarrow \tilde{M} \) 是稳态的。设 \(M \) 是 \(\tilde{M} \) 的任意 \(C^\infty \) 浸入子流形，如果对 \(M \) 中每一个具有 \(C^\infty \) 边界 \(\partial D \) 的定向紧致子区域 \(D \)，关于每一个正常变分是稳态的，称 \(M \) 或 \(f \) 为 \(m \) 维临界子流形。

定理 2 设 \(M, \tilde{M} \) 如定义 1 所述，则 \(C^\infty \) 浸入 \(f: M \rightarrow \tilde{M} \) 是临界子流形 \(\Leftrightarrow \) 平均曲率向量场 \(H \equiv 0 \)，即 \(M \) 是极小子流形。

证明 (\(\Leftarrow \)) 设 \(H \equiv 0 \)，由体积第 1 变分公式得

\[
\frac{dV}{dt}(0) = -m \int_M \langle H, W \rangle dV_0
\]

\[
= -m \int_M \langle 0, W \rangle dV_0 = 0.
\]

(\(\Rightarrow \)) 设 \(C^\infty \) 浸入 \(f: M \rightarrow \tilde{M} \) 是 \(m \) 维临界子流形。对 \(\forall \; x_0 \in M \)，取 \(M \) 上的 \(C^\infty \) 函数 \(\varphi \)，使 \(\varphi \) 在 \(x_0 \) 的一个开邻域中为 1，而在 \(\partial M \) 上为 312
0. 令

\[F(t, x) = \exp_{f(x)} t \varphi H, \]

因为 \(M \) 紧致，所以存在 \(\varepsilon > 0 \)，当 \(0 \leq t < \varepsilon \) 时，\(F \) 为 \(F(0, x) = \exp_{f(x)} 0 = f(x) \) 的正常变分，\(W = \left. \frac{dF}{dt} \right|_{t=0} = \varphi H, \]

\[0 = \frac{dV}{dt}(0) = -m \int_M \langle H, \varphi H \rangle dV_0 \leq 0, \]

\[\langle H, \varphi H \rangle = \varphi \langle H, H \rangle > 0, H(x_0) = 0. \]

由于 \(x_0 \in M \) 是任取的，故 \(H |_M \equiv 0 \)，再由 \(H \) 连续知 \(H |_M \equiv 0. \)

注 2 定理 2 中，如果 \(\dim M = 1 \)，则 \(\gamma \) 以弧长为参数，取 \(e_1 = y' \)

\[\nabla_{\gamma'} \gamma' = \sum_{A=1}^{\tilde{m}} \langle \nabla_{e_1} e_1, e_A \rangle e_A \]

\[= \sum_{a=2}^{\tilde{m}} \langle \nabla_{e_1} e_1, e_a \rangle e_a \]

\[= \sum_{a=2}^{\tilde{m}} \langle \nabla_{e_1} e_1 + h(e_1, e_1), e_a \rangle e_a \]

\[= \sum_{a=2}^{\tilde{m}} \langle h(e_1, e_1), e_a \rangle e_a = H \]

和

\[H \equiv 0 \iff \nabla_{\gamma'} \gamma' = 0, \quad \text{即} \gamma \text{为测地线}. \]

如果 \(C^\infty \) 浸入 \(f: M \to \tilde{M} \) 为临界子流形，即 \(\frac{dV}{dt}(0) = 0 \) 或 \(H \equiv 0. \)

仅此，还不能断定 \(V(0) \leq V(t) \)，更不能确定 \(\text{Volume}(f) \leq \text{Volume}(\tilde{f}) \)，其中 \(\tilde{f}: M \to \tilde{M} \) 是任一 \(C^\infty \) 浸入，且 \(\tilde{f} |_{\partial M} = f |_{\partial M} \)，\(\text{Volume} \) 是体积，为解决这一问题，类似于长度的变分，象测地线那样，只要 \(\frac{dV}{dt}(0) = 0 \)，就可进一步计算 \(\frac{d^2V}{dt^2}(0) \)。考虑到定理 1 中 \(W \) 的切分量 \(W^T \) 对体积第 1 变分公式没有贡献，应该将计算简化，于是从现在起，假定 \(\{f_t(M)\} \) 是从法向正常变分得到，即 \(W \perp f(M) \)。 为了叙述第 2 变分，需引进几个新概念。
设 $C^\infty(TM)$ 是 M 上 C^∞ 切向量场的集合, $C^\infty(TM^\perp)$ 为 M 上 C^∞ 法向量场的集合, 对任意 $X \in C^\infty(TM)$, 第 1 章 1.6 定义的

$$\nabla^\perp_X : C^\infty(TM^\perp) \rightarrow C^\infty(TM^\perp)$$

$$v \mapsto (\nabla^\perp_X v)^\perp,$$

满足:

1. $\nabla^\perp_{fX + sv} v = f\nabla^\perp_X v + g\nabla^\perp_X v$;
2. $\nabla^\perp_X f v = (Xf) v + f\nabla^\perp_X v$;
3. $X(v, \mu) = \langle \nabla^\perp_X v, \mu \rangle + \langle v, \nabla^\perp_X \mu \rangle$.

其中 $f, g \in C^\infty(M, \mathbb{R}), X, Y \in C^\infty(TM), v, \mu \in C^\infty(TM^\perp)$. 算子 ∇^\perp 就是 M 的法联络. 利用该联络定义 Laplace 算子

$$\overline{\Delta} : C^\infty(TM^\perp) \rightarrow C^\infty(TM^\perp)$$

$$v \mapsto \overline{\Delta} v$$

$$\overline{\Delta} v(p) = \sum_{i=1}^{m} \text{tr} \nabla^\perp e_i v$$

$$= \sum_{i=1}^{m} \left[\nabla^\perp_{e_i} \nabla^\perp_{e_i} v - \nabla^\perp_{\nabla^\perp_{e_i} e_i} v \right](p).$$

这里 e_1, \cdots, e_m 为局部 C^∞ 点式规范正交基向量场. 不难证明 $\overline{\Delta} v$ 与 $\{e_1, \cdots, e_m\}$ 的选择无关 (留作习题), $\overline{\Delta} v$ 仍是 C^∞ 法向量场.

现在考虑 $C^\infty_{0c}(TM^\perp) = \{v \in C^\infty(TM^\perp) | v|_{\partial M} = 0\}$, 且在 M 中有紧致支集, 它是 $C^\infty(TM^\perp)$ 的子向量空间. 在其上, 我们定义双线性函数:

$$(\cdot, \cdot) : C^\infty_{0c}(TM^\perp) \times C^\infty_{0c}(TM^\perp) \rightarrow \mathbb{R}$$

$$(v, \mu) \mapsto (v, \mu),$$

$$(v, \mu) = \int_M \langle v, \mu \rangle dV.$$

容易验证, 这确是一个内积.

引理 3 Laplace 算子 $\overline{\Delta}$ 限制到 $C^\infty_{0c}(TM^\perp)$ 上是半负定的自共
旋算子. 如果 $\partial M \neq \emptyset$, M 连通, 则 $\hat{\Lambda}$ 是负定的.

证明 设 $v, \mu \in C^\infty_c(TM^\perp), p \in M$, 选取 p 的开邻域 U 及 $e_1, \cdots, e_m \in C^\infty(TU)$ 为点式规范正交基向量场, 且 $\langle \nabla_{e_i} e_j, \rangle = 0, i, j = 1, \cdots, m$. 而 $\omega_1, \cdots, \omega_m$ 为其对偶基. 则在 p 点有

$$
\begin{align*}
\sum_{i=1}^m c_i \langle \nabla_{e_i}^\perp v, \mu \rangle \\
= \sum_{i=1}^m (\langle \nabla_{e_i} \nabla_{e_i}^\perp v, \mu \rangle + \langle \nabla_{e_i} v, \nabla_{e_i}^\perp \mu \rangle) \\
= \langle \sum_{i=1}^m \nabla_{e_i} \nabla_{e_i}^\perp v - \nabla_{e_i} v, \mu \rangle + \langle \nabla v, \perp v \mu \rangle \\
= \langle \hat{\Lambda} v, \mu \rangle + \langle \nabla_{\perp v}, \nabla_{\perp v} \mu \rangle.
\end{align*}
$$

显然, 在 M 上由

$$
\theta(X) = \langle \nabla_{\perp X} v, \mu \rangle
$$

定义了一个 C^∞ 1 形式 θ, 它可表示为

$$
\theta = \sum_{i=1}^m \theta(e_i) \omega^i = \sum_{i=1}^m \langle \nabla_{e_i}^\perp v, \mu \rangle \omega^i.
$$

因此有

$$
[e_i, e_j] = \nabla_{e_i} e_j - \nabla_{e_j} e_i = 0,
$$

$$
\begin{align*}
d \omega^i(e_j, e_k) &= e_j \omega^i(e_k) - e_k \omega^i(e_j) - \omega^i([e_j, e_k]) \\
&= 0,
\end{align*}
$$

$$
\begin{align*}
\ast \theta &= \sum_{i=1}^m \langle \nabla_{e_i}^\perp v, \mu \rangle \ast \omega^i \\
&= \sum_{i=1}^m (-1)^{i-1} \langle \nabla_{e_i}^\perp v, \mu \rangle \omega^1 \wedge \cdots \wedge \hat{\omega}^i \wedge \cdots \wedge \omega^m, \\
d \ast \theta &= \sum_{i=1}^m (-1)^{i-1} d \langle \nabla_{e_i}^\perp v, \mu \rangle \omega^1 \wedge \cdots \wedge \hat{\omega}^i \wedge \cdots \wedge \omega^m \\
&= \sum_{i=1}^m (-1)^{i-1} \sum_{j=1}^m d \langle \nabla_{e_i}^\perp v, \mu \rangle (e_j) \omega^j \wedge \omega^i \wedge \cdots \wedge \omega^m \\
&\wedge \omega^j \wedge \cdots \wedge \omega^m
\end{align*}
$$

315
\[
\begin{align*}
&= \sum_{i=1}^{n} (-1)^{i-1} \sum_{j=1}^{n} e_{i} \langle \nabla_{e_{i}} v, \omega^{j} \rangle \omega^{j} \wedge \omega^{1} \wedge \cdots \\
&\quad \wedge \omega^{j} \wedge \cdots \wedge \omega^{m} \\
&= \sum_{i=1}^{n} e_{i} \langle \nabla_{e_{i}} v, \mu \rangle \omega^{1} \wedge \cdots \wedge \omega^{m} \\
&= [\langle \Delta v, \mu \rangle + \langle \nabla_{v} v, \nabla_{v} \mu \rangle] dV,
\end{align*}
\]

这里 \(dV\) 为 \(M\) 上的体积元。两边积分并应用 Stokes 定理，再注意到
\(\mu |_{\partial M} = 0, \star \theta |_{\partial M} = 0\)，就有
\[
0 = \int_{\partial M} \star \theta = \int_{M} d \star \theta \\
= \int_{M} (\langle \Delta v, \mu \rangle + \langle \nabla_{v} v, \nabla_{v} \mu \rangle) dV \\
= \int_{M} (\langle \Delta v, \mu \rangle dV + \int_{M} \langle \nabla_{v} v, \nabla_{v} \mu \rangle dV, \\
(\nabla_{v} v, \mu) = \int_{M} (\langle \nabla v, \mu \rangle) dV \\
= -\int_{M} \langle \nabla_{v} v, \nabla_{v} \mu \rangle dV \\
= -\langle \nabla_{v} v, \nabla_{v} \mu \rangle = -\langle \nabla_{v} \mu, \nabla_{v} v \rangle \\
= (\nabla_{v} v, \nabla_{v} \mu).
\]

由此看出，\(\nabla\) 是自共轭算子。又因为
\[
(\nabla_{v} v, v) = -\langle \nabla_{v} v, \nabla_{v} v \rangle = -\int_{M} \langle \nabla_{v} v, \nabla_{v} v \rangle \leq 0,
\]
所以 \(\nabla\) 是半负定的。

如果 \(\partial M \neq \emptyset\)，
\[
(\nabla_{v} v, v) = -\int_{M} \langle \nabla_{v} v, \nabla_{v} v \rangle dV = 0,
\]
则 \(\langle \nabla_{v} v, \nabla_{v} v \rangle \equiv 0\)，即 \(\nabla_{v} v \equiv 0\)。

现证 \(v \equiv 0\)。事实上，对 \(\forall p \in M\)，在 \(p\) 的坐标开邻域 \(U\) 中，利用
\(M\) 的 \(C^{\infty}\) 坐标基向量场 \(\{\frac{\partial}{\partial x^{1}}, \cdots, \frac{\partial}{\partial x^{m}}\}\)，构造 \(TM^{\perp}\) 中的 \(C^{\infty}\) 基向量场

316
\[Y_1, \cdots, Y_{n-m}, \text{在此基下, } v \in C^\infty(TM^\perp) \text{ 可表示为 } v = \sum_{a=1}^{n-m} \lambda_a Y_a, \text{ 于是对任意 } X \in T_p M, \text{ 在 } M \text{ 中过 } p \text{ 过切于 } X \text{ 的 } C^\infty \text{ 曲线 } \gamma(t), \text{ 则有 } v(t) = \sum_{a=1}^{n-m} \lambda_a(t) Y_a(t) \text{ 以及} \]

\[0 = \nabla^\perp_X v = (\nabla_X v)^\perp = (\nabla_X \sum_{a=1}^{n-m} \lambda_a Y_a)^\perp = \sum_{a=1}^{n-m} (X \lambda_a) Y_a + \sum_{a=1}^{n-m} \lambda_a \nabla^\perp_X Y_a = \sum_{a=1}^{n-m} (X \lambda_a) Y_a + \sum_{\beta=1}^{n-m} \sum_{a=1}^{n-m} \mu_{ab} \lambda_\beta Y_\beta = \sum_{a=1}^{n-m} [(X \lambda_a) + \sum_{a=1}^{n-m} \mu_{ba} \lambda_\beta] Y_a = \sum_{a=1}^{n-m} \frac{d \lambda_a}{dt} + \sum_{\beta=1}^{n-m} \mu_{ba}(t) \lambda_\beta = X \lambda_a + \sum_{\beta=1}^{n-m} \mu_{ba} \lambda_\beta = 0. \]

\(\iff \)

如果 \(v(p) = 0 \), 根据一阶线性齐次常微分方程组解的存在唯一性定理, 有沿 \(\gamma(t), v \equiv 0 \). 由于 \(M \) 连通, \(v \big|_{\partial M} = 0 \), 故 \(v \big|_{M} \equiv 0 \), 所以 \(\lambda \) 是负定的.

另一个新的概念是 \(C^\infty(TM^\perp) \) 上的 Ricci 张量

\[\overline{\text{Ric}}: \quad T_p M^\perp \rightarrow T_p M^\perp \]

\[v \rightarrow \overline{\text{Ric}}(v), \]

\[\overline{\text{Ric}}(v) = \sum_{i=1}^{m} (\overline{\mathcal{R}}(e_i, v)e_i)^\perp, \text{ 其中 } e_1, \cdots, e_3 \text{ 为 } T_p M \text{ 的规范正交基, 易见定义与规范正交基的选取无关. 如果 } v \in C^\infty(TM^\perp), \text{ 显然 } \overline{\text{Ric}}(v) \text{ 也是 } C^\infty \text{ 的. 此外, 对任意 } v, \mu \in C^\infty(TM^\perp), \text{ 由第 1 章 1.4 定理 2 中的 Riemann 曲率张量的性质, 有} \]

\[\langle \overline{\text{Ric}}(v), \mu \rangle = \langle \left(\sum_{i=1}^{n} \overline{\mathcal{R}}(e_i, v)e_i \right)^\perp, \mu \rangle \]
\[
\begin{align*}
&= \sum_{i=1}^{m} \langle \hat{R}(e_i, v)e_i, \mu \rangle \\
&= \sum_{i=1}^{m} \langle \hat{R}(e_i, \mu)e_i, v \rangle \\
&= \langle \overline{\text{Ric}}(\mu), v \rangle = \langle v, \overline{\text{Ric}}(\mu) \rangle, \\
&= \int_{M} \langle \overline{\text{Ric}}(v), \mu \rangle dV \\
&= \int_{M} \langle v, \overline{\text{Ric}}(\mu) \rangle dV \\
&= \langle v, \overline{\text{Ric}}(\mu) \rangle,
\end{align*}
\]
即 \(\overline{\text{Ric}} \) 是 \(C^\infty(TM^\perp) \) 上的一个自共轭算子.

要引进的第三个新概念是算子 \(h_\gamma: \quad T_\gamma M^\perp \rightarrow T_{\gamma}M^\perp \)，其中 \(h_\gamma: \quad T_\gamma M \otimes T_\gamma M \rightarrow T_{\gamma}M^\perp \)，

\[
h_\gamma(X \otimes Y) = h_\gamma(X, Y) = (\overline{\nabla}_X Y)^\perp = \overline{\nabla}_X Y = (\overline{\nabla}_X Y)^T
\]

这就是第 1 章 1.6 中的 Gauss 公式，\(h_\gamma \) 是对称双线性法向量值函数；由 \(h_\gamma \) 自然诱导

\[
h_\gamma^T: \quad T_\gamma M^\perp \rightarrow T_\gamma M \otimes T_\gamma M
\]

\[
\langle h_\gamma^T(v), X \otimes Y \rangle = \langle v, h_\gamma(X, Y) \rangle = \langle v, h,(X \otimes Y) \rangle
\]

或

\[
h_\gamma^T(v) = \sum_{i,j=1}^{m} \langle h_\gamma^T(v), e_i \otimes e_j \rangle e_i \otimes e_j
\]

这里 \(\{e_1, \cdots, e_m\} \) 为 \(T_\gamma M \) 的规范正交基. 注意对任意 \(v, \mu \in T_\gamma M^\perp \)，有

\[
\langle h_\gamma \circ h_\gamma^T(v), \mu \rangle = \langle h_\gamma^T(v), h_\gamma^T(\mu) \rangle
\]

\[
= \sum_{i,j=1}^{m} \langle h_\gamma^T(v), e_i \otimes e_j \rangle \langle e_i \otimes e_j, h_\gamma^T(\mu) \rangle
\]
即 $h \circ h^T$ 是自共轭的线性变换。

在第 2 章 2.1 已经知道，对 $\forall \ v \in C^\infty(TM), p \in M$ 处的算子 $A_v : T_p M \to T_p M$ 定义为 $A_v(X) = -(\nabla x v|_T)^T = -\nabla y v|_T$，则 A_v 的算子范数（模）

$$
\| A_v \| = \sum_{i,j=1}^{m} \langle A_v(e_i), e_j \rangle^2 = \sum_{i,j=1}^{m} \langle -\nabla_x v, e_j \rangle^2
$$

$$
= \sum_{i,j=1}^{m} \langle v, \nabla_x e_j \rangle^2 = \sum_{i,j=1}^{m} \langle h(e_i), e_j \rangle^2
$$

$$
= \sum_{i,j=1}^{m} \langle h^T(v), e_i \otimes e_j \rangle^2
$$

$$
= \langle h^T(v), \sum_{i,j=1}^{m} \langle h^T(v), e_i \otimes e_j \rangle e_i \otimes e_j \rangle
$$

$$
= \langle h^T(v), h^T(v) \rangle = \langle h \circ h^T(v), v \rangle
$$

其中 $\{e_1, \cdots, e_n\}$ 为 $T_p M$ 中的规范正交基。

引理 4 令 $\sum_{i=1}^{m} \| \nabla x W \|^2 = \| \nabla W \|^2 + \langle h \circ h^T(W), W \rangle$，其中 $\{e_i\}$ 为 U 中 C^∞ 规范正交基。

证明

$$
\sum_{i=1}^{m} \| \nabla x W \|^2 = \sum_{i=1}^{m} \| (\nabla x W)^\perp \|^2 + \sum_{i=1}^{m} \| (\nabla x W)^T \|^2
$$

$$
= \sum_{i=1}^{m} \| \nabla e_i \|^2 + \sum_{i=1}^{m} \langle \nabla e_i, W \rangle^2
$$

$$
= \| \nabla W \|^2 + \sum_{i,j=1}^{m} \langle W, \nabla e_j \rangle^2
$$

$$
= \| \nabla W \|^2 + \sum_{i,j=1}^{m} \langle h(e_i, e_j), W \rangle^2
$$

319
\[= \| \nabla^\perp W \|^2 + \langle h \ast h^T(W), W \rangle.\]

引理 5
设 \(M \) 上的 \(C^\infty \) 1 形式 \(\omega \) 由 \(\omega(X) = \langle \tilde{\nabla} x W, W \rangle, \forall X \in C^\infty(M) \) 定义，则 \(\omega|_{\partial M} = 0 \), \(\ast \omega|_{\partial M} = 0 \) 且在 \(p \) 点处

\[\delta \omega = - \sum_{i=1}^m e_i \langle \tilde{\nabla}_i W, W \rangle.\]

证明
由 \(W|_{\partial M} = 0 \) 知 \(\omega|_{\partial M} = 0 \), \(\ast \omega|_{\partial M} = 0 \). 因为

\[\omega = \sum_{i=1}^m \omega(e_i) \omega^i,\]

\[= \sum_{i=1}^m \langle \tilde{\nabla}_i W, W \rangle \omega^i,\]

\[\ast \omega = \sum_{i=1}^m (-1)^{i-1} \langle \tilde{\nabla}_i W, W \rangle \omega^1 \wedge \cdots \wedge \hat{\omega}^i \wedge \cdots \omega^m,\]

\[d \ast \omega = \sum_{i=1}^m e_i \langle \tilde{\nabla}_i W, W \rangle \wedge \cdots \wedge \omega^m,\]

\[\ast d \ast \omega = \sum_{i=1}^m e_i \langle \tilde{\nabla}_i W, W \rangle,\]

所以

\[\delta \omega = (-1)^{\ast(i+1)+1} \ast d \ast \omega\]

\[= - \sum_{i=1}^m e_i \langle \tilde{\nabla}_i W, W \rangle.\]

引理 6
设 \(f: M \to \tilde{M} \) 为 \(C^\infty \) 浸入，\(\dim M = m \), \(H \) 为 \(M \) 在 \(\tilde{M} \) 中的平均曲率向量，\(\{e_1, \cdots, e_m\} \) 是 \(M \) 的开集 \(U \) 中的 \(C^\infty \) 基向量场，

\[H = \frac{1}{m} \sum_{i,j=1}^m g^{ij}(\tilde{\nabla}_i e_j) = \frac{1}{m} \sum_{i,j=1}^m g^{ij} \tilde{\nabla}_i e_j,\]

证明
设 \(\{e_1, \cdots, e_m\} \) 为 \(U \) 中的 \(C^\infty \) 规范正交基向量场，

\[\delta_{ij} = \langle e_i, e_j \rangle = \left(\sum_{i=1}^m a_i e_i, \sum_{i=1}^m a_i^* e_i \right)\]

\[= \sum_{i,j=1}^m a_i^* a_j g_{ij},\]

\[I = AGA^T, \quad A^T A = G^{-1} = (g^{ij}),\]

320
其中 G^{-1} 为 $G = (g_{ij})$ 的逆矩阵，$g^{ij} = \sum_{l=1}^{m} a_{l} a_{l}^i$.

$$H = \frac{1}{m} \sum_{i=1}^{m} \left(\nabla_{e_i} e_i \right)^{\perp}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(\nabla_{\sum_{l=1}^{m} a_{l} e_l} e_i \right)^{\perp}$$

$$= \frac{1}{m} \sum_{i=1}^{m} a_{i} \left[(e_i a_{l}) e_j + a_{l} \nabla_{e_i} e_j \right]^{\perp}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{l=1}^{m} a_{l} a_{l}^i \right) \left(\nabla_{e_i} e_j \right)^{\perp}$$

$$= \frac{1}{m} \sum_{i=1}^{m} g^{ij} \left(\nabla_{e_j} e_i \right)^{\perp}.$$

下面就来建立体积的第 2 变分公式。

定理 3（体积第 2 变分公式） 设 $F: (-\varepsilon, \varepsilon) \times M \to M$ 为 C^∞ 极小浸入 $f: M \to \tilde{M}$ 的 C^∞ 正常变分，由 F 诱导的变分向量场 $W = F_{*} \left(\frac{\partial}{\partial t} \right) \bigg|_{t=0}$ 是具有紧致支集的法向量场，即 $W \in C^\infty(TM^{\perp})$。则

$$\left. \frac{d^2 \mathcal{V}}{dt^2} \right|_{t=0} = \int_{M} \left\langle - \Delta W + \text{Ric}(W) - h \cdot h^{T}(W), W \right\rangle d\mathcal{V}_{0}.$$

证明 因为 $f: M \to \tilde{M}$ 是 C^∞ 极小的，所以它的平均曲率向量场 $H \equiv 0$。定理 1 给出了 $\frac{d \mathcal{V}}{dt}(0)$ 的公式，但事实上有

$$\frac{d \mathcal{V}}{dt} = V'(t) = -m \int_{M} \langle H_{i}, W_{i} \rangle dV_{i},$$

其中 H_{i} 是 $f_{i}(M) \subset \tilde{M}$ 的平均曲率向量场($f_{i}(x) = F(t,x))$, $W_{i} = f_{i*} \left(\frac{\partial}{\partial t} \right)$ 为 $f_{i}(M)$ 上的变分向量场, dV_{i} 为 $f_{i}(M)$ 上的诱导度量 $f_{i*} \tilde{g}$ 的体积元。

固定点 $p \in M$, 选 M 或 $f(M)$ 中的 C^∞ 局部规范正交基向量场 $\{e_{1}, \cdots, e_{m}\}$, 使得 $(\nabla_{e_{i}} e_{j}) = 0, i,j = 1, \cdots, m$. 令 $g_{ij}(t) = f_{i*} \tilde{g}(e_{i}, e_{j}) = \tilde{g}(f_{i*}(e_{i}), f_{i*}(e_{j})) = \langle f_{i*}(e_{i}), f_{i*}(e_{j}) \rangle$. 为简单起见, 由 e_{i} 表示
\[f_{i*}(e_i)(\text{但必须牢记} e_i \text{ 的含义}) \text{ 根据引理 6，有 } \]
\[H_i = \frac{1}{m} \sum_{i,j=1}^{m} g_{ij}(t) (\nabla_i e_j) \perp. \]

在 \[\sum_{i,j=1}^{m} g^{ij}(t) g_{ij}(t) = \delta_i \text{ 两边对} t \text{ 求导，并从} g_{ij}(0) = \delta_{ij}, g^{ij}(0) = \delta^{ij} \text{ 得到} \]

\[\frac{dg^{ij}}{dt}(0) + \frac{dg_{ij}}{dt}(0) \]
\[= \sum_{i,j=1}^{m} \left[\frac{dg^{ij}}{dt}(0) \delta_{ij} + \delta_{ij} \frac{dg_{ij}}{dt}(0) \right] \]
\[= \sum_{i,j=1}^{m} \left[\frac{dg^{ij}(t)}{dt} g_{ij}(t) + g^{ij}(t) \frac{dg_{ij}}{dt}(t) \right]_{t=0} \]
\[= 0. \]

因而
\[\frac{dg^{ij}}{dt}(0) = - \frac{dg_{ij}}{dt}(0) = - W \langle e_i, e_j \rangle \]
\[= - \left(\langle \nabla_w e_i, e_j \rangle + \langle e_i, \nabla_w e_j \rangle \right) \]
\[= - \left(\langle \nabla_i W, e_j \rangle + \langle e_i, \nabla_j W \rangle \right) \]
\[= \langle W, \nabla_i e_j \rangle + \langle \nabla_i e_i, W \rangle \]
\[= \langle h(e_i, e_j), W \rangle + \langle h(e_i, e_i), W \rangle \]
\[= 2 \langle h(e_i, e_i), W \rangle. \quad (\ast) \]

此外，由 \[[W, e_i] = 0, \nabla W e_i = \nabla_i W + [W, e_i] = \nabla_i W \text{ 可得} \]
\[\langle \nabla W \nabla_i e_i, W \rangle \]
\[= \langle R(W, e_i) e_i, W \rangle + \langle \nabla_i \nabla W e_i, W \rangle + \langle \nabla [W, e_i] e_i, W \rangle \]
\[= - \langle R(e_i, W) e_i, W \rangle + \langle \nabla_i \nabla W e_i, W \rangle \]
\[= - \langle R(e_i, W) e_i, W \rangle + e_i \langle \nabla_i W, W \rangle - \| \nabla_i W \|^2 \quad (\ast \ast) \]
从(*)、(**)、引理3、4、5以及

$$m\langle H_t, W_t \rangle = \sum_{i,j=1}^{m} g^{ij}(t) \langle (\nabla_{e_i} e_j)^t, W_t \rangle$$

$$= \sum_{i,j=1}^{m} g^{ij}(t) \langle \nabla_{e_i} e_j, W_t \rangle.$$

就得到

$$m\langle \nabla_w H, W \rangle = m\langle \nabla_w H, W \rangle + m\langle H, \nabla_w W \rangle$$

$$= m \frac{d}{dt} \langle H_t, W_t \rangle \bigg|_{t=0}$$

$$= \sum_{i,j=1}^{m} \frac{d}{dt} (0) \langle \nabla_{e_i} e_j, W \rangle + \sum_{i=1}^{m} \langle \nabla_w \nabla_{e_i} e_i, W \rangle$$

$$= 2 \sum_{i,j=1}^{m} \langle h(e_i, e_j), W \rangle \langle \nabla_{e_i} e_j, W \rangle + \sum_{i=1}^{m} \langle \nabla_w \nabla_{e_i} e_i, W \rangle$$

$$= 2 \sum_{i,j=1}^{m} \langle h(e_i, e_j), W \rangle^2 + \sum_{i=1}^{m} \langle \nabla_w \nabla_{e_i} e_i, W \rangle$$

$$= 2 \langle h \circ h^T(W), W \rangle - \sum_{i=1}^{m} \langle \tilde{R}(e_i, W)e_i, W \rangle$$

$$+ \sum_{i=1}^{m} \langle \nabla_{e_i} W, W \rangle - \sum_{i=1}^{m} \| \nabla_{e_i} W \|_2^2$$

$$= 2 \langle h \circ h^T(W), W \rangle - \langle \tilde{Ric}(W), W \rangle - \delta \omega$$

$$- \| \nabla^1 W \|_2^2 - \langle h \circ h^T(W), W \rangle$$

$$= \langle - \tilde{Ric}(W) + h \circ h^T(W), W \rangle - \delta \omega - \| \nabla^1 W \|_2^2$$

$$= \langle \Lambda W - \tilde{Ric}(W) + h \circ h^T(W), W \rangle - \ast d \star \theta - \delta \omega,$$

其中

$$\int_M (\ast d \star \theta + \delta \omega) dV_0 = \int_M \ast d \star \theta dV_0 - \int_M \ast d \ast \omega dV_0$$

$$= \int_M d \star \theta - \int_M d \ast \omega$$

$$= \int_M (\theta - \omega) = 0.$$
由此和 $H_0 = H = 0$ 可推出

$$
\left. \frac{d^2 V}{dt^2} \right|_{t=0} = - m \int_M \frac{d}{dt} \langle H_t, W_t \rangle |_{t=0} dV_0
$$

$$
= - m \int_M \frac{d}{dt} \langle H_t, W_t \rangle |_{t=0} dV_0
$$

$$
+ \int_M \langle H_t, W_t \rangle |_{t=0} \frac{d}{dt} \langle dV_t \rangle |_{t=0}
$$

$$
= - m \int_M \frac{d}{dt} \langle H_t, W_t \rangle |_{t=0} dV_0
$$

$$
= - m \int_M \langle \nabla^*_w H, W \rangle dV_0
$$

$$
= \int_M \langle -\bar{\Lambda}W + \overline{\text{Ric}}(W) - h * h^*(W), W \rangle dV_0.
$$

考虑定理 3 的一个重要特殊情形，即 M 为 \bar{M} 的极小超曲面。

定理 4 设 $f: M \to \bar{M}$ 为 C^∞ 沉入，且 $m = \dim M, \tilde{m} = \dim \bar{M}, m = \tilde{m} - 1$，且 M 是可定向的，N 为 M 在 \bar{M} 中的 C^∞ 单位法向量场，则

$$
\left. \frac{d^2 V}{dt^2} \right|_{t=0} = \int_M \left\{ - u \Delta u - u^2 \overline{\text{Ric}}(N, N) - u^2 \parallel A_N \parallel^2 \right\} dV_0,
$$

其中 $W = F_* \left(\frac{\partial}{\partial t} \right) |_{t=0} = uN(u; M \to \mathbb{R}$ 为 C^∞ 函数，$u |_{\partial M} = 0$) 为变分方向量场 (具有紧致支集的 C^∞ 法向量场)，$\overline{\text{Ric}}$ 为 \bar{M} 上的 Ricci 张量，A_N 为 M 关于 N 的形状算子，A 为 M 对函数的通常的 Laplace 算子。

证明 因为

$$
\langle \nabla^*_X N, N \rangle = \langle \overline{\nabla}_X N, N \rangle = \frac{1}{2} X \langle N, N \rangle
$$

$$
= \frac{1}{2} X \cdot 1 = 0,
$$

324
所以，$\nabla_X^\perp N = 0$，$\overline{\Delta} N = \sum_{i=1}^{m} \left[\nabla_{\epsilon_i}^\perp \nabla_{\epsilon_i}^\perp - \nabla_{\overline{\nabla}_{\epsilon_i}^\perp} \right] N = 0$，

$$\overline{\Delta} W = \sum_{i=1}^{m} \left[\nabla_{\epsilon_i}^\perp \nabla_{\epsilon_i}^\perp W - \nabla_{\overline{\nabla}_{\epsilon_i}^\perp} W \right]$$

$$= \sum_{i=1}^{m} \left[\nabla_{\epsilon_i}^\perp \nabla_{\epsilon_i}^\perp (uN) - \nabla_{\overline{\nabla}_{\epsilon_i}^\perp} (uN) \right]$$

$$= \sum_{i=1}^{m} \left(\nabla_{\epsilon_i}^\perp (e, u \cdot N + u \overline{\nabla}_{\epsilon_i}^\perp N) - (\nabla_{\epsilon_i}^\perp u \cdot N + u \overline{\nabla}_{\epsilon_i}^\perp N) \right)$$

$$= \sum_{i=1}^{m} \left((e, e, u \cdot N + e, u \overline{\nabla}_{\epsilon_i}^\perp N) + (e, u \cdot \nabla_{\epsilon_i}^\perp N + u \overline{\nabla}_{\epsilon_i}^\perp \nabla_{\epsilon_i}^\perp N) \right)$$

$$= \sum_{i=1}^{m} \left(\nabla_{\epsilon_i}^\perp \nabla_{\epsilon_i}^\perp - \nabla_{\overline{\nabla}_{\epsilon_i}^\perp} u \cdot N = (Au) N, \right.$$

$$\langle \overline{\text{Ric}}(W), W \rangle = \langle \overline{\text{Ric}}(uN), uN \rangle$$

$$= \langle \langle \sum_{i=1}^{m} \overline{\text{R}}(e_i, uN) e_i \rangle, uN \rangle$$

$$= \langle \sum_{i=1}^{m} \overline{\text{R}}(e_i, uN) e_i, uN \rangle$$

$$= u^2 \sum_{i=1}^{m} \langle \overline{\text{R}}(e_i, N) e_i, N \rangle$$

$$= -u^2 \overline{\text{Ric}}(N, N).$$

由引理 4 前面的公式可得

$$\langle h \ast h^T(W), W \rangle = \langle h \ast h^T(uN), uN \rangle$$

$$= u^2 \langle h \ast h^T(N), N \rangle = u^2 \| A_N \|^2$$

$$= u^2 \sum_{i=1}^{m} \langle A_N(e_i), e_i \rangle^2 = u^2 \sum_{i=1}^{m} \langle K e_i, e_i \rangle^2$$

325
这里 K_1, \cdots, K_n 为 $M \subset \bar{M}$ 的主曲率。于是，再应用定理 3 得到

$$
\frac{d^2 V}{dt^2} \bigg|_{t=0} = \int_M \langle - \Lambda W + \tilde{\text{Ric}}(W) - h \circ h^T(W), W \rangle dV_0
$$

$$
= \int_M \left[\langle - (Au)N, uN \rangle - u^2 \tilde{\text{Ric}}(N, N) - u^2 \sum_{i=1}^n K_i^2 \right] dV_0
$$

$$
= \int_M \left[- u \Delta u - u^2 \tilde{\text{Ric}}(N, N) - u^2 \left\| A_N \right\|^2 \right] dV_0.
$$

定义 3 设 M 是 C^∞ 浸入在 \bar{M} 中的子流形。如果对 M 中每一个具有 C^∞ 边界 ∂D 的可定向紧致子域 D，它的每一个法正常变分具有非负的体积第 2 变分，则称 M 是**稳定的**。它等价于对 M 中所有具有紧致支集的法正常变分有非负的体积第 2 变分。设 M 是 \bar{M} 的一个 C^∞ 极小子流形，在 M 中任意给定一个具有 C^∞ 边界 ∂D 的紧致子域 D，如果 \bar{M} 中的任何其他的 C^∞ 子流形 \bar{D}，只要它的边界 $\partial \bar{D} = \partial D$，总有体积

$$
V(D) \leq V(\bar{D}),
$$

则称该极小子流形 M 是**整体极小化的**或**最小的**。显然，整体极小化必是稳定的。

推论 1 设 M, \bar{M} 是可定向的，M 是 C^∞ 极小浸入在 \bar{M} 中的超曲面，N 为 M 上的 C^∞ 单位法向量场，则 M 是稳定的 \iff 对任何具有紧致支集的 C^∞ 函数 $u: M \to \mathbb{R}$，

$$
\int_M u^2 \left[\tilde{\text{Ric}}(N, N) + \left\| A_N \right\|^2 \right] dV_0 \leq \int_M \left\| du \right\|^2 dV_0.
$$

证明 根据定理 4，M 是稳定的 \iff 对任何具有紧致支集的 C^∞ 函数 $u: M \to \mathbb{R}$，有

$$
0 \leq \frac{d^2 V}{dt^2}(0) = \int_M \left\{ - u \Delta u - u^2 \tilde{\text{Ric}}(N, N)
- u^2 \left\| A_N \right\|^2 \right\} dV_0,$$

\iff

326
\[
\int_M u^2 \left[\widetilde{\text{Ric}}(N, N) + \| A_N \|^2 \right] \, dv_0 \\
\leq - \int_M (uA^2) \, dv_0 = - \int_M u (\delta \delta + \delta d) u \, dv_0 \\
= - \int_M u \delta d u \, dv_0 = \int_M u \delta u \, dv_0 - \int_M u \delta d u \, dv_0 \\
= \int_M d(u \star d u) + u \star d \star d u \\
= \int_M d u \wedge \star d u = \int_M \langle d u, d u \rangle \, dv_0 \\
= \int_M \| d u \| ^2 \, dv_0.
\]

下面给出推论 1 的一个应用，它是由 R. Schoen 和 S. T. Yau (参阅 [SY]) 得到的。

定理 5 (Schoen-Yau) 设 \(\widetilde{M} \) 是具有正数量曲率的紧致定向 3 维流形，则 \(\widetilde{M} \) 中不存在亏格为正的、紧致的 2 维 \(C^0 \) 稳定极小浸入定向子流形 \(M \).

证明 (反证) 假设满足定理条件的流形 \(M \) 存在。因为 \(M \) 紧致，在推论 1 中，选 \(u \equiv 1 \)，所以

\[
\int_M \left[\widetilde{\text{Ric}}(N, N) + \| A_N \|^2 \right] \, dv_0 \leq \int_M \| d1 \|^2 \, dv_0 = 0.
\]

另一方面，可以证明

\[
\widetilde{\text{Ric}}(N, N) + \| A_N \|^2 = \frac{1}{2} \sigma - K_G + \frac{1}{2} \| A_N \|^2 \quad (\ast)
\]

其中 \(\sigma \) 是 \(\widetilde{M} \) 的数量曲率在 \(M \) 上的限制，\(K_G \) 是 \(M \) 上诱导度量的 Gauss 曲率。显然 \(\int_M \| A_N \|^2 \, dv_0 \geq 0 \)。由于 \(\sigma > 0 \)，故 \(\int_M \sigma d V_0 > 0 \)。设 \(\chi(M) \) 为 \(M \) 的 Euler 示性数，而 \(n_M = \frac{2 - \chi(M)}{2} \) 为 \(M \) 的亏格，由题设 \(n_M \geq 1 \)。于是，根据著名的 Gauss-Bonnet 公式，有

\[
\int_M K_G d V_0 = 2 \pi \chi(M) = 4 \pi (1 - n_M) \leq 0.
\]

由此推出
\[0 \geq \int_M [\hat{\text{Ric}}(N, N) + \| A_N \|^2]dV_0 \]
\[= \frac{1}{2} \int_M \sigma dV_0 - \int_M K_\sigma dV_0 + \frac{1}{2} \int_M \| A_N \|^2 dV_0 \]
\[> 0. \]

矛盾。

最后，只须证明公式（*）。令 \(p \in M, \{ e_1, e_2 \} \) 为 \(M \) 的一组规范正交基，使得自共线性变换 \(A_N : M \rightarrow M \) 在该基下是对角化的，即
\[
\begin{align*}
A_N(e_1) &= \lambda e_1, \\
A_N(e_2) &= \mu e_2.
\end{align*}
\]

因为 \(M \) 极小 \(\iff 0 = H = \frac{1}{2} \text{trace} A_N = \frac{1}{2} (\lambda + \mu) \Rightarrow \mu = -\lambda, \| A_N \|^2 = 2\lambda^2 \) 记 \(e_3 = N \)，于是 \(\{ e_1, e_2, e_3 \} \) 为 \(\hat{M} \) 的一组规范正交基。令 \(\hat{M} \) 中由 \(e_i, e_j \) 张成的平面 \(e_i \wedge e_j \) 的 Riemann 载曲率为 \(\vec{k}_\gamma(e_i \wedge e_j) \) ，

\(i \neq j \)，于是由数量曲率的定义得到

\[\sigma(p) = \sum_{i=1}^{3} \tilde{\text{Ric}}(e_i, e_i) \]
\[= \langle \tilde{R}(e_2, e_1)e_1, e_2 \rangle + \langle \tilde{R}(N, e_1)e_1, N \rangle + \langle \tilde{R}(e_2, e_2)e_2, e_1 \rangle \]
\[+ \langle \tilde{R}(N, e_2)e_2, N \rangle + \tilde{\text{Ric}}(N, N) \]
\[= 2[\tilde{\text{Ric}}(N, N) + \tilde{k}_\gamma(e_1 \wedge e_2)](p), \]
\[\tilde{k}_\gamma(e_1 \wedge e_2) = K_\gamma(e_1 \wedge e_2) - \text{det} A_N = K_\sigma(p) + \lambda^2 \]
\[\tilde{\text{Ric}}(N, N) + \| A_N \|^2 = \left(\frac{1}{2} \sigma - \tilde{k}_\gamma(e_1 \wedge e_2) \right) + 2\lambda^2 \]
\[= \frac{1}{2} \sigma - (K_\sigma + \lambda^2) + 2\lambda^2 = \frac{1}{2} \sigma - K_\sigma + \lambda^2 \]
\[= \frac{1}{2} \sigma - K_\sigma + \frac{1}{2} \| A_N \|^2. \]

注 2 体积第 2 变分公式中的被积项可引出方程

\[\Delta W - \text{Ric}(W) + h \cdot h^\top(W) = 0, \quad \forall \ W \in C^\infty(T^\perp M), \]

328
它类似于测地线的 Jacobi 方程。我们可进一步定义极小子流形的
指标形式，并得到类似的 Morse 指数定理（参阅 [Sma]）。

考虑定义在 $C^\infty(TM^\perp)$ 上的微分算子
$$\mathcal{L} = -\alpha + \text{Ric} - h \cdot h^\tau,$$
由于 $\alpha, \text{Ric}, h \cdot h^\tau$ 都是自共轭算子，故
$$(\mathcal{L}(v), \mu) = ((-\alpha + \text{Ric} - h \cdot h^\tau)(v), \mu)$$
$$= (v, (-\alpha + \text{Ric} - h \cdot h^\tau)(\mu))$$
$$= (v, \mathcal{L}(\mu)).$$
即 \mathcal{L} 也是自共轭算子，如果 M 是 C^∞ 紧致（带边）流形，则 \mathcal{L} 是强
椭圆的。这种算子的一般理论指出，\mathcal{L} 可以在 $C^\infty(TM^\perp)$ 上以特征值
$$\lambda_0 < \lambda_2 < \lambda_3 < \cdots \rightarrow +\infty$$
而对角化，其中每个特征空间 V_i 是有限维的。

如果考虑作为固定边界的 C^∞ 浸入 $M \to \tilde{M}$ 的空间上的体积函数
的临界点的极小浸入，再二次型
$$I(W) = \int_M \langle \mathcal{L}(W), W \rangle = (\mathcal{L}(W), W)$$
是体积函数在这点的 2 阶导数的 Hesse 泛函形式。类似于标准的
临界点理论有
$$\text{index}(M) = \dim(\bigoplus_{\lambda < 0} V_i),$$
$$\text{nullity}(M) = \dim V_0.$$

注意，如果 M 关于它的边界是最小体积的流形，则 $\text{index}(M) = 0$。

根据定义，$C^\infty(TM^\perp)$ 中的 C^∞ 法向量场 $W \in V_0 \Leftrightarrow \mathcal{L}(W) \equiv 0$。
任何这样的场也称为 Jacobi 场。

涉及到 Jacobi 场的基本定理之一是下面的定理 6。设 $f: M \to \tilde{M}$ 为带边的 C^∞ 紧致极小子流形，
$$C: M \times [0, +\infty) \to M \quad (\text{或} \quad C_t: M \to M)$$
为收缩映射。特别地，假设 $C_t(t \geq 0)$ 是 M 到 M 中的 C^∞ 嵌入族，使
得

(1) \(C_0 = \text{Id}_\mathcal{H}; \)

(2) \(C_t(M) \subset C_s(M), \quad t > s; \)

(3) \(\lim_{t \to +\infty} \text{vol}(C_t(M)) = 0. \)

记 \(M_t = C_t(M) \), 且考虑 \(C^\infty \) 极小浸入 \(f|_{M_t} \). 我们有

定理 6 （Morse，Simons，Smale）

\[
\text{index}(M) = \sum_{i > 0} \text{mullity}(M_i).
\]

（参阅[Simons]1.2）

注 3 因为 \(\lambda_1 < \lambda_2 < \lambda_3 < \cdots \to +\infty \). 从而 \(\text{index}(M) = \dim(\oplus_{i < 0} V_i) \) 是有限数. 再由定理 6 知 \(\sum_{i > 0} \text{mullity}(M_i) = \text{index}(M) \) 中除有限个 \(t \) 外, \(\text{mullity}(M_i) = 0 \). 这个结果的重要性是利用解方程

\(\mathcal{L}(W) = 0, M \) 的指数 \(\text{index}(M) \) 也是可计算的.

3.5 Morse 指数定理

向量空间 \(V \) 上给定的对称双线性形式 \(\mathcal{A} \) 的指数 \(i(\mathcal{A}) \), 增广指数 \(a(\mathcal{A}) \) 和零化数 \(n(\mathcal{A}) \) 分别定义为

\[
i(\mathcal{A}) = \max \{ \dim U | U \text{ 为 } V \text{ 的线性子空间, 且 } \mathcal{A} \text{ 在 } U \text{ 上是负定的} \},
\]

\[
a(\mathcal{A}) = \max \{ \dim U | U \text{ 为 } V \text{ 的线性子空间, 且 } \mathcal{A} \text{ 在 } U \text{ 上是半负定的} \},
\]

\[
n(\mathcal{A}) = \dim \{ v \in V | \mathcal{A}(v, u) = 0, \forall u \in V \}.
\]

引理 1 设 \(\mathcal{A} \) 为 \(r \) 维向量空间 \(V \) 上的对称双线性形式, 则

\[
a(\mathcal{A}) = i(\mathcal{A}) + n(\mathcal{A})
\]

证明 设 \(v_1, \cdots, v_r \) 为 \(V \) 的基, 使得对称双线性形式在此基下的矩阵为

330
\[
\begin{bmatrix}
 d_1 \\
 \vdots \\
 d_r
\end{bmatrix},
\]
即 \(\mathcal{A}(v_i, v_j) = d_i \delta_{ij} \).

令

\[
V_+ = \text{Span}\{v_i | d_i > 0\},
\]
\[
V_- = \text{Span}\{v_i | d_i < 0\},
\]
\[
V_0 = \text{Span}\{v_i | d_i = 0\},
\]
其中“Span”表示由 “(•) …” 张成的 \(V \) 的线性子空间，则

\[
V = V_+ \oplus V_- \oplus V_0.
\]

设 \(X = \sum_{i=1}^{r} \lambda_i v_i \) ，则对任意 \(Y \in V \) ，

\[
\mathcal{A}(X, Y) = 0 \iff \mathcal{A}(X, v_j)
\]

\[
= \mathcal{A}(\sum_{i=1}^{r} \lambda_i v_i, v_j)
\]

\[
= \sum_{i=1}^{r} \lambda_i d_i \delta_{ij}
\]

\[
= \lambda_j d_j, \quad \forall \quad j = 1, \cdots, r
\]

\(\iff X \in V_0 \) ，

即 \(V_0 = \{ X \in V | \mathcal{A}(X, Y) = 0, \forall Y \in V \} \) ，因此，\(n(\mathcal{A}) = \text{dim} V_0 \) 。

设 \(U \) 为 \(\mathcal{A} \) 在其上半负定的 \(V \) 任何线性子空间，令 \(\pi: U \to V_- \oplus V_0 \) 为投影，如果 \(X \in U \) ，\(\pi(X) = 0 \) ，则 \(X \in V_+ \cap U \) 。因为 \(\mathcal{A} \) 在 \(V_+ \) 上是正定的，而在 \(U \) 上是半负定的，故

\[
0 \leq \mathcal{A}(X, X) \leq 0, \quad \mathcal{A}(X, X) = 0,
\]

\(X = 0 \) ，

即 \(\pi \) 为单射。因此，\(\text{dim} U \leq \text{dim} (V_- \oplus V_0) \) ；另一方面，显然 \(\mathcal{A} \) 在 \(V_- \oplus V_0 \) 上是半负定的，所以 \(a(\mathcal{A}) = \max\{\text{dim} U | U \} \) 为 \(V \) 的线性子空间，且 \(\mathcal{A} \) 在 \(U \) 上是半负定的 \(\} = \text{dim} (V_- \oplus V_0) \) 。

类似地，如果 \(U \) 为在 \(\mathcal{A} \) 其上负定的 \(V \) 的任何线性子空间，则
投影 \(\pi : U \rightarrow V_\cdot \) 为单射，因此 \(\dim U \leq \dim V_\cdot \) 和 \(i(\mathcal{A}) = \max \{\dim U \mid U \text{ 为 } V \text{ 的线性子空间，且 } \mathcal{A} \text{ 在 } U \text{ 上是负定的} \} = \dim V_\cdot \) (因为 \(\mathcal{A} \) 在 \(V_\cdot \) 上是负定的)。

综合上述得到

\[
\alpha(\mathcal{A}) = \dim (V_\cdot \oplus V_0) \\
= \dim V_\cdot + \dim V_0 \\
= i(\mathcal{A}) + n(\mathcal{A}).
\]

设 \(\gamma(t), a \leq t \leq b \) 为维 \(C^\infty \) Riemann 流形 \((M, g)\) 中连接 \(\gamma(a) \) 到 \(z = \gamma(b) \) 的测地线，\(\gamma(c), a < c < b \) 为 \(\gamma(a) \) 沿 \(\gamma \) 的共轭点，其重数 \(\mu = \dim \{X \mid X(a) = X_\gamma(a) = 0, X(b) = X_\gamma(b) = 0, X \text{ 为沿 } \gamma \text{ 的 Jacobi 场}\} \)。由 3.3 定理 12 知，\(\mu = m - 1 = \dim M - 1 \)。记

\[
T_\gamma \Omega = \{X \mid X \text{ 为沿 } \gamma \text{ 的分段 } C^\infty \text{ 向量场，}\ X \perp \gamma, \\
X(a) = X_\gamma(a) = 0, X(b) = X_\gamma(b) = 0\}.
\]

它是切空间 \(T_\gamma \Omega \) 的线性子空间；\(I \mid T_\gamma \Omega \) 为指标形式 \(I \) 在 \(T_\gamma \Omega \) 上的限制，则关于 \(i(I \mid T_\gamma \Omega), a(I \mid T_\gamma \Omega) \) 和 \(n(I \mid T_\gamma \Omega) \) 有下面的 Morse 指数定理。

定理 1 (Morse 指数定理) 设 \(\gamma(t), a \leq t \leq b \) 为维 \(C^\infty \) Riemann 流形 \((M, g)\) 的测地线，只存在有限多个异于 \(\gamma(b) \) 的点 \(\gamma(t_1), \cdots, \gamma(t_k) (a < t_1 < t_2 < \cdots < t_k < b) \) 沿 \(\gamma \) 共轭于 \(\gamma(a) \)，而 \(\mu_i \) 为 \(\gamma(t_i) \) 的重数，\(i = 1, \cdots, k \)。则

1. \(i(I \mid T_\gamma \Omega) = \mu_1 + \cdots + \mu_k \);
2. \(a(I \mid T_\gamma \Omega) = i(I \mid T_\gamma \Omega) + n(I \mid T_\gamma \Omega) \);
3. 当 \(\gamma(b) \) 沿 \(\gamma \) 不共轭于 \(\gamma(a) \) 时，\(n(I \mid T_\gamma \Omega) = 0 \);
4. 当 \(\gamma(b) \) 沿 \(\gamma \) 共轭于 \(\gamma(a) \) 的重数为 \(\mu \) 时，\(n(I \mid T_\gamma \Omega) = \mu \).

证明 (3) 和 (4)，由 3.3 定理 8，

\[
I(X, Y) = I(X ^\perp, Y ^\perp), \quad \forall \ X, Y \in T_\gamma \Omega.
\]

再由 3.3 定理 9，有

\[
n(I \mid T_\gamma \Omega) = \dim \{X \in T_\gamma \Omega \mid I(X, Y) = 0, \forall \ Y \in T_\gamma \Omega\}
\]

332
= \dim \{ X \in T^\perp \Omega \mid I(X, Y) = 0, \forall Y \in T_\Omega \}
= \dim \{ X \in T^\perp \Omega \mid X \text{ 为 Jacobi 场} \}.

这就证明了 (3) 和 (4).

(2) 选择 \(\delta > 0 \) 使得 \(\gamma \) 的每个点的 \(\delta \) 邻域是凸正规邻域. 设 \(a = a_0 < a_1 < \cdots < a_h = b \) 为区间 \([a, b]\) 的一个分割，使得 \(a_{i+1} - a_i < \delta, i = 0, 1, \cdots, h - 1 \). 令

\[
J = J(a_0, \cdots, a_h)
= \{ X \in T^\perp \Omega \mid \text{对所有 } i, X \text{ 沿 } \gamma|_{[a_i, a_{i+1}]} \text{ 为 Jacobi 场} \}.
\]

设 \(N(a_i) \) 为 \(\gamma(a_i) \) 处的法空间，而

\[
\alpha : J \to N = N(a_1) \oplus \cdots \oplus N(a_h),
\alpha(X) = (X(a_1), \cdots, X(a_h))
\]

为线性映射，其中 \(X(a_i) \) 为 \(X \) 在 \(\gamma(a_i) \) 的值，下面的引理 2 指出：\(\alpha \) 为同构。从而 \(J \) 为 \(T^\perp \Omega \) 的一个有限维线性子空间。进一步，还有

\[
i(I|_{T^\perp \gamma}) = i(I|_\gamma),
a(I|_{T^\perp \gamma}) = a(I|_\gamma),
n(I|_{T^\perp \gamma}) = n(I|_\gamma).
\]

根据引理 1 得到

\[
a(I|_{T^\perp \gamma}) = a(I|_\gamma) = i(I|_\gamma) + n(I|_\gamma).
\]

(1) 因为 \(\dim J = (h - 1)(m - 1) < + \infty \)，引理 2 蕴涵着 \(a(I|_{T^\perp \gamma}) \) 和 \(i(I|_{T^\perp \gamma}) \) 是有限的（当然 \(n(I|_{T^\perp \gamma}) \) 也是有限的，这从结论 (3) 和 (4) 也可看出）。再从引理 3 立即推出只存在有限多个异于 \(\gamma(b) \) 的点 \(\gamma(t_1), \cdots, \gamma(t_k) (a < t_1 < \cdots < t_k = b) \) 沿 \(\gamma \) 与 \(\gamma(a) \) 相交于 \(\gamma(b) \)。

不失一般性，通过平移参数 \(t \)，可以假定 \(a = 0 \)，即 \(\gamma(t), 0 \leq t \leq b \)。对每个 \(u \in (0, 1] \)，我们定义

\[
N_u = N(ua_1) + \cdots + N(ua_{h-1}),
\]

其中 \(N(ua_i) \) 为 \(\gamma \) 在 \(\gamma(ua_i) \) 的法空间。对于测地线 \(\gamma(t), 0 \leq t \leq ub \)，我们也定义

\[
J_u = J(ua_0, \cdots, ua_h) \quad \text{和线性同构}
\]

333
\[\alpha_u \colon J_u \rightarrow N_u, \]
\[\alpha_u(X) = (X(ua_1), \cdots, X(ua_{b-1})) , \]
其中 \(X(ua) \) 表示 \(X \) 在 \(y(ua) \) 的值. 设 \(p_u \colon N \rightarrow N_u \) 为沿 \(y \) 由 \(N(a) \) 到 \(N(ua) \) 的平行移动诱导的线性同构, 而 \(l_u \) 为测地线 \(y(t), 0 \leq t \leq ub \) 的指数形式. 我们在 \(J = J(a_0, \cdots, a_b) \) 上定义单参数 \(B_u, 0 < u \leq 1 \):

\[B_u(X, Y) = I_u(\alpha^{-1} \circ p_u \circ \alpha(X), \alpha^{-1} \circ p_u \circ \alpha(Y)), \]
\[\forall X, Y \in J(a_0, \cdots, a_b). \]

设 \(y(t_1), \cdots, y(t_k), 0 < t_1 < t_2 < \cdots < t_i < b \) 为 \(y(0) \) 沿 \(y \) 的重数为 \(\mu_1, \cdots, \mu_k \) 的共轭点, (\(y(b) \) 是否为共轭点不加考虑). 取 \(J = J(a_0, \cdots, a_b) \) 的一个基 \(B_u, 0 < u \leq 1 \) 视作矩阵的单参数族. 对每个 \(u \), 设 \(\beta_1(u) \leq \cdots \leq \beta_n(u) \) 为 \(B_u \) 的特征值, 它们连续依赖于 \(u \). 应用引理 2(3). 本定理 (4) 到测地线 \(y|_{[0, ub]} \) 和它的指数形式 \(I_u \) 就得到

\[n(B_u) = n(I_u|_{J_u}) = \begin{cases}
\mu_i, & ub = t_i, \\
0, & ub \neq t_i, i = 1, \cdots, k.
\end{cases} \]

设

\[\beta_1(1) \leq \cdots \leq \beta_i(1) < 0 < \beta_{i+1}(1) \leq \cdots \leq \beta_n(1). \]

由下面的引理 4(2), 对充分小的 \(u, \beta_1(u), \cdots, \beta_n(u) \) 都是正的, 根据连续函数的零值定理, 对每个 \(j \in \{1, \cdots, l\} \), 必有某个 \(u \in (0, 1) \), 使得 \(\beta_j(u) = 0 \). 因此,

\[l \leq \sum_{u \in (0, 1)} n(B_u) = \mu_1 + \cdots + \mu_k. \]

另一方面, \(B_1 = I|_{J_1}, l = i(I|_{J_1}) \), 所以有下面的不等式

\[i(I|_{\tau_{\gamma}}) = i(I|_{J_1}) = l \leq \mu_1 + \cdots + \mu_k. \]

结合下面引理 3 的结论:

\[a(I|_{\tau_{\gamma}}) \geq \mu_1 + \cdots + \mu_k + \mu_{k+1} \]

(其中, 当 \(y(b) \) 不为 \(y(0) \) 的共轭点时 \(\mu_{k+1} = 0 \); 否则 \(\mu_{k+1} \) 为共轭点 \(y(b) \) 的重数), 以及本定理的 (3)、(4)、(2) 的结论:

\[n(I|_{\tau_{\gamma}}) = \mu_{k+1}, \]

334
\[i(I|\mathcal{T}' \Omega) = a(I|\mathcal{T}' \Omega) - n(I|\mathcal{T}' \Omega) \geq (\mu_1 + \cdots + \mu_i + \mu_{i+1}) - \mu_{i+1} = \mu_1 + \cdots + \mu_i \]

就得到

\[i(I|\mathcal{T}' \Omega) = \mu_1 + \cdots + \mu_i. \]

(1) 得证.

引理 2 (1) \(\alpha: J \rightarrow N \) 为线性等构；

(2) 定义收缩 \(\rho: T_{\gamma}^{\perp} \Omega \rightarrow J, \rho(X) = \alpha^{-1}(X(a_1), \cdots, X(a_{k-1})) \), \(X \in T_{\gamma}^{\perp} \Omega \), 则

\[I(X, X) \geq I(\rho(X), \rho(X)), X \in T_{\gamma}^{\perp} \Omega, \]

且等号成立 \(\Leftrightarrow X \in J \);

(3) \(i(I|\mathcal{T}' \Omega) = i(I|\mathcal{J}), a(I|\mathcal{T}' \Omega) = a(I|\mathcal{J}), n(I|\mathcal{T}' \Omega) = n(I|\mathcal{J}). \)

证明 (1) 设 \(X \in J, \alpha(X) = 0 \), 则 \(X(a_0) = X(a_1) = \cdots = X(a_{k-1}) = X(a_k) = 0 \). 由 \(\delta > 0 \) 的选择, \(\gamma(a_{i+1})\) 沿 \(\gamma \) 不共轭于 \(\gamma(a_i) \).

再由 \(X \) 沿 \(\gamma|_{[a_i, a_{i+1}]} \) 为 Jacobi 场, 故沿 \(\gamma, X \equiv 0 \). 这证明 \(\alpha \) 为单射.

因为 \(\gamma(a_{i+1}) \) 和 \(\gamma(a_i) \) 沿 \(\gamma \) 不共轭, 所以映射 \(X \mapsto (X, X_{i+1}) = (X(a_i), X(a_{i+1})) \) 为沿 \(\gamma|_{[a_i, a_{i+1}]} \) 的 Jacobi 场的空间到 \(T_{\gamma(a_i)} M \oplus T_{\gamma(a_{i+1})} M \) 的线性等构（它们都是 \(2m \)-维的向量空间）, 于是, 它是一个满射. 已给 \((X_1, \cdots, X_{k-1}) \in N \), 则存在向量场 \(X \), 使得 \(X|_{[a_i, a_{i+1}]} \) 为 Jacobi 场, 且 \(X(a_i) = X_i, X(a_{i+1}) = X_{i+1} \), 而 \(X(a_0) = 0, X(a_k) = 0 \).

由 3.2 定理 4 知, \(X \in T_{\gamma}^{\perp} \Omega \), 从而 \(X \in J \).

(2) 由 3.2 引理 2,

\[I(X, X) = I_\gamma(X) = \sum_{i=0}^{k-1} I_{\gamma}^{2i+1}(X) \geq \sum_{i=0}^{k-1} I_{\gamma}^{2i+1}(\rho X) = I_\gamma(\rho X) = I(\rho X, \rho X), \rho X = \rho(X), \]

且等号成立 \(\Leftrightarrow X \) 沿 \(\gamma|_{[a_i, a_{i+1}]} \) 为 Jacobi 场.

(3) 因为 \(J \) 为 \(T_{\gamma}^{\perp} \Omega \) 的线性子空间, 故由双线性形式的指数、推广指数和零化数的定义, 立即有
\[
i(I|_J) \leq i(I|_{\mathcal{T}^\perp_Y}), \quad a(I|_J) \leq a(I|_{\mathcal{T}^\perp_Y}),
\]

\[
n(I|_J) = \dim \{ X \in J | I(X,Y) = 0, \forall Y \in J \}
\geq \dim \{ X \in J | I(X,Y) = 0, \forall Y \in \mathcal{T}^\perp_Y \}
\]

3.3定理9
\[
\dim \{ X \in \mathcal{T}^\perp_Y | I(X,Y) = 0, \forall Y \in \mathcal{T}^\perp_Y \}
= n(I|_{\mathcal{T}^\perp_Y}).
\]

为证明(3)的三个等式, 我们还需证明相反的不等式.

如果 U 为 \mathcal{T}^\perp_Y 的线性子空间，I 在其上是半负定的，由(2)，在 ρU 上 I 也是半负定的。此外，$\rho: U \to \rho U$ 为线性同构。事实上，如果 $x \in U$ 和 $\rho(x) = 0$，则从(2)得到

\[
0 \geq I(X,X) \geq I(\rho x, \rho x) = I(0,0) = 0.
\]

因此，$I(X,X) = I(\rho x, \rho x)$。再有(2)，$X = \rho x = 0$。这就证明了 ρ 为单射，即 $\rho: U \to \rho U$ 为线性同构。所以

\[
a(I|_{\mathcal{T}^\perp_Y})
= \max \{ U | U \text{ 为 } \mathcal{T}^\perp_Y \text{ 的线性子空间，} I \text{ 在 } U \text{ 上半负定} \}
= \max \{ \rho U | \rho U \text{ 为 } J \text{ 的线性子空间，} I \text{ 在 } \rho U \text{ 上半负定} \}
\leq \max \{ W | W \text{ 为 } J \text{ 的线性子空间，} I \text{ 在 } W \text{ 上半负定} \}
= a(I|_J).
\]

如果 U 为 \mathcal{T}^\perp_Y 的线性子空间，I 在其上是负定的，由(2)，I 在 ρU 上是半负定的。根据上面结论，$\rho: U \to \rho U$ 为线性同构。若 $I(\rho x, \rho x) = 0$，则

\[
0 \geq I(X,X) \geq I(\rho x, \rho x) = 0,
\]

$I(X,X) = 0, X = 0$ (因 I 在 U 上负定),

$\rho x = 0$ (因 ρ 为同构).

类似地， $i(I|_{\mathcal{T}^\perp_Y}) \leq i(I|_J)$。

最后，设 $X \in J$ 使得 $I(X,Y) = 0, \forall Y \in J$。因为对所有的 i, X 沿 $\mathcal{Y}|_{[x, x+]}$ 为 Jacobi 场，所以 3.3 定理 8 中的公式简化为

\[
I(X,Y) = \sum_{j=1}^{k-1} \langle X^{\perp-} - X^{\perp+}, Y \rangle |a_j.
\]
解析式：

$$= \sum_{j=1}^{k-1} \langle X^j - X^j', Y \rangle |_{x^j}.$$

应用证明 3.3 定理 8 的相同的方法，我们看到，在 $y(a_i)$ 处，$X^j = X^j', \forall i$。于是，X 沿 y 为 Jacobi 模，且

$$n(I|_{T^j_+\Omega}) = \dim \{ X \in T^j_+\Omega | I(X,Y) = 0, \forall Y \in T^j_+\Omega \}$$

$$\geq \dim \{ X \in T^j_+\Omega 为沿 $y|_{[a,b]}$ 的 $\text{Jacobi 模} | I(X,Y) = 0, \forall Y \in T^j_+\Omega \}$$

3.3定理9

$$\dim \{ X \in T^j_+\Omega 为沿 $y|_{[a,b]}$ 的 $\text{Jacobi 模} | I(X,Y) = 0, \forall Y \in J \}$$

$$= \dim \{ X \in J | I(X,Y) = 0, \forall Y \in J \}$$

$$= n(I|_J)$$

（注意：由定理 9，上面的不等号实际上是等号）。

引理 3 对于 $y(a)$ 沿 y 的重数分别为 μ_1, \cdots, μ_k 的共轭点

$$y(t_1), \cdots, y(t_k) (a < t_1 < \cdots < t_k \leq b),$$

有

$$a(I_{T^j_+\Omega}) \geq \mu_1 + \cdots + \mu_k.$$

证明 对于 i，设 X_1, \cdots, X_n 为在 $t = a$ 和 $t = b$ 为零的沿 $y|_{[a, t_i]}$ 的 Jacobi 模空间的一个基，并且零延拓到 $[a, b]$。

如果 $\sum_{i=1}^{k} X^i = 0$，其中 $X^i = \sum_{j=1}^{n} c_j X_j^i$，因为 X^1, \cdots, X^{t-1} 在 $y|_{[a, t_i]}$ 为零，故 X^i 为 $y|_{[a, t_i]}$ 为零，从而 $X^i(t_{k-1}) = X^i(t_k) = 0$，及切向量 $X^u(t_{k-1}) = X^u(t_k) = 0$，根据 3.2 引理 1，沿 $y|_{[a, t_i]}$ 为 Jacobi 模的 $X^i \equiv 0$，从而 $c^i_1 = \cdots = c^i_n = 0$。继续下去得到

$$c^i_1 = \cdots = c^i_n = 0, \quad i = k - 1, \cdots, 1.$$

这证明了 $X_1, \cdots, X_n^i, i = 1, \cdots, k$ 是线性无关的。

设 $X = \sum_{i=1}^{k} X^i$，其中 $X_i = \sum_{j=1}^{n} c_j X_j^i$，如上述，则

$$I(X, X) = I(\sum_{i=1}^{k} X^i, \sum_{j=1}^{k} X^j)$$

337
\[
= \sum_{i, j=1}^{i} I(X^i, X^i).
\]

对每个偶对 \((i, j), j \leq i\), 令 \(I\) 为沿测地线 \(\gamma|_{[s, t]}\) 的指数形式。因为 \(X'\) 和 \(X'\) 都在 \([s, t]\) 上为零。且 \(X'\) 沿 \(\gamma|_{[s, t]}\) 为 Jacobi 场。再根据 3.3 定理 9, 得到

\[
I(X^i, X^j) = I_i(X^i, X^j) = 0.
\]

所以 \(I(X, X) = 0\)。这就证明了 \(I\) 在 \(\text{Span}\{X_1^i, \cdots, X_n^i\} | i = 1, \cdots, k\}\) 上是半负定的。于是, 显然地,

\[
a(I|_{T_{X}^{|\cdot|}}) \geq \mu_1 + \cdots + \mu_s.
\]

引理 4
(1) \(B_i(X, Y) = I(X, Y), \forall X, Y \in J(a_0, \cdots, a_s)\);
(2) 对充分小的正数 \(u, B_s\) 是正定的；
(3) 零化数 \(n(B_s)\) 等于 \(\gamma(uB)\) 作为 \(\gamma(0)\) 沿 \(\gamma\) 的共轭点的重数。
特别地, 如果 \(\gamma(uB)\) 沿 \(\gamma\) 不共轭于 \(\gamma(0)\), 则 \(n(B_s) = 0\);
(4) 族 \(B_s\) 关于 \(u\) 是连续的。

证明
(1) 因 \(\alpha_i = \alpha, I_i = I\) 和 \(p_i: N \rightarrow N = N\) 是恒等映射, 所以 \(B_i = I\).
(2) 因为 \(\alpha_i^{-1} \circ p_i \circ \alpha: J(a_0, \cdots, a_s) \rightarrow J_s\) 为同构, 所以只须证明对充分小的 \(u, I_s\) 在 \(J_s\) 上是正定的。根据 3.2 引理 2, 如果 \(u\) 充分小使得沿 \(\gamma|_{[0, u]}\) 无 \(\gamma(0)\) 的共轭点, 则 \(I_s\) 在 \(J_s\) 上是正定的。
(3) 从 \(\alpha_i^{-1} \circ p_i \circ \alpha: J(a_0, \cdots, a_s) \rightarrow J\) 为同构就有 \(n(B_s) = n(I_s|_{J_s})\). 应用引理 2(3) 和定理 1(3)、(4) 到 \(I_s\), 我们看到 \(n(I_s|_{J_s})\) 等于 \(\gamma(uB)\) 作为 \(\gamma(0)\) 沿 \(\gamma\) 的共轭点的重数。
(4) 固定 \(X, Y \in J(a_0, \cdots, a_s)\), 我们将证明 \(B_s(X, Y)\) 关于 \(u \in (0, 1]\) 是连续的。令

\[
X_s = \alpha_i^{-1} \circ p_i \circ \alpha(X), \quad Y_s = \alpha_i^{-1} \circ p_i \circ \alpha(Y).
\]

因为 \(X_s\) 沿测地线 \(\gamma|_{[s, s_t+1]}\), \(i = 0, \cdots, h - 1\) 为 Jacobi 场, 所以 3.3 定理 8 中的公式成为:

\[
B_s(X, Y) = A \sum_{i=1}^{h-1} \langle X_s^i - X_s^{i+1}, Y_s \rangle |_{i=s_t},
\]

338
其中 A 为 $\gamma|_{[0,\infty)}$ 上切向量长度的倒数，显然，只须证明对每个 i，映射 $u \mapsto (x_s, x_s^+, x_s^-)|_{t=x_i}$ 关于 u 是连续的。由

$$(X_s(a_0), \ldots, X_s(a_{k-1})) = p_s \circ \alpha(X),$$

$X_s(a_0) = X_s(0) = 0, X_s(a_i) = X_s(b) = 0$

定义向量 $X_s(a_0), \ldots, X_s(a_k)。$ 对每个固定的整数 $0 \leq i \leq k - 1，$

$X_s(a_i)$ 和 $X_s(a_{i+1})$ 分别为点 $\gamma(u_a, i)$ 和 $\gamma(u_{a_i+1})$ 处的向量。明显地，$X_s(a_i)$ 和 $X_s(a_{i+1})$ 都 C^∞ 依赖于 u。由于 $\gamma|_{[a_i, a_{i+1}]}$ 包含在一个凸正规坐标邻域中。因为指数映射是 C^∞ 的，所以存在充分小的 $\varepsilon > 0$，当 $|s| < \varepsilon, |u - u_s| < \varepsilon$，exp $X_s(a_i)$ 和 exp $X_s(a_{i+1})$ 两者也都含在此凸正规坐标邻域中。

固定 s 和 u，令 $\gamma_s^u = \gamma_s^u(t), a_i \leq t \leq a_{i+1}$ 为此凸正规坐标邻域中从点 $\exp X_s(a_i)$ 到点 $\exp X_s(a_{i+1})$ 的测地线。测地线 γ_s^u，$- \varepsilon < s < \varepsilon(\text{固定 } u)$ 族是 γ_s^u 的一个变分，它诱导了沿 $\gamma|_{[u_a, u_{a_i+1}]}$ 的唯一的 Jacobi 场，此 Jacobi 场在 $\gamma|_{[u_a, u_{a_i+1}]}$ 的端点 $\gamma(u_a, i)$ 和 $\gamma(u_{a_i+1})$ 处的值分别与 $X_s(a_i)$ 和 $X_s(a_{i+1})$ 相同。换言之，诱导 Jacobi 场与 X_s 到 $\gamma|_{[u_a, u_{a_i+1}]}$ 的限制是一致的（注意，沿 $\gamma|_{[u_a, u_{a_i+1}]}$，$\gamma(u_a, i)$ 与 $\gamma(u_{a_i+1})$ 不是共轭的）。所以，$(X_s, x_s^+)|_{t=x_i}$ 和 $(x_s, x_s^-)|_{t=x_i}$ 关于 u 的连续性可从 $\gamma_s^u(t)$ 关于 (u, s, t) 的 C^∞ 性得到。但是，后者明显地从下面的三个事实（参阅 3.1 引理 2）得到：

(i) $\exp X_s(a_i)$ 和 $\exp X_s(a_{i+1})$ 关于 (u, s) 是 C^∞ 的；
(ii) $\exp X_s(a_i)$ 和 $\exp X_s(a_{i+1})$ 在同一个凸正规坐标邻域中；
(iii) $Z \in T,M$ 到 $(x, \exp Z)$ 的映射是 $O_s \in T_p M$ 在 TM 中的一个开邻域到 (p, p) 在 $M \times M$ 中的一个开邻域上的 C^∞ 同胚。

第三章习题

1. 非紧 C^∞ 完备 Riemann 流形 M 上每一点 $p \in M$ 处至少有一条从 p 点出发的以单位向量 $v \in T_p M$ 为起始切向量的射线，即从 p 点出发的伸向 $+\infty$ 的正规测地线 $\exp tv$，且其上任两点之间的长
度等于它们之间的距离：
\[L(\exp_{\nu} |_{t_1 \leq t_2}, \exp_{\mu} v) = \rho(\exp_{\nu} v, \exp_{\mu} v), 0 \leq t_1 \leq t_2. \]

2. 证明：沿一条测地线\(\gamma \)的不恒为零的Jacobi场的零点是离散的。

3. 设\(\gamma: [0, b] \rightarrow M \)为一条测地线，使得\(\gamma(b) \)不是\(\gamma(0) \)的共轭点，则给定任何\(v \in T_{\gamma(b)} M \)，存在\(\gamma \)的唯一的Jacobi场\(U \)，使得\(U(0) = 0 \)及\(U(b) = v \)（参阅伍沈虞[133]页）。

题4—7可参阅伍沈虞[246—250]页。

4. 证明：非正Riemann截曲率流形的极小子流形具有非正的Ricci曲率。

5. 证明：在非正Riemann截曲率的单连通完备流形\(\bar{M} \)中不存在紧致的极小子流形。

6. 设\(f: M \rightarrow \bar{M} \)为\(C^\infty \)极小浸入，\(\{u^1, \cdots, u^m\} \)和\(\{x^1, \cdots, x^\bar{m}\} \)分别为\(M \)和\(\bar{M} \)中的局部坐标系，记\(f^\alpha = x^\alpha \circ f \)，令
\[
\sum_{i,j} g_{ij} du^i \otimes du^j + \sum_{\alpha, \beta} \bar{g}_{\alpha \beta} dx^\alpha \otimes dx^\beta
\]
分别局部地为\(M \)及\(\bar{M} \)上的Riemann度量。证明：

(1) \(g_{ij} = \sum_{\alpha, \beta} \bar{g}_{\alpha \beta} \frac{\partial f^\alpha}{\partial u^i} \frac{\partial f^\beta}{\partial u^j} \)

(2) 对\(M \)的每个规范正交基\(\{e_i\} \)，有
\[
\sum_{i,j} g^{ij} \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right) = \sum_i h(e_i, e_i) = \sum_i h_i = 0.
\]

(3) \(f \)为极小浸入 \(\Leftrightarrow \sum_{i,j} g^{ij} \frac{\partial f^i}{\partial u^j} \frac{\partial}{\partial u^i} - \sum_{i,j} g^{ij} \sum_{\alpha, \beta} \bar{g}_{\alpha \beta} \frac{\partial f^\alpha}{\partial u^i} \frac{\partial f^\beta}{\partial u^j} = 0 \Leftrightarrow \)
\[
\sum_{i,j} g^{ij} \frac{\partial f^i}{\partial u^j} = \sum_{i,j} g^{ij} \sum_{\alpha, \beta} \bar{g}_{\alpha \beta} \frac{\partial f^\alpha}{\partial u^i} \frac{\partial f^\beta}{\partial u^j} - \sum_{i,j} g^{ij} \sum_{\alpha, \beta} \bar{g}_{\alpha \beta} \frac{\partial f^\alpha}{\partial u^i} \frac{\partial f^\beta}{\partial u^j} = 0,
\]
这是拟线性椭圆型方程组。

7. 考虑Euclid空间\(\mathbb{R}^{n+1} \)中的图象：
\(M^n = \{(u^1, \cdots, u^m, f^{n+1}(u), \cdots, f^{n+1}(u)) | u = (u^1, \cdots, u^m) \in U\} \)，
其中\(U \subset \mathbb{R}^n \)为开集，\((f^{n+1}, \cdots, f^{n+1}), U \rightarrow \mathbb{R}^k \)为\(C^\infty \)映射。证明：\(M^n \)
340
为 C^∞ 极小图象 $(f; M^n \to \mathbb{R}^{n+1}$ 为极小浸入) 的充要条件是

$$\sum_{i,j} g^{ij} \frac{\partial f^A}{\partial u^i \partial u^j} = 0, \quad A = m + 1, \ldots, m + k,$$

其中 (g^{ij}) 为矩阵 (g_{ij}) 的逆，$g_{ij} = \delta_{ij} + \sum_A \frac{\partial f^A}{\partial u^i} \frac{\partial f^A}{\partial u^j}$。

特别地，Lagrange 发现了极小图象 $M^2 = \{(u^1, u^2, f(u))\} \subset \mathbb{R}^3$ 的方程为

$$\left[1 + \left(\frac{\partial f}{\partial u^2}\right)^2\right] \frac{\partial f}{\partial u^2} - 2\left(\frac{\partial f}{\partial u^1}\frac{\partial f}{\partial u^2}\right) \frac{\partial f}{\partial u^1 \partial u^2}$$

$$+ \left[1 + \left(\frac{\partial f}{\partial u^1}\right)^2\right] \frac{\partial f}{\partial u^1 \partial u^2} = 0$$

或

$$\sum_{i=1}^{2} \frac{\partial}{\partial u^i} \frac{\frac{\partial f}{\partial u^i}}{\sqrt{1 + \left(\frac{\partial f}{\partial u^1}\right)^2 + \left(\frac{\partial f}{\partial u^2}\right)^2}} = 0.$$

8. 设 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 为具有非正截曲率的完备单连通的 m 维 C^∞ Riemann 流形。$O \in M$ 为固定点，定义相对于 O 的距离函数 $f: M \to [0, + \infty)$ 为 $f(x) = \rho(x, O)$, 则 f^2 在 M 上是 C^∞ 的，且 $\nabla^2 f^2$ 在 M 上是正定的。

特别地，当 $M = \mathbb{R}^n, O \in \mathbb{R}^n$ 为原点时，通过简单计算证明：

$$\nabla^2 f^2(X, X) = 2 \| X \|^2.$$

因此，上述结论是 \mathbb{R}^n 中这明显事实的一种推广。

（参阅[伍沈虞], 108–109 页。)
第 4 章 Hodge 分解定理和 Laplace 算子 Δ 的特征值

对 m 维 C^∞ 定向 Riemann 流形 (M,g) 的 s 次外微分形式，依次引 λ 星算子 \star，上微分算子 $\delta = (-1)^{m(s+1)+1} \star d \star$ 和 Laplace-Beltrami 算子 $\Delta = d\delta + \delta d$.

如果 M 是紧致的，我们在 $F^s(M) = C^\infty(\bigwedge^s M)$ 上定义内积

$$(\omega, \eta) = \int_M \langle \omega, \eta \rangle dV = \int_M \langle \omega, \eta \rangle \star 1 = \int_M \omega \wedge \star \eta.$$

易证，δ 和 d 互为伴随算子，即 $(d\omega, \eta) = (\omega, \delta \eta)；\Delta$ 为自伴算子，即 $(\Delta \omega, \eta) = (\omega, \Delta \eta)；(\Delta \omega, \omega) \geq 0$ 且 $(\Delta \omega, \omega) = 0 \Leftrightarrow d\omega = 0(\omega$ 为闭形式) 和 $\delta \omega = 0(\omega$ 为上闭形式) $\Leftrightarrow \Delta \omega = 0(\omega$ 为调和形式)。

设 H^s 为 M 上 s 次调和形式组成的线性空间，则在上述引进的内积下有著名的 Hodge 分解定理：H^s 是有限维的，且有唯一的正交直和分解

$$F^s(M) = \Lambda(F^s) \oplus H^s = d(F^{s-1}) \oplus \delta(F^{s+1}) \oplus H^s.$$

从 Hodge 分解定理立即推出，每个 de Rham 上同调类包含一个唯一的调和代表。因而，对每个整数 s，有 de Rham 上同调群 $H^s_{de}(M) \approx H^s$，这还蕴含着 $H^s_{de}(M)$ 也是有限维的。

如果 (M,g) 是不可定向的 C^∞ 紧致 Riemann 流形，考虑 M 的定向 2 层覆盖流形 \tilde{M}（它的覆盖投影为 $\pi: \tilde{M} \to M$）。由于 (\tilde{M}, π^*g) 与 (M,g) 局部等距，不难从 (\tilde{M}, π^*g) 的 Hodge 分解定理得到 (M,g) 的 Hodge 分解定理。

最后，我们还研究了 $F^s(M)$ 上的 Laplace-Beltrami 算子 Δ 的特征

342
值的性质：\(\Delta \) 在 \(F'(M) \) 上的全部特征值为 \(\lambda_1, \lambda_2, \ldots, \lambda_n, \ldots \) 使得
\[
0 \leq \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq \ldots, \quad \lim_{k \to +\infty} \lambda_n = +\infty
\]
并且相应于 \(\lambda \) 的特征空间 \(E_1(M) \) 的维数 \(\dim E_1(M) \) 为 \(\lambda_n = \lambda \) 的个数。更进一步，关于内积 \((\cdot, \cdot)\) 的 \(L_2 \) 空间是完全的，即对任何 \(\alpha \in F'(M) \)，有
\[
\lim_{\alpha \to +\infty} \| \alpha - \sum_{i=1}^{n} (\alpha, \omega_i) \omega_i \| = 0,
\]
其中 \(\omega_i \) 为 \(F'(M) \) 中对应于特征值 \(\lambda_n \) 的规范正交的特征形式。

4.1 星算子 \(\star \)，上微分算子 \(\delta \) 和微分形式的 Laplace 算子 \(\Delta \)

设 \((V, (\cdot, \cdot))\) 为 \(m \) 维定向内积空间，\(F'(V) \) 为 \(V \) 上的 \(s \) 次外形式 \((V \) 上 \(s \) 次反称多重线性函数) 的全体组成的空间，\(F'(V) = V^* \) 为 \(V \) 的对偶空间。如果 \(e_1, \ldots, e_n \) 为 \((V, (\cdot, \cdot))\) 上的定向规范正交基，\(e_1, \ldots, e_n \) 为其对偶基。在 \(F'(V) \) 上定义一个内积使得
\[
\langle e_1 \wedge \cdots \wedge e_i, e_1 \wedge \cdots \wedge e_i \rangle
= \begin{cases}
0, & i_1, \ldots, i_r \neq j_1, \ldots, j_s, \\
\text{sgn} \pi, & j_s = \pi(i_s),
\end{cases}
\]
其中 \(\pi \) 为 \(i_1, \ldots, i_r \) 的一个置换，而 \(\text{sgn} \pi = \begin{cases} 1, & \pi \text{ 为偶置换} \\
-1, & \pi \text{ 为奇置换}
\end{cases} \)
因此，\(e_1 \wedge \cdots \wedge e_s(i_1 < \cdots < i_s) \) 为 \(F'(V) \) 的规范正交基。显然，如果 \(\varphi_1, \varphi_2 \in V^*, i = 1, \ldots, s \)，则
\[
\langle \varphi_1 \wedge \cdots \wedge \varphi_i, \varphi_1 \wedge \cdots \wedge \varphi_i \rangle = \det(\langle \varphi_1, \varphi_j \rangle).
\]
应用 \(V \) 上的内积可自然给出一个线性映射
\[
V \to V^*:
\]
\[
v \to v^*,
\]
\[
v^*(u) = \langle v, u \rangle, \quad v, u \in V.
\]
此时，
\[v = \sum_{i=1}^{m} \lambda_i e_i \rightarrow v^* = (\sum_{i=1}^{m} \lambda_i e_i)^* = \sum_{i=1}^{m} \lambda_i e_i^*. \]

另一方面，因为
\[e_i^*(e_j) = \langle e_i, e_j \rangle = \delta_{ij}, \]
\[\sum_{i=1}^{m} \lambda_i e_i^* = 0 \Leftrightarrow 0 = (\sum_{i=1}^{m} \lambda_i e_i^*)(e_j) \]
\[= \sum_{i=1}^{m} \lambda_i \delta_{ij} = \lambda_j, j = 1, \ldots, m. \]
所以，\(e_1^*, \ldots, e_m^* \) 线性无关。而对任意 \(\omega \in V^* \)，有
\[\omega(e_j) = (\sum_{i=1}^{m} \omega(e_i)e_i^*)(e_j), j = 1, \ldots, m, \]
\[\omega = \sum_{i=1}^{m} \omega(e_i)e_i^*. \]
这就证明了 \(e_1^*, \ldots, e_m^* \) 为 \(V^* \) 的一个基，记 \(e_i^* = e_i' \)，它是 \(e_i, \ldots, e_m \) 的对偶基，且 \(V \rightarrow V^*, v \rightarrow v^* \) 为同构。由此导出同构 \(h: F^{m-1}(V) \rightarrow (F^{m-1}(V))^* \)。

定义线性映射
\[*: F^n(V) \rightarrow F^{m-1}(V), \]
使得
\[e_1 \wedge \cdots \wedge e_i \rightarrow * (e_1 \wedge \cdots \wedge e_i) = e_1 \wedge \cdots \wedge e^{i-1}, \]
其中 \((e_1 \wedge \cdots \wedge e_i) \wedge * (e_1 \wedge \cdots \wedge e_{i+1}) = e_1 \wedge \cdots e_i \wedge e_{i+1} \wedge \cdots \wedge e^n \) (与 \((V, \langle \cdot, \cdot \rangle) \) 的定向一致的体积元素)。对于特殊情形，令 \(*1 = e_1 \wedge \cdots \wedge e^n, * (e_1 \wedge \cdots \wedge e^n) = 1. \) 一般地，如果 \(\varphi_i \in V^*, i = 1, \ldots, m, \) 有
\[(\varphi_1 \wedge \cdots \wedge \varphi_i \wedge * (\varphi_1 \wedge \cdots \wedge \varphi_i)) = \begin{cases} 0, & \{i_1, \ldots, i_s\} \neq \{j_1, \ldots, j_s\} \\ \det(\langle \varphi_1, \varphi_s \rangle) \cdot *1, & j_s = \pi(i_s). \end{cases} \]

进一步，有

引理1 (1) 设 \(\omega, \eta \in F^n(V) \)，则
\[\langle \omega, \eta \rangle = \ast (\omega \land \ast \eta) = \ast (\eta \land \ast \omega) \]

或
\[\omega \land \ast \eta = \ast \langle \omega, \eta \rangle = \langle \omega, \eta \rangle \ast 1 \]
\[= \langle \eta, \omega \rangle \ast 1 = \eta \land \ast \omega; \]

(2) \(\ast \omega \land \ast \eta = \omega \land \eta, \omega, \eta \in F^s(V), \eta \in F^{s-\ast}(V) \);

(3) \(\ast \ast = (-1)^{s(m-s)} \text{Id}_{p^s(V)} \).

证明 (1) 从
\[\ast((e^1 \land \cdots \land e^i) \land \ast(e^i \land \cdots \land e^j)) \]
\[= \ast \begin{cases} 0, & \{i_1, \cdots, i_s\} \neq \{j_1, \cdots, j_s\} \\ \text{sgn}\pi \ast \ast 1, & j_a = \pi(i_a). \end{cases} \]
\[= \begin{cases} 0, & \{i_1, \cdots, i_s\} \neq \{j_1, \cdots, j_s\} \\ \text{sgn}\pi, & j_a = \pi(i_a) \end{cases} \]
\[= \langle e^1 \land \cdots \land e^s, e^i \land \cdots \land e^j \rangle \]

和线性性立即得到
\[\langle \omega, \eta \rangle = \ast (\omega \land \ast \eta). \]

(2) 由 (1)，
\[\ast \omega \land \ast \eta = \eta \land (\ast \ast \omega) = (-1)^{s(m-s)} \omega \land \omega = \omega \land \eta. \]

(3) 如果
\[(e^1 \land \cdots \land e^i) \land (e^i \land \cdots \land e^{i \ast \ast}) \]
\[= e^i \land \cdots \land e^m \]
则
\[(e^1 \land \cdots \land e^{i \ast \ast}) \land (e^i \land \cdots \land e^s) \]
\[= (-1)^{s(m-s)}(e^1 \land \cdots \land e^s) \land (e^i \land \cdots \land e^{i \ast \ast}), \]

于是
\[\ast \ast (e^1 \land \cdots \land e^s) = \ast (e^1 \land \cdots \land e^{i \ast \ast}) \]
\[= (-1)^{s(m-s)}e^1 \land \cdots \land e^s \]
\[= (-1)^{s(m-s)} \text{Id}_{p^s(V)}(e^1 \land \cdots \land e^s), \]

即 \(\ast \ast = (-1)^{s(m-s)} \text{Id}_{p^s(V)}. \)

注 1 由引理 1(1) 第 2 式可看出, \(\ast \) 与定向规范正交基 \(\{e_i\} \)
的选取无关，但如果取相反定向的规范正交基，则 *ω 差一个符号。

下面，我们用不变观点（不用基）来描述星算子 *。有一个自然的映射

\[\wedge : F^s(V) \times F^{m-s}(V) \rightarrow F^m(V) \]

\[(\omega, \eta) \mapsto \omega \wedge \eta. \]

此外，V 上的给定的定向和内积给出了一个同构

\[* : F^m(V) \rightarrow \mathbf{R} \]

\[\xi = \lambda e^1 \wedge \cdots \wedge e^m \mapsto *\xi = \lambda. \]

于是，有双线性映射

\[\{,\} : F^s(V) \times F^{m-s}(V) \rightarrow \mathbf{R} \]

\[(\omega, \eta) \mapsto \langle \omega, \eta \rangle = * (\omega \wedge \eta). \]

由此可定义

\[\mathcal{A} : F^s(V) \rightarrow (F^{m-s}(V))^* \]

\[\omega \mapsto \mathcal{A}(\omega), \]

\[\mathcal{A}(\omega)(\eta) = \langle \omega, \eta \rangle, \; \omega \in F^s(V), \eta \in F^{m-s}(V). \]

可以证明复合映射

\[F^s(V) \xrightarrow{\mathcal{A}} (F^{m-s}(V))^* \xrightarrow{h^{-1}} F^{m-s}(V) \]

恰为星算子 *，即 * = h^{-1} \circ A。事实上，

\[\mathcal{A}(\omega)(\eta) = \langle \omega, \eta \rangle = * (\omega \wedge \eta) \]

\[= * (\eta \wedge (\ast \ast \omega)) = \langle \ast \omega, \eta \rangle \]

\[= (\ast \omega)^*(\eta) = h(\ast \omega)(\eta) \]

\[\mathcal{A}(\omega) = h(\ast \omega), \]

\[\ast \omega = h^{-1} \circ \mathcal{A}(\omega). \]

定义 1 对于 m 维 C∞ 定向 Riemann 流形 (M, g) = (M, (\langle, \rangle)) 上的 s 次 C∞ 形式的空间 \(F^s(M) = C^\infty(\Lambda^s M) \)，我们自然可定义一个整体的 Hodge 星算子（它是线性算子）

\[* : F^s(M) \rightarrow F^{m-s}(M), \]
\[\omega \rightarrow \ast \omega, \]

使得
\[\ast (e^1 \wedge \cdots \wedge e^s) = e^1 \wedge \cdots \wedge e^{s-r}, \]
\[(e^1 \wedge \cdots \wedge e^s) \wedge (e^1 \wedge \cdots \wedge e^{s-r}) = e^1 \wedge \cdots \wedge e^s, \]
其中 \(e_1, \ldots, e_m \) 为 \((M, \langle \cdot, \cdot \rangle)\) 上的局部 \(C^\infty \) 定向规范正交基，而 \(e^1, \cdots, e^n \) 为其对偶基. 设 \(I \in F^0(M) \) 为 \(M \) 上的常值函数，\(dV \in F^n(M) \) 为 \((M, \langle \cdot, \cdot \rangle)\) 上的定向体积元素，则 \(\ast 1 = e^1 \wedge \cdots \wedge e^n = dV, \ast (dV) = 1 \). 显然，\(\ast \) 可线性扩张到 \(F(M) = \bigoplus_{s=0}^m F^s(M) \) 上，且仍有
\[\ast_{m-s} \circ \ast = (-1)^{s(m-s)} \text{Id}_{F^s(M)}, \]
\[\omega \wedge \ast \eta = \langle \omega, \eta \rangle dV, \omega, \eta \in F^s(M). \]

定义 2 我们称
\[\delta = (-1)^m (s+1) + 1 \ast d \ast : F^s(M) \rightarrow F^{s-1}(M), \]
\[\omega \rightarrow \delta \omega = (-1)^m (s+1) + 1 \ast d \ast \]
为 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 上的上微分算子. 而当 \(s = 0 \) 时,
\[\delta : F^0(M) \rightarrow F^{-1}(M) = \{0\} \]
\[\omega \rightarrow \delta \omega = 0, \]
即 \(\delta = 0 \). 将 \(\Delta = d \delta + \delta d : F^s(M) \rightarrow F^s(M) \) 称为 \(s \) 次形式 \(F^s(M) \) 上的 Laplace-Beltrami 算子. 如果 \(\Delta \omega = 0 \), 则称 \(\omega \) 为 \(s \) 次调和形式.

有时，为强调 \(s \) 次就记 \(\Delta \) 为 \(\Delta_s \), \(s \) 次调和形式的全体记作 \(H^s = H^s(M) = \{ \omega \in F^s(M) | \Delta \omega = 0 \} \).

从 \(\delta = (-1)^m (s+1) + 1 \ast d \ast \) 两次用 \(\ast \) 算子可看出，\(\delta \) 与规范正交 \(\{e_i\} \) 的定向选取无关，因此，\(\delta \) 和 \(\Delta \) 对不可定向的流形也可定义．不难验证，在 0 次形式 \(F^0(M) = C^\infty (M, \mathbb{R}) \) 上此定义与第 1 章 1.5 中的定义 5 仅差一个符号. 事实上，在局部坐标系 \(\{x^i\} \) 中，
\[(-1)^i \alpha dx^1 \wedge \cdots \wedge dx^m \]
\[= dx^i \wedge \left(\sum_{i=1}^m \alpha_i dx^i \wedge \cdots \wedge dx^i \wedge \cdots \wedge dx^m \right) \]
\[= dx^i \wedge \ast (dx^i) \]

347
\[= \langle dx^i, dx^i \rangle dV_g = g^{i\prime} dV_g \]

\[= g^{i\prime} \sqrt{\text{det}(g_{\mu\nu})} dx^i \wedge \cdots \wedge dx^m, \]

\[\ast (dx^i) = \sum_{j=1}^{n} (-1)^{j-1} g^{i\prime} \sqrt{\text{det}(g_{\mu\nu})} dx^i \wedge \cdots \wedge dx^j \wedge \cdots \wedge dx^m. \]

于是，对 \(\delta; F^1(M) \to F^0(M) \)，通过简单计算得到

\[\delta \omega = (-1)^{m(1+1)+1} \ast d \ast \left(\sum_{i=1}^{m} a_i dx^i \right) \]

\[= - \ast d \sum_{i=1}^{m} a_i \sum_{j=1}^{m} (-1)^{j-1} g^{i\prime} \sqrt{\text{det}(g_{\mu\nu})} dx^i \wedge \cdots \wedge dx^j \wedge \cdots \wedge dx^m \]

\[= - \ast \sum_{i,j=1}^{m} (-1)^{j-1} \left[\sum_{i=1}^{m} \frac{\partial a_i}{\partial x^i} dx^i \wedge g^{i\prime} \sqrt{\text{det}(g_{\mu\nu})} dx^i \wedge \cdots \wedge dx^j \wedge \cdots \wedge dx^m \right] \]

\[+ \sum_{i=1}^{m} a_i \frac{\partial g^{i\prime}}{\partial x^i} dx^i \wedge \sqrt{\text{det}(g_{\mu\nu})} dx^i \wedge \cdots \wedge dx^j \wedge \cdots \wedge dx^m \]

\[+ \frac{1}{2} \sum_{i=1}^{m} a_i g^{i\prime} \frac{\partial n \text{det}(g_{\mu\nu})}{\partial x^i} \sqrt{\text{det}(g_{\mu\nu})} dx^i \wedge dx^i \wedge \cdots \wedge dx^m \]

\[= - \sum_{i,j=1}^{m} \left[g^{i\prime} \frac{\partial a_i}{\partial x^j} + a_i \frac{\partial g^{i\prime}}{\partial x^j} + \frac{1}{2} a_i g^{i\prime} \frac{\partial n \text{det}(g_{\mu\nu})}{\partial x^j} \right], \]

\[\Delta f = (d \delta + \delta d) f = \delta df = \delta \left(\sum_{i=1}^{m} \frac{\partial f}{\partial x^i} dx^i \right) \]

\[= - \sum_{i,j=1}^{m} \left(g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^j} + \frac{\partial g^{ij}}{\partial x^i} \frac{\partial f}{\partial x^j} \right) \]

\[+ \frac{1}{2} g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial n \text{det}(g_{\mu\nu})}{\partial x^j}. \]
由 $\delta = (-1)^{n+1} \star \delta \star$ 和 $\star \star = (-1)^{s(s-1)} \text{Id}_{\Lambda^s(M)}$ 立即推出关于 \star, d, δ 和 Δ 的简单性质:

引理 2 $\delta^2 = 0, \star \delta \delta = \delta \star d, d \star \delta = 0, \delta \star d = 0, \star \delta = (-1)^{s+1} \star d, d \Delta = d \delta = \delta d, \delta \Delta = \Delta \delta = \delta d, \star \Delta = \Delta \star$.

4.2 Hodge 分解定理

在 m 维 C^∞ 紧致定向 Riemann 流形 (M, g) 的 s 次 C^∞ 外微分形式的空间 $C^\infty(\Lambda^s M)$ 上，我们定义内积

$$ (\cdot, \cdot) : C^\infty(\Lambda^s M) \times C^\infty(\Lambda^s M) \to \mathbb{R} $$

$$ (\omega, \eta) = \int_M \langle \omega, \eta \rangle dV = \int_M \langle \omega, \eta \rangle \star 1 $$

$$ = \int_M \omega \wedge \star \eta. $$

因为 M 紧致，上述积分总有意义，且内积 (\cdot, \cdot) 是对称和正定的双线性型，即

1. $(\omega, \omega) = \int_M \langle \omega, \omega \rangle dV \geq 0$, 且 $(\omega, \omega) = 0 \iff \langle \omega, \omega \rangle |_p = 0, \forall p \in M \iff \omega(p) = 0, \forall p \in M$, 即 $\omega = 0$ (正定性);
2. $(\omega, \eta) = \int_M \langle \omega, \eta \rangle dV = \int_M \langle \eta, \omega \rangle dV$
 $$ = (\eta, \omega) \quad (对称性); $$
3. $(\omega_1 + \omega_2, \eta) = \int_M \langle \omega_1 + \omega_2, \eta \rangle dV$
 $$ = \int_M \langle \omega_1, \eta \rangle dV + \int_M \langle \omega_2, \eta \rangle dV$
 $$ = (\omega_1, \eta) + (\omega_2, \eta). $$

类似地有

$$(\omega, \eta_1 + \eta_2) = (\omega, \eta_1) + (\omega, \eta_2),$$

$$(\lambda \omega, \eta) = (\omega, \lambda \eta) = \lambda (\omega, \eta) \quad (双线性),$$

其中 $\lambda \in \mathbb{R}, \omega, \omega_1, \omega_2, \eta, \eta_1, \eta_2 \in C^\infty(\Lambda^s M)$. 此外，还有
\((\ast \omega, \ast \eta) = \int_M \ast \omega \wedge \ast (\ast \eta)\)

\[= (-1)^{s(m-s)} \int_M \ast \omega \wedge \eta = \int_M \eta \wedge \ast \omega\]

\[= (\eta, \omega) = (\omega, \eta),\]

这说明\(\ast\)为酉算子。

关于\(d, \delta, A\)算子，有下面的引理。

引理 1 在直和\(C^\infty(\wedge^s M) = \bigoplus_{s=0}^{m} C^\infty(\wedge^s M)\)上，上微分算子\(\delta\)和微分算子\(d\)互为伴随算子，即

\[(d\omega, \eta) = (\omega, \delta\eta).\]

证明 因为当\(\deg \xi \neq \deg \theta\)（\(\deg \xi\)为\(C^\infty\)微分形式\(\xi\)的次数）时，\((\xi, \theta) = 0\)，所以由线性性，只须对\(\omega \in C^\infty(\wedge^s M), \eta \in C^\infty(\wedge^{s+1} M)\)加以证明。此时，由\(\partial M = \emptyset\)和

\[d(\omega \wedge \ast \eta) = d\omega \wedge \ast \eta + (-1)^s \omega \wedge d \ast \eta\]

\[= d\omega \wedge \ast \eta + (-1)^s (-1)^{s+1} \omega \wedge \ast \delta \eta\]

\[= d\omega \wedge \ast \eta - \omega \wedge \ast \delta \eta\]

得到

\[(d\omega, \eta) = \int_M d\omega \wedge \ast \eta\]

\[= \int_M \left[d(\omega \wedge \ast \eta) + \omega \wedge (\ast \delta \eta) \right] \]

\[= \int_{\partial M} \omega \wedge \ast \eta + \int_M \omega \wedge (\ast \delta \eta)\]

\[= \int_M \omega \wedge (\ast \delta \eta) = (\omega, \delta \eta).\]

引理 2 设\((M, g)\)为\(m\)维\(C^\infty\)定向紧致 Riemann 流形，则对\(\omega, \eta \in C^\infty(\wedge^s M)\)有

(1) \((A\omega, \eta) = (\omega, A\eta)\)，即\(A\)是自伴算子；

(2) \((A\omega, \omega) \geq 0\)；

(3) \((A\omega, \omega) = 0 \iff d\omega = 0\)和\(\delta\omega = 0\)（即\(\omega\)既为闭形式，又为上
闭形式,$\iff \Delta \omega = 0$.

证明 (1) $\langle \Lambda \omega, \eta \rangle = ((d\delta + \delta d)\omega, \eta) = (\delta \omega, \delta \eta) + (d\omega, d\eta) = (\omega, (d\delta + \delta d)\eta) = (\omega, \Lambda \eta)$;

(2) $\langle \Lambda \omega, \omega \rangle = (\delta \omega, \delta \omega) + (d\omega, d\omega) \geq 0$.

(3) $(\delta \omega, \delta \omega) + (d\omega, d\omega) = \langle \Lambda \omega, \omega \rangle = 0$

$\iff (\delta \omega, \delta \omega) = 0 \text{ 和 } (d\omega, d\omega) = 0$

$\iff \delta \omega = 0 \text{ 和 } d\omega = 0$

$\Rightarrow \Lambda \omega = (d\delta + \delta d)\omega = 0$

$\Rightarrow \langle \Lambda \omega, \omega \rangle = (0, \omega) = 0$.

引理 3 $\text{Im} d \perp \text{Im} \delta ; \text{Im} d \perp \text{Ker} \Lambda ; \text{Im} \delta \perp \text{Ker} \Lambda ; \text{Im} \Lambda \perp \text{Ker} \Lambda$.

证明 因 $(d\omega, \delta \eta) = (d^2 \omega, \eta) = (0, \eta) = 0$，故 $\text{Im} d \perp \text{Im} \delta$.

设 $\eta \in \text{Ker} \Lambda$，则

$(d\omega, \eta) = (\omega, \delta \eta) = (\omega, 0) = 0, \text{ Im} d \perp \text{Ker} \Lambda$;

$(\delta \omega, \eta) = (\omega, d\eta) = (\omega, 0) = 0, \text{ Im} \delta \perp \text{Ker} \Lambda$;

$(\Lambda \omega, \eta) = (\omega, \Lambda \eta) = (\omega, 0) = 0, \text{ Im} \Lambda \perp \text{Ker} \Lambda$.

引理 4 设 (M, g) 为 m 维紧致定向 C^∞ Riemann 流形，记 $F^s = F^s(M) = C^\infty(\Lambda^s M), H^s = H^s(M) = \{ \omega \in F^s(M) | d\omega = 0 \}$，则

(1) $\omega \perp dF^{s-1}(M) \iff \delta \omega = 0$;

(2) $\omega \perp \delta F^{s-1}(M) \iff d\omega = 0$;

(3) $\omega \in H^s \iff \omega \perp dF^{s-1}(M) \text{ 和 } \omega \perp \delta F^{s+1}(M)$;

(4) $\omega = 0 \iff \omega \perp dF^{s-1}(M), \omega \perp \delta F^{s+1}(M) \text{ 和 } \omega \perp H^s(M)$.

证明 (1) (\iff) 设 $\delta \omega = 0$，则对 $\forall \theta \in F^{s-1}(M)$，有

$(\omega, d\theta) = (\delta \omega, \theta) = (0, \theta) = 0, \omega \perp dF^{s-1}(M)$.

(\Rightarrow) 设 $\omega \perp dF^{s-1}(M)$，则

$0 = (\omega, d\delta \omega) = (\delta \omega, \delta \omega)$，

故 $\delta \omega = 0$.

(2) (\iff) 设 $d\omega = 0$，则对 $\forall \eta \in F^{s+1}(M)$，有
\((\omega, \delta \eta) = (d\omega, \eta) = (0, \eta) = 0, \omega \perp \delta F^{s+1}(M)\).

\((\Rightarrow)\) 设 \(\omega \perp \delta F^{s+1}(M)\)，则

\[0 = (\omega, \delta d\omega) = (d\omega, d\omega),\]

\[d\omega = 0.\]

(3) \(\omega \in H^s\)，即 \(\Delta \omega = 0\) \(\Leftrightarrow d\omega = 0\) 和 \(\delta \omega = 0\)

\(\Leftrightarrow \omega \perp dF^{s-1}(M)\) 和 \(\omega \perp \delta F^{s+1}(M)\).

(4) \((\Rightarrow)\) 显然，

\((\Leftarrow)\) 由(3)，\(\omega \perp dF^{s-1}(M)\)，\(\omega \perp \delta F^{s+1}(M)\) \(\Leftrightarrow \omega \in H^s\)，又因 \(\omega \perp H^s\)，故 \((\omega, \omega) = 0\)，从而 \(\omega = 0\).

定义 1 设 \(\Delta^*\) 为在 \(m\) 维 \(C^\infty\) 紧致定向 Riemann 流形 \((M, g)\) 上的 \(s\) 次 \(C^\infty\) 外微分形式的空间 \(F^s(M) = C^\infty(\Lambda^s M)\) 上的 Laplace 算子 \(\Delta\) 的伴随算子. 当然，由于 \(\Delta\) 是 \(F^s(M)\) 上的自伴算子，故 \(\Delta^* = \Delta\)，通常在 \(\Delta\) 和 \(\Delta^*\) 之间，我们不作区分. 但是这个区别对于下面的解的定义是重要的.

我们对寻找方程 \(\Delta \omega = \alpha\) 有解的充要条件有兴趣. 假设 \(\omega\) 是 \(\Delta \omega = \alpha\) 的解，则

(1) 对所有的 \(\varphi \in F^s(M)\)，有 \((\Delta \omega, \varphi) = (\alpha, \varphi)\);

(2) 对所有的 \(\varphi \in F^s(M)\)，有 \((\omega, \Delta^* \varphi) = (\alpha, \varphi)\).

(2) 提醒我们可以将 \(\Delta \omega = \alpha\) 的解 \(\omega\) 视作 \(F^s(M)\) 上某种类型的线性泛函，那就是，\(\omega\) 在 \(F^s(M)\) 上有

(3) \(l(\varphi) = (\omega, \varphi)\)

决定了一个有界线性泛函 \(l\)，它满足

(4) \(l(\Delta^* \varphi) = (\omega, \Delta^* \varphi) = (\alpha, \varphi)\).

这个解的观点是极其有用的，它将带来各种各样泛函分析的技巧，并对通常解 \(\Delta \omega = \alpha\) 有很大影响. 我们称这样的线性泛函 \(l\) 为 \(\Delta \omega = \alpha\) 的弱解. 即 \(\Delta \omega = \alpha\) 的一个弱解是有界线性泛函 \(l: F^s(M) \to \mathbb{R}\) 使得，对所有 \(\varphi \in F^s(M)\) 有

\[l(\Delta^* \varphi) = (\alpha, \varphi).\]

我们已看到 \(\Delta \omega = \alpha\) 的每个普通解，由(3)决定了一个弱解. 相
反地,其逆命題也是正確的,即有

定理1(正则性定理) 设 $\alpha \in F^s(M)$, l 为 $\Delta\omega = \alpha$ 的一个弱解. 则存在 $\omega \in F^s(M)$ 使得对每个 $\varphi \in F^s(M)$ 有

$$l(\varphi) = (\omega, \varphi).$$

因此, $\Delta\omega = \alpha$, 即 ω 为 $\Delta\omega = \alpha$ 的普通解.

证明 存在性参阅 $[Wa]_2$, p245—246, 现证后半结论. 由于对所有 $\varphi \in F^s(M)$, 有

$$(\Delta\omega, \varphi) = (\omega, \Delta^s\varphi) = l(\Delta^s\varphi) = (\alpha, \varphi),$$

$$(\Delta\omega - \alpha, \varphi) = 0,$$

故特别取 $\varphi = \Delta\omega - \alpha$ 就有

$$(\Delta\omega - \alpha, \Delta\omega - \alpha) = 0,$$

根据对称的正定性得到 $\Delta\omega - \alpha = 0$, 即 $\Delta\omega = \alpha$.

定理2 设 $\{\alpha_n\}$ 为 $F^s(M)$ 中的对所有 n 和某个常数 $c > 0$ 满足:

$$\| \alpha_n \| \leq c \text{ 和 } \| \Delta\alpha_n \| \leq c$$

的序列(其中 $\| \alpha_n \|^2 = (\alpha_n, \alpha_n) = \int_M \langle \alpha_n, \alpha_n \rangle dV_x$). 则 $\{\alpha_n\}$ 必有一个子序列在 $F^s(M)$ 中为 Cauchy 序列.

证明 参阅 $[Wa]_2$, p248—249.

为证 Hodge 分解定理,需先证下面的引理:

引理5 存在常数 $c > 0$, 使得对 $\forall \varphi \in (H^s)^\perp$,

$$\| \varphi \| \leq c \| \Delta\psi \|.$$

证明 (反证) 假设命题不成立, 即引理中的 c 不存在, 因此, 存在序列 $\psi_n \in (H^s)^\perp$ 使得 $\psi_n \neq 0$, 且 $\| \psi_n \| > j \| \Delta\psi_n \|$, 不失一般性, 可设 $\| \psi_j \| = 1$. 于是, $\| \Delta\psi_j \| < \frac{1}{j} \| \psi_j \| = \frac{1}{j} \to 0$. 根据定理2, $\{\psi_j\}$ 有子序列为 Cauchy 序列, 为方便, 假设就是 $\{\psi_j\}$. 由 Schwarz 不等式导出

$$\| (\psi_{j+1}, \varphi) - (\psi_j, \varphi) \|^2 = \| (\psi_{j+1} - \psi_j, \varphi) \|^2$$

$$\leq \| \psi_{j+1} - \psi_j \| \| \varphi \|, \forall \varphi \in F^s(M).$$

353
于是推出 \(\{(\psi_j, \varphi)\} \) 也是 Cauchy 序列. 因此 \(\lim_{j \to +\infty} \langle \psi_j, \varphi \rangle \) 是存在有限的. 通过令

\[
l(\varphi) = \lim_{j \to +\infty} (\psi_j, \varphi), \quad \forall \ \psi \in F^s(M),
\]

定义了线性泛函 \(l: F^s(M) \to \mathbb{R} \). 清楚地, \(l \) 是有界的, 即 \(|l(\varphi)| = \lim_{j \to +\infty} |(\psi_j, \varphi)| \leq \lim_{j \to +\infty} \|\psi_j\| \cdot \|\varphi\| = \lim_{j \to +\infty} 1 \cdot \|\varphi\| = \|\varphi\| \) 和

对 \(\forall \ \varphi \in F^s(M), \)

\[
l(A^s \varphi) = l(A \varphi) = \lim_{j \to +\infty} (\psi_j, A \varphi)
\]

\[
= \lim_{j \to +\infty} (A \psi_j, \varphi) = 0 = (0, \varphi)
\]

（最后第二个等式是由于 \(|(A \psi_j, \varphi)| \leq \|A \psi_j\| \cdot \|\varphi\| \to 0 \)），所以 \(l \) 为 \(A \omega = 0 \) 的弱解. 由定理 1, 存在 \(\omega \in F^s(M) \), 使得 \(\lim_{j \to +\infty} (\psi_j, \varphi) = l(\varphi) = (\omega, \varphi), \forall \ \varphi \in F^s(M) \). 由此不难证明 \(\psi_j \to \omega \)（参阅习题 2）.

设 \(M \) 上 s 次调和形式组成的线性空间为 \(H^s = H^s(M) = \{ \omega \in F^s(M) | A \omega = 0 \} \), 则有著名的 Hodge 分解定理

定理 3 (Hodge 分解定理) 在 m 维 \(C^\infty \) 紧致的定向 Riemann 流形 \((M, g) \) 上, 对于每个整数 \(s, 0 \leq s \leq m, H^s \) 是有有限维的. 且线性空间 \(F^s(M) \) 有下面的正交直和分解

\[
F^s(M) = \Lambda(F^s) \oplus H^s
\]

\[
= d \delta(F^s) \oplus \delta d(F^s) \oplus H^s
\]

\[
= d(F^{s-1}) \oplus \delta(F^{s+1}) \oplus H^s.
\]

由正交直和分解得到: 对任何 \(\omega \in F^s(M) \), 存在 \(\alpha \in F^{s-1}(M), \beta \in F^{s+1}(M), \gamma \in H^s(M) \) 满足

\[
\omega = d\alpha + \delta \beta + \gamma,
\]

且 \(d\alpha, \delta \beta, \gamma \) 分解是唯一的.

证明 （反证）假设 \(H^s \) 不是有限维的, 则 \(H^s \) 包含一个可数规
范正交序列\(\{a_n\}\)。根据定理 2，\(\{a_n\}\) 必包含一个 Cauchy 子序列\(\{a_{n_k}\}\)，但

\[
\|a_{n_k} - a_{n_{k+1}}\|^2 = (a_{n_k} - a_{n_{k+1}}, a_{n_k} - a_{n_{k+1}}) \\
= \|a_{n_k}\|^2 + \|a_{n_{k+1}}\|^2 - 2(a_{n_k}, a_{n_{k+1}}) \\
= 1 + 1 - 0 = 2,
\]

即距离 \(\rho(a_{n_k}, a_{n_{k+1}}) = \|a_{n_k} - a_{n_{k+1}}\| = \sqrt{2}\)，由此知 \(\{a_n\}\) 不为 Cauchy 序列，矛盾。因此，\(H'\) 是有限维的。显然，必须证明 Hodge 分解定理中的第 1 式，而第 2 和第 3 式由第 1 式和 \(\Delta = d\delta + \delta d\) 以及引理 3 立即推出。

因为 \(H'\) 是有限维的，设 \(\omega_1, \cdots, \omega_t\) 为 \(H'\) 的规范正交基。则任意 \(\alpha \in F^s(M)\) 可以唯一表示为

\[
\alpha = \beta + \sum_{i=1}^{t} (\alpha, \omega_i) \omega_i,
\]

其中 \(\beta \in (H')^\perp = \{\theta \in F^s(M) | \theta \perp H'\}\)。因此，有正交直和分解

\(F^s(M) = (H')^\perp \oplus H'\)。

于是，\(F^s(M) = \Delta(F^s(M)) \oplus H' \iff (H')^\perp = \Delta(F^s(M))\)。设 \(F^s(M)\) 到 \(H'\) 上的正交投影算子为

\[
H: F^s(M) \to H',
\]

\[
\alpha \mapsto H(\alpha) = \sum_{i=1}^{t} (\alpha, \omega_i) \omega_i,
\]

即 \(H(\alpha)\) 为 \(\alpha\) 的调和部分。

如果 \(\omega, \eta \in F^s(M)\)，则

\[
(\Delta \omega, \eta) = (\omega, \Delta \eta) = (\omega, 0) = 0,
\]

即 \(\Delta \omega \perp \eta, \Delta \omega \perp H', \Delta \omega \in (H')^\perp\)。这就证明了 \(\Delta(F^s(M)) \subset (H')^\perp\)。

相反地，设 \(\alpha \in (H')^\perp\)。我们定义一个线性泛函 \(l: \Delta(F^s(M)) \to \mathbb{R}\)，

\[
l(\Delta \varphi) = (\alpha, \varphi), \quad \forall \varphi \in F^s(M).
\]

这个 \(l\) 是定义确切的。事实上，如果 \(\Delta \varphi_1 = \Delta \varphi_2\)，则 \(\Delta(\varphi_1 - \varphi_2) = 0\)，
\[\varphi_1 - \varphi_2 \in H', \]
\[0 = (\alpha, \varphi_1 - \varphi_2) = (\alpha, \varphi_1) - (\alpha, \varphi_2), \]
\[(\alpha, \varphi_1) = (\alpha, \varphi_2). \]

对 \(\varphi \in F'(M) \)，令 \(\psi = \varphi - H(\varphi) \in (H^*)^\perp \)。应用 Schwary 不等式和引理 5 得到
\[
|l(\Delta \varphi)| = |l(\Delta \psi)| = |(\alpha, \psi)| \\
\leq \|\alpha\| \|\psi\| \leq c \|\alpha\| \|\Delta \varphi\| \\
= c \|\alpha\| \|\Delta \varphi\|.
\]

这就表明 \(l \) 为 \(\Delta(F'(M)) \) 上的有界线性泛函。根据 Hahn-Banach[Simms], p228 或[夏吴严舒]159-166 页，\(l \) 可扩张为 \(F'(M) \) 上的有界线性泛函。因此，\(l \) 是 \(\Delta \omega = \alpha \) 的一个弱解。由定理 1，存在 \(\omega \in F'(M) \) 使得 \(\Delta \omega = \alpha \)。因此，\(\alpha \in \Delta(F'(M)) \)，从而 \((H^*)^\perp \subseteq \Delta(F'(M)) \)。

综合上述得到
\[
(H^*)^\perp = \Delta(F'(M))
\]
从而 Hodge 分解定理全部得证。

定理 4 设 \((M, g)\) 为 \(m \) 维紧致定向 \(C^\infty \) Riemann 流形，则对 \(\alpha \in F'(M), \Delta \omega = \alpha \) 有解 \(\Leftrightarrow \alpha \in (H^*)^\perp \)。

证明 \((\Rightarrow)\) 设 \(\Delta \omega = \alpha \)，则对 \(\forall \gamma \in H^* \)，有
\[(\alpha, \gamma) = (\Delta \omega, \gamma) = (\omega, \Delta \gamma) = (\omega, 0) = 0, \]
即 \(\alpha \in (H^*)^\perp \)。

\((\Leftarrow)\) 由 Hodge 分解定理，
\[\alpha = \Delta \beta + \gamma, \]
如果 \(\alpha \in (H^*)^\perp \)，则
\[(\gamma, \gamma) = (\alpha - \Delta \beta, \gamma) = (\alpha, \gamma) - (\beta, \Delta \gamma) \\
= 0 - (\beta, 0) = 0, \quad \gamma = 0. \]
所以 \(\Delta \beta = \alpha \)，即 \(\Delta \omega = \alpha \) 有解 \(\omega = \beta \)。

注 1 如果定理 4 中，Hodge 分解的形式为 \(\alpha = d \alpha_1 + \delta \beta_1, \)
\[\alpha_1 = d \alpha_2 + \delta \beta_2 + \gamma_2, \quad \beta_2 = d \alpha_4 + \delta \beta_4 + \gamma_4, \]
356
\[\beta_1 = d\alpha_3 + \delta \beta_3 + \gamma_3, \quad \alpha_3 = d\alpha_5 + \delta \beta_5 + \gamma_5. \]

读者自证 \(\Delta \omega = \alpha \) 有解 \(\omega = d\alpha_4 + \delta \beta_5. \)

定义 2 设

\[\mathcal{G}: \quad F'(M) \rightarrow (H^*)^\perp \]

\[\alpha \rightarrow \mathcal{G}(\alpha) = \omega, \]

其中 \(\omega \) 满足 \(\Delta \omega = \alpha - H(\alpha), \omega \in (H^*)^\perp \)，则称 \(\mathcal{G} \) 为 Green 算子。事实上，根据 Hodge 分解定理，\(\alpha = \Delta \beta + H(\alpha) = \Delta(\beta - H(\beta)) + H(\alpha) \)，则 \(\omega = \beta - H(\beta) \in (H^*)^\perp \)，且 \(\Delta \omega = \Delta \beta = \alpha - H(\alpha) \)。再证满足上述条件的 \(\omega \) 是唯一的。如果 \(\omega_1 \) 和 \(\omega_2 \) 满足 \(\Delta \omega_i = \alpha - H(\alpha), \omega_i \in (H^*)^\perp, i = 1, 2 \)。则 \(\omega_1 - \omega_2 \in (H^*)^\perp \) 和 \(\Delta(\omega_1 - \omega_2) = 0, \omega_1 - \omega_2 \in H' \)。由于 \(H' \wedge (H^*)^\perp = \{0\} \)，故 \(\omega_1 - \omega_2 = 0 \)，即 \(\omega_1 = \omega_2 \)。

因为

\[(\mathcal{G}(\alpha), \psi) = (\mathcal{G}(\alpha), \Delta \mathcal{G}(\psi) + H(\psi)) \]

\[= (\mathcal{G}(\alpha), \Delta \mathcal{G}(\psi)) = (\Delta \mathcal{G}(\alpha), \mathcal{G}(\psi)) \]

\[= (\Delta \mathcal{G}(\alpha) + H(\alpha), \mathcal{G}(\psi)) = (\alpha, \mathcal{G}(\psi)) \]

和（由定理 4，\(\exists \beta \in (H^*)^\perp \) 使 \(\Delta \beta = \mathcal{G}(\alpha) \in (H^*)^\perp \)，并应用引理 5）

\[\| \mathcal{G}(\alpha) \|^2 = (\mathcal{G}(\alpha), \mathcal{G}(\alpha)) = (\Delta \beta, \mathcal{G}(\alpha)) \]

\[= (\beta, \Delta \mathcal{G}(\alpha)) = (\beta, \alpha - H(\alpha)) \]

\[= (\beta, \alpha) \leq \| \alpha \| \| \beta \| \leq c \| \alpha \| \cdot \| \Delta \beta \| \]

\[= c \| \alpha \| \cdot \| \mathcal{G}(\alpha) \| , \]

即 \(\| \mathcal{G}(\alpha) \| \leq c \| \alpha \| \)，所以 \(\mathcal{G} \) 为有界自伴算子。

Green 算子 \(\mathcal{G} \) 有下面的性质。

引理 6 设 \(T: F'(M) \rightarrow F'(M) \) 为线性算子，且 \(T \Delta = \Delta T \)（例如 \(T = d, \delta, \Delta \)），则 \(GT = TG \)。

证明 设 \(\pi_{(H^*)^\perp}: F'(M) \rightarrow (H^*)^\perp \) 为投影映射，显然它是一个满映射。

易见 \(\Delta|_{(H^*)^\perp}: (H^*)^\perp = \Delta F'(M) \rightarrow (H^*)^\perp = \Delta F'(M) \) 为满映射。此外，如果 \(\omega_1, \omega_2 \in (H^*)^\perp, \Delta \omega_1 = \Delta \omega_2 \)，则 \(\omega_1 - \omega_2 \in (H^*)^\perp \) 和 \(\Delta(\omega_1 - \omega_2) = 0 \)。
\[-\omega_2 = 0, \omega_2 \in H^* \text{. 于是, } \omega_1 - \omega_2 = 0, \text{ 即 } \omega_1 = \omega_2, \text{ 故 } \Lambda(\omega^*_{H'})^\perp \text{ 为单射, 以致 } \Lambda(\omega^*_{H'})^\perp \text{ 为一一映射。记 } (\Lambda|_{\omega^*_{H'}})^{-1} \text{ 为 } \Lambda|_{\omega^*_{H'}}^\perp \text{ 的逆映射。由定理, } G = (\Lambda|_{\omega^*_{H'}})^{-1} \circ \pi_{(\omega^*_{H'})^\perp} \text{。现在, } TA = \Delta T \text{ 蕴涵着 } T(H^*) \subset H'; \text{ 而 } (H^*)^\perp = \Lambda(F^*(M)) \text{ 也蕴含着 } T((H^*)^\perp) = T(\Lambda F^*(M)) = \Lambda T(F^*(M)) \subset \Lambda F^*(M) = (H^*)^\perp \text{。由此及 Hodge 分解定理, 对任意 } a \in F^*(M), \text{ 有 } a = \Delta \beta + \gamma, \]

\[
T \circ \pi_{(\omega^*_{H'})^\perp}(a) = T(\Delta \beta) \\
= \pi_{(\omega^*_{H'})^\perp}(T(\Delta \beta) + T(\gamma)) \\
= \pi_{(\omega^*_{H'})^\perp} \circ T(\Delta \beta + \gamma) \\
= \pi_{(\omega^*_{H'})^\perp} \circ T(\alpha), \\
T \circ \pi_{(\omega^*_{H'})^\perp} = \pi_{(\omega^*_{H'})^\perp} \circ T;
\]

另外, 对任意 } a \in (H^*)^\perp, \text{ 有 } a = \Delta \beta,

\[
T \circ (\Lambda|_{(H^*)^\perp})(a) = T \circ \Lambda \circ (\beta) \\
= (\Lambda|_{(H^*)^\perp}) \circ T(\Delta \beta) \\
= (\Lambda|_{(H^*)^\perp}) \circ T(\alpha), \\
T \circ (\Lambda|_{(H^*)^\perp}) = (\Lambda|_{(H^*)^\perp}) \circ T.
\]

因此,

\[
G \circ T = (\Lambda|_{(H^*)^\perp})^{-1} \circ T \circ \pi_{(\omega^*_{H'})^\perp} = (\Lambda|_{(H^*)^\perp})^{-1} \circ T \circ \pi_{(\omega^*_{H'})^\perp} = T \circ (\Lambda|_{(H^*)^\perp})^{-1} \circ \pi_{(\omega^*_{H'})^\perp} = T \circ G.
\]

定义 3. 设 } M \text{ 为 } m \text{ 维 } C^\infty \text{ 流形, } \omega \in F^*(M), \text{ 如果 } d\omega = 0, \text{ 则称 } \omega \text{ 为 } s \text{ 次 } C^\infty \text{ 闭形式; 但如果存在 } \eta \in F^{*-1}(M) \text{ 使得 } \omega = d\eta, \text{ 则称 } \omega \text{ 为 } s \text{ 次 } C^\infty \text{ 恰当形式。}

因 } d^2 = 0, \text{ 故恰当形式必为闭形式, 但反之不一定成立。例如 } M = \mathbb{R}^2 - \{(0, 0)\},

\[
\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy,
\]

\[
d\omega = -\frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2} dy \wedge dx + \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} dx \wedge dy
\]

\[
= \left[\frac{x^2 - y^2}{(x^2 + y^2)^2} + \frac{y^2 - x^2}{(x^2 + y^2)^2} \right] dx \wedge dy = 0,
\]

358
故 ω 为 1 次 C^∞ 闭形式，但 ω 不是 C^∞ 恰当形式。（反证）假设 $\omega = d\eta$, $\eta \in F^o(M)$，则

$$\int_\gamma \omega = \int_\gamma d\eta = \int_0^{2\pi} \eta' d\theta = \eta(\theta) \bigg|_0^{2\pi} = 0,$$

这与

$$\int_\gamma \omega = \int_\gamma -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

$$= \int_0^{2\pi} \left[\frac{-\sin \theta}{\cos^2 \theta + \sin^2 \theta} \right] d\theta + \frac{\cos \theta}{\cos^2 \theta + \sin^2 \theta} \cos \theta d\theta$$

$$= \int_0^{2\pi} d\theta = 2\pi \neq 0$$

相矛盾，其中 γ 为逆时针方向的单位圆。

设 \mathcal{D} 为 M 的微分构造，记 $Z_\mathcal{D}^s(M) = \{ \omega \in F^s(M) | d\omega = 0 \}$ 为 s 次 C^∞ 闭形式的加群，$B_\mathcal{D}^s(M) = \{ \omega \in F^s(M) | \exists \eta \in F^{s-1} \text{ 使 } \omega = d\eta \}$ 为 s 次 C^∞ 恰当形式的加群。显然，$B_\mathcal{D}^s(M) \subset Z_\mathcal{D}^s(M)$，因而称商群

$$H_\mathcal{D}^s(M) = Z_\mathcal{D}^s(M) / B_\mathcal{D}^s(M)$$

为 M 的 s 个 de Rham 上同调群。$H_\mathcal{D}^s(M)$ 中的元素称为 s 次 C^∞ 闭形式的同调类，ω 的同调类记为 $[\omega] = \{ \omega_1 \in Z_\mathcal{D}^s(M) | \omega_1 - \omega \in B_\mathcal{D}^s(M) \} = \{ \omega + d\eta | \eta \in F^{s-1}(M) \}$。而

$$\{ \omega_1 \} = \{ \omega_2 \} \iff \omega_1 = \omega_2 + d\eta, \ \eta \in F^{s-1}(M).$$

显然，$H_\mathcal{D}^s(M) = 0 \iff Z_\mathcal{D}^s(M) = B_\mathcal{D}^s(M)$，即 s 次 C^∞ 闭形式 $\iff s$ 次 C^∞ 恰当形式，换句话说，s 次 C^∞ 闭形式与 s 次 C^∞ 恰当形式无差别。因此，de Rham 上同调群是刻画闭形式和恰当形式差别的重要的量。

定理 5（Hodge 同构定理）紧致定向 C^∞ Riemann 流形 (M, g) 上的每个 de Rham 上同调类包含一个唯一的调和代表。因而，对每个整数 s，有 $H_\mathcal{D}^s(M) \approx H^s$。

证明 1 对任意 $\omega \in F^s(M)$，由 Hodge 分解定理和 Green 算子 G 的定义，我们有

$$\omega = d\delta G(\omega) + \delta dG(\omega) + H(\omega).$$

因为 $G \cdot d = d \cdot G$，故

359
\[\omega = d\delta G(\omega) + \delta G d(\omega) + H(\omega) . \]

如果 \(\omega \) 为 \(C^\infty \) 闭形式，即 \(d\omega = 0 \)，就有
\[\omega = d\delta G(\omega) + H(\omega) . \]

由上式立即得到 \(H(\omega) \) 为 \(\omega \) 的 de Rham 上同调类中的调和 s 形式.

另一方面，如果 \(\omega_1, \omega_2 \in H^*, \omega_2 = \omega_1 + d\eta \)，则
\[(\omega_2 - \omega_1, \omega_2 - \omega_1) = (d\eta, \omega_2 - \omega_1) \]
\[= (\eta, \delta (\omega_2 - \omega_1)) = (\eta, 0) = 0, \]
\[\omega_2 - \omega_1 = 0 \]
即 \(\omega_2 = \omega_1 \).

因此，在每个 de Rham 上同调类中有唯一的调和代表.

设
\[f: H^*_2(M) \to H^*, \]
\[\{\omega\} \to g(\{\omega\}) = H(\omega) . \]

根据 Hodge 分解定理，有
\[H(\omega + d\eta) = H(\omega) . \]

因此，\(f \) 的定义是确切的．由定理的前半部分的结果知，\(f \) 为一一映射．另一方面，易知 \(f \) 为同态，因此 \(f \) 为同构.

证明 2 设 \(\omega \) 为 s 次闭形式，由 Hodge 分解定理，
\[\omega = d\alpha + \delta \beta + \gamma, \]
则
\[0 = d\omega = d(d\alpha + \delta \beta + \gamma) = d\delta \beta, \]
\[0 = (0, \beta) = (d\delta \beta, \beta) = (\delta \beta, \delta \beta), \]
\[\delta \beta = 0, \]
\[\omega = d\alpha + \gamma, \]
\[\{\omega\} = \{\gamma\}, \]
即 \(\gamma = H(\omega) \) 为 \(\{\omega\} \) 的调和代表.

其他与证明 1 相同．

定理 6 紧致定向的 \(C^\infty \) 流形 \(M \) 上的 de Rham 上同调群都是
有限维的。

证明 根据第1章1.3定理1，M上存在Riemann度量g，对(M, g)应用定理5，有

$$H^0_M(M) \approx H^*.$$

再由定理3知H^*是有限维的，从而$H^0_M(M)$也是有限维的。

引理7 设M为m维C^∞连通流形，则

$$H^0_M(M) \approx \mathbb{R}.$$

证明 因为$B^0_M(M) = dF^{-1}(M) = d(\{0\}) = \{0\}$，所以$H^0_M(M) = Z^0_M(M)$。如果$df = 0, f \in F^0(M)$，则对$\forall \ p \in M$，存在$p$的局部坐标系$(U, \varphi), \{x^i\}$使得

$$\varphi(U) = \{x = (x^1, \ldots, x^n) \in \mathbb{R}^n | \sum_{i=1}^n (x^i)^2 < 1\}.$$

由

$$0 = df|_v = \sum_{i=1}^n \frac{\partial (f \circ \varphi^{-1})}{\partial x^i} dx^i$$

得到$\frac{\partial (f \circ \varphi^{-1})}{\partial x^i} = 0, i = 1, \ldots, m$。这就蕴涵着$f|_v \equiv \text{常值}$. 由此可知，对固定点$p_0 \in M, M_1 = \{p \in M | f(p) = f(p_0)\}$ 和$M_2 = \{p \in M | f(p) \neq f(p_0)\}$均为开集。因为$p_0 \in M_1$，且$M$连通，故$M_2 = \emptyset, M_1 = M$，即$f|_M \equiv f(p_0) = \text{常值}$. 于是

$$H^0_M(M) = Z^0_M(M)$$

$$\approx \{f | f: M \to \mathbb{R} \text{为常值函数}\}$$

$$\approx \mathbb{R}.$$

定义4 设V和W都是实的有限维向量空间。V和W的配对是双线性函数$(,): V \times W \to \mathbb{R}$. 如果当$W$中的每个$w \neq 0$，必存在一个元素$v \in V$使得$(v, w) \neq 0$和$V$中的每个$v \neq 0$，必存在一个元素$w \in W$使得$(v, w) \neq 0$，则称配对$(,)$是非异的。

引理8 设$(,)$为V和W的非异配对。令

$$\varphi: V \to W^*(W \text{的对偶空间})$$

$$v \mapsto \varphi(v)$$
\[\varphi(v)(w) = (v, w), \quad v \in V, w \in W. \]

则 \(\varphi \) 为线性映射且为单射. 类似有单射 \(\psi: W \to V^* \). 更进一步, \(\dim V = \dim W \) 和 \(\varphi \) 和 \(\psi \) 都是同构.

证明 \(\varphi \) 为线性映射是显然的. 如果 \(\varphi(v_1) = \varphi(v_2) \), 则

\[
(v_1, w) = \varphi(v_1)(w) = \varphi(v_2)(w) = (v_2, w)
\]

\[
(v_1 - v_2, w) = 0, \quad \forall \ w \in W.
\]

若 \(v_1 - v_2 \neq 0 \), 由题设, \((, ,) \) 是非异配对, 故必存在 \(w \in W \) 使 \((v_1 - v_2, w) \neq 0 \), 矛盾, 所以 \(v_1 - v_2 = 0, v_1 = v_2, \varphi \) 是单射.

\(\varphi \) 是单射蕴含着 \(\dim V \leq \dim W \), 而 \(\psi \) 为单射蕴涵着 \(\dim V \geq \dim W \), 因此 \(\dim V = \dim W \), 由此还得到 \(\varphi, \psi \) 都是同构.

定理 7 (de Rham 上同调群的 Poincaré 对偶) 设 \(M \) 为 \(m \) 维紧致定向 \(C^\infty \) 流形, 则双线性函数

\[
(, ,): \ H^p_c(M) \times H^{p-1}_c(M) \to \mathbb{R},
\]

\[
\langle \varphi, \psi \rangle = \int_M \varphi \wedge \psi
\]

是非异配对, 从而它决定了一个同构

\[
H^p_c(M) \cong (H^{p-1}_c(M))^*,
\]

其中 \((H^{p-1}_c(M))^* \) 为 \(H^{p-1}_c(M) \) 的对偶空间. 由此还可得到

\[
H^0_c(M) \cong H^{m-1}_c(M).
\]

证明 首先验证上述函数 \((, ,) \) 与上同调类 \(\varphi \) 和 \(\psi \) 的代表元的选取无关. 事实上, 由 Stokes 定理, \(\partial M = \emptyset \) 和 \(d\varphi = 0, d\psi = 0 \), \(d^2 = 0 \) 得到

\[
\int_M (\varphi + d\xi) \wedge (\psi + d\eta)
\]

\[
= \int_M \varphi \wedge \psi + \int_M d\varphi \wedge d\eta + \int_M d\xi \wedge \psi + \int_M d\xi \wedge d\eta
\]

\[
= \int_M \varphi \wedge \psi + (-1)^s \left[\int_M d(\varphi \wedge \eta) - \int_M d\varphi \wedge \eta \right]
\]

\[
+ \left[\int_M d(\xi \wedge \psi) - (-1)^{s-1} \int_M \xi \wedge d\psi \right]
\]

362
$$+ \left[\int_M \partial (\xi \wedge d\eta) - (-1)^{s-1} \int_M \partial^\eta \wedge d^s \eta \right]$$

$$= \int_M \partial \phi \wedge \eta + (-1)^s \int_M \partial \phi \wedge \eta + \int_{\partial M} \partial \xi \wedge \psi + \int_{\partial M} \partial \xi \wedge \partial \eta$$

$$= \int_M \partial \phi \wedge \psi.$$

另一方面，容易看出 (,) 是双线性的，下面验证 (,) 是非对称的。已给非零上同调类 \(\phi \in H^s_\partial (M) \)，我们必须找到一个非零上同调类 \(\psi \in H^{s-1}_\partial (M) \)。根据第 1 章 1.3 定理 1，在 \(M \) 上可以选一个 \(C^\infty \) Riemann 度量 \(g \)，从而由定理 5 可以假定 \(\phi \) 是调和代表。因为上同调类 \(\phi \) 是非零的，故 \(\phi \) 不恒等于 0。从 \(\ast A = A \ast \) 可见 \(\ast \varphi \) 也是调和的，由引理 2 知它是闭的，所以 \(\ast \varphi \) 为 de Rham 上同调类 \(\ast \varphi \in H^s_\partial \) 的调和代表。于是

\[
\langle \langle \phi, \langle \ast \varphi \rangle \rangle \rangle = \int_M \partial \phi \wedge \ast \varphi = \langle \langle \phi, \varphi \rangle \rangle \wedge \partial \varphi = \| \varphi \|^2 \neq 0.
\]

因此，配对 (,) 是非对称的，故从引理 8 推出它决定了一个同构：

\[
H^s_\partial (M) \cong (H^{s-1}_\partial (M))^*.
\]

推论 1 如果 \(M \) 为 \(m \) 维紧致定向连通的 \(C^\infty \) 流形，则

\[
H^s_\partial (M) \cong \mathbb{R}.
\]

证明 由 Poincaré 对偶定理和 \(H^s_\partial (M) = \mathbb{R} \)（见引理 6）立知

\[
H^s_\partial (M) \cong (H^s_\partial (M))^* \cong \mathbb{R}.
\]

4.3 不可定向紧致 \(C^\infty \) Riemann 流形的 Hodge 分解定理

本节先引进定向覆盖流形的概念，然后证明不可定向紧致 \(C^\infty \) Riemann 流形的 Hodge 分解定理。

设 \(M \) 为 \(m \) 维 \(C^\infty \) 流形（称为底空间），\(M \) 的一个覆盖是由一个...
\(C^\infty\) 流形 \(\widetilde{M}\) (称为覆盖空间) 和一个 \(C^\infty\) 映射 (称为投影映射) \(\pi: \widetilde{M} \to M\) 组成，使得存在一个 \(M\) 的开覆盖 \(\{U_\alpha | \alpha \in \Gamma\}\), 对 \(\pi^{-1}(U_\alpha)\) 的每个
连通分支 \(\widetilde{U}_\alpha, \pi|_{\widetilde{U}_\alpha}: \widetilde{U}_\alpha \to U_\alpha\) 为 \(C^\infty\) 微分同胚。如果对任何 \(p \in M\),
\(\pi^{-1}(p)\) 的数目为定数 \(n\), 则称 \(n\) 为此覆盖的层数。

定义 1 设 \(T^*M\) 为 \(M\) 的余切丛，\(\wedge^* T^*\) 为 \(m\) 次 \(C^\infty\) 外形式丛(秩 1 的 \(C^\infty\) 向量丛)。如果在 \(\wedge^* T^*M - \{0\}\) 中引进等价关系：
\(\alpha(p) \sim \beta(p) \Leftrightarrow \beta(p) = \lambda \alpha(p), \lambda > 0\) 且在等价类集合 \(\widetilde{M}\) 中引进商拓扑，则 \(\widetilde{M}\) 和典型投影 \(\pi: \widetilde{M} \to M, \{\alpha(p)\} \to \pi(\{\alpha(p)\}) = p\) 为 \(M\) 的
2 层覆盖,称为 \(M\) 的定向覆盖。也可在几何上描述如下: 给
\(\widetilde{M} = \{\mu, \mu_\tau\text{ 为 } T\mu\text{ 一个定向 }, p \in M\}\)
一个 \(C^\infty\) 微分构造,使得
\[\pi: \widetilde{M} \to M, \pi(\mu) = p,\]
为局部 \(C^\infty\) 微分同胚,于是 \((\widetilde{M}, M, \pi)\) 为 \(M\) 的 (2 层) 定向覆盖 (参阅
[BJ]p35—36 和[伍]120—121 页)。

设 \(\gamma: [0, 1] \to M\) 为一连续曲线, 一族定向 \(\{\mu(0) | \mu(\tau)\text{ 为 } T\gamma(\tau)M\)
的一个定向) 称为沿 \(\gamma(t)\) 连续的, 如果存在 \(\widetilde{M}\) 中的连续曲线 \(\widetilde{\gamma}: [0, 1] \to \widetilde{M}\) 使 \(\widetilde{\gamma}(t) = \mu(\tau)\) 和 \(\pi \circ \widetilde{\gamma} = \gamma\). 利用 \(M\) 可定向的充要条件(对
\(M\) 中任何闭连续曲线 \(\gamma: [0, 1] \to M\) 和 \(\widetilde{M}\) 中的连续曲线 \(\widetilde{\gamma}: [0, 1] \to
\widetilde{M}, \pi \circ \widetilde{\gamma} = \gamma,\) 必有 \(\widetilde{\gamma}(0) = \widetilde{\gamma}(1))\) 可得:

引理 1 设 \(M\) 为 \(m\) 维连通 \(C^\infty\) 流形, 则 \(M\) 可定向 \(\iff \widetilde{M} \cong M \times \mathbb{Z}_2\) (恰为两个连通分支); \(M\) 不可定向 \(\iff \widetilde{M}\) 连通。

以下的几个引理是十分有用的。

引理 2 \(\widetilde{M}\) 可定向,又当 \(M\) 紧致时, \(\widetilde{M}\) 也紧致。

证明 (反证) 若 \(\widetilde{M}\) 不可定向,则存在一条封闭曲线 \(\widetilde{\gamma}: [0, 1] \to \widetilde{M},\) 而 \(\{\mu(0)\}\) 为沿 \(\gamma\) 的 \(\widetilde{M}\) 的一族连续的定向, 且 \(\mu(\tau) \neq \mu(\tau_1)\). 从而
\(\{\mu(0) = \pi \circ \widetilde{\gamma}\} \neq \mu(\tau_1)\). 因为 \(\pi\) 为局部 \(C^\infty\) 微分同胚, 故提升是唯一的. 于是, \(\widetilde{\gamma}(t) = \mu(\gamma(t))\), 从而 \(\mu(\tau_1) = \mu(\tau)\), \(\gamma(0) = \widetilde{\gamma}(1) = \mu(\tau_1)\), 矛盾. 这就证明了 \(\widetilde{M}\)
是可定向的.
设 $\{\tilde{U}_x | \alpha \in \Gamma \}$ 为 \tilde{M} 的任一开覆盖。取 \tilde{M} 的另一开覆盖 $\{\tilde{V}_i, \tilde{V}_j | \beta \in \mu \}$，使得 $\tilde{V}_i \subset \tilde{U}_{\alpha(\beta)}$, $i = 1, 2$（某个 $\alpha(\beta)$）且 $\tilde{V}_i \cup \tilde{V}_j = \pi^{-1}(\pi(\tilde{V}_i)), \tilde{V}_i \cap \tilde{V}_j = \emptyset, \pi; \tilde{V}_i \rightarrow \pi(\tilde{V}_i)$ 为 C^∞ 微分同胚，$i = 1, 2$。

如果 M 紧致，则存在 $\{\pi(\tilde{V}_j) | \beta \in \mu \}$ 的有限子覆盖 $\{\pi(\tilde{V}_j) | j = 1, \ldots, k \}$。于是，$\{\tilde{U}_x | i = 1, 2; j = 1, \ldots, k \}$ 为 \tilde{M} 的开覆盖和 $\{\tilde{U}_x(\beta) | i = 1, 2; j = 1, \ldots, k \}$ 为 $\{\tilde{U}_x | \alpha \in \Gamma \}$ 的有限子覆盖。这就证明了 \tilde{M} 也是紧致的。

如果 μ_τ^{-1} 表示 μ_τ 的反定向。令

$\tau: \tilde{M} \rightarrow \tilde{M}, \quad \tau(\mu_\tau) = \mu_\tau^{-1},$

则 τ 是无不动点的对合映射。即 τ 无不动点，且 $\tau \cdot \tau = \text{Id}_{\tilde{M}}$。记

$F^*(\tilde{M})^\pm = \{\tilde{\omega} \in F^*(\tilde{M}) | \tau^* \tilde{\omega} = \pm \tilde{\omega} \},$

$F(\tilde{M})^\pm = \bigoplus_{i=0}^{m} F^*(\tilde{M})^\pm.$

引理 3 $F^*(\tilde{M}) = F^*(\tilde{M})^+ \oplus F^*(\tilde{M})^-,$

$F(\tilde{M}) = F(\tilde{M})^+ \oplus F(\tilde{M})^-,$

且 $F(\tilde{M})^+$ 和 $F(\tilde{M})^-$ 都是 \tilde{d} 的不变子空间。

证明 对任意 $\tilde{\omega} \in F^*(\tilde{M}), \tilde{\omega} = \frac{1}{2}(\tilde{\omega} + \tau^* \tilde{\omega}) + \frac{1}{2}(\tilde{\omega} - \tau^* \tilde{\omega}),$

从 $\tau \cdot \tau = \text{Id}_{\tilde{M}}, \tau \cdot \tau = \text{Id}_{\tilde{M}}$ 得到

$\frac{1}{2}(\tilde{\omega} \pm \tau^* \tilde{\omega}) \in F^*(\tilde{M})^\pm,$

$F^*(\tilde{M}) = F^*(\tilde{M})^+ + F^*(\tilde{M})^-.$

若 $\tilde{\omega} \in F^*(\tilde{M})^+ \cap F^*(\tilde{M})^-$，则有

$\tilde{\omega} = \tau^* \tilde{\omega} = - \tilde{\omega}, \quad 2\tilde{\omega} = 0, \quad \tilde{\omega} = 0,$

故有直和：$F^*(\tilde{M}) = F^*(\tilde{M})^+ \oplus F^*(\tilde{M})^-.$

因为 $\tilde{d} \cdot \tau^* = \tau^* \cdot \tilde{d}$，故对任意 $\tilde{\omega} \in F(\tilde{M})^\pm$ 有

$\tau^*(\tilde{d} \tilde{\omega}) = \tilde{d}(\tau^* \tilde{\omega}) = \tilde{d}(\pm \tilde{\omega}) = \pm \tilde{d}(\tilde{\omega}),$

$\tilde{d} \tilde{\omega} \in F(\tilde{M})^\pm$，即 $F(\tilde{M})^\pm$ 为 \tilde{d} 的不变子空间。

引理 4 记 $\tilde{d} = \tilde{d}^\tau: F^*(\tilde{M})^\pm \rightarrow F^{*-1}(\tilde{M})^\pm$，则有

$H_{\tilde{d}}^*(\tilde{M}) \approx H_{\tilde{d}}^*(\tilde{M})^+ \oplus H_{\tilde{d}}^*(\tilde{M})^-.$

365
证明 根据引理 3，有
\[\text{Ker} \tilde{d}_* = \text{Ker} \tilde{d}_+^* \oplus \text{Ker} \tilde{d}_-^*, \]
\[\text{Im} \tilde{d}_{s-1} = \text{Im} \tilde{d}_{s-1}^+ \oplus \text{Im} \tilde{d}_{s-1}^-, \]
\[H_{\tilde{d}}(\tilde{M}) = \text{Ker} \tilde{d}_*/\text{Im} \tilde{d}_{s-1} \]
\[\approx \text{Ker} \tilde{d}_+^*/\text{Im} \tilde{d}_{s-1}^+ \oplus \text{Ker} \tilde{d}_-^*/\text{Im} \tilde{d}_{s-1}^- \]
\[= H_{\tilde{d}}(\tilde{d})^+ \oplus H_{\tilde{d}}(\tilde{d})^-. \]

引理 5 \(\pi^* = \pi^*: F^*(M) \rightarrow F^*(\tilde{M}) \) 为单同态，且 \(\text{Im} \pi^* = F^*(\tilde{M})^+ \) 和 \(\pi^*: F^*(M) \rightarrow F^*(\tilde{M})^+ \) 为同构。

证明 若 \(\pi^* \omega = 0 \)，由 \(\pi \) 为局部 \(C^\infty \) 微分同胚知 \(\omega = 0 \)，故 \(\pi^* \) 为单同态。

对任意 \(\omega \in F^*(M) \)，从 \(\pi \circ \tau = \pi \) 得到 \(\tau^*(\pi^* \omega) = (\pi \circ \tau)^* \omega = \pi^* \omega \)，故 \(\pi^* \omega \in F^*(\tilde{M})^+ \)。

反之，对任意 \(\tilde{\omega} \in F^*(\tilde{M})^+ \)，由 \(\pi \) 局部 \(C^\infty \) 微分同胚和 \(\tau^* \tilde{\omega} = \tilde{\omega} \) 可推出存在 \(\omega \in F^*(M) \) 使得 \(\pi^* \omega = \tilde{\omega} \)。因此，\(\text{Im} \pi^* = F^*(\tilde{M})^+ \) 和 \(\pi^*: F^*(M) \rightarrow F^*(\tilde{M})^+ \) 为同构。

因为 \(\tilde{d} \circ \pi^* = \pi^* \circ d \)，故 \(\pi^* \) 诱导了 de Rham 上同调群的同态，仍记为 \(\pi^* \)，则有

定理 1 \(\pi^*: H_{\tilde{d}}(M) \rightarrow H_{\tilde{d}}(\tilde{M}) \) 为单同态，且 \(\pi^*(H_{\tilde{d}}(M)) = H_{\tilde{d}}(\tilde{M})^+ \) 和 \(\pi^*: H_{\tilde{d}}(M) \rightarrow H_{\tilde{d}}(\tilde{M})^+ \) 为同构。

由此及引理 4 可有 \(H_{\tilde{d}}(\tilde{M}) \approx H_{\tilde{d}}(M)^+ \oplus H_{\tilde{d}}(\tilde{M})^- \)。

证明 若 \(\pi^* \{\omega_1\} = \pi^* \{\omega_2\} \)，则 \(\pi^* \{\omega_1 - \omega_2\} = \{0\} \)，
\[\tilde{d}_{s-1} \tilde{\eta}^+ \oplus \tilde{d}_{s-1} \tilde{\eta}^- = \tilde{\eta}^+ + \tilde{\eta}^- = \tilde{d}_{s-1} \tilde{\eta} = \pi^*(\omega_1 - \omega_2) \in F^*(\tilde{M})^+ \]
其中 \(\tilde{\eta} \in F^{s-1}(\tilde{M})^+ \)，从而 \(\tilde{d}_{s-1} \tilde{\eta}^- = 0 \)。
\[\pi^* \omega_1 - \pi^* \omega_2 = \tilde{d}_{s-1} \tilde{\eta}^+ = \tilde{d}_{s-1} \pi^* \tilde{\eta} = \pi^* \tilde{d}_{s-1} \eta, \]
再由 \(\pi^* \) 为同构得到 \(\omega_1 - \omega_2 = \tilde{d}_{s-1} \eta, \{\omega_1\} = \{\omega_2\} \)，即 \(\pi^* \) 为单同态。

另一方面，设 \(\{\xi\} \in H_{\tilde{d}}(\tilde{M})^+, \xi \in F^*(\tilde{M})^+, d_\xi = 0 \)。由 \(\pi^*: F^*(M) \rightarrow F^*(\tilde{M})^+ \) 为同构，则存在 \(\omega \in F^*(M) \) 使 \(\pi^* \omega = \xi \)。由于 \(\xi \) 为闭形式，故 \(\pi^* d\omega = d_\xi \pi^* \omega = d_\xi \xi = 0 \)。\(\pi^* \) 为单同态导致 \(d\omega = 0 \)。
从而 $\pi^*_s(\langle \omega \rangle) = \langle \pi^*_s \omega \rangle = \langle \xi \rangle$. 这就证明了 π^*_s 为满同态。

综合上述，$\pi^*_s : H^*_\omega(M) \to H^*_\omega(\tilde{M})$ 为同构。

对于不可定向的 m 维 C^∞ Riemann 流形 (M, g) 上的上微分算子 δ 和 Laplace 算子 Λ, 可以从另一角度来研究它们。令 $\tilde{g} = \pi^* g$, 则从引理 2 和 \tilde{g} 定义知，(\tilde{M}, \tilde{g}) 为 m 维定向 C^∞ Riemann 流形，且 π 为局部等距变换。在 (\tilde{M}, \tilde{g}) 上有 Hodge 星算子 $\tilde{*}$，上微分算子 $\tilde{\delta}$ 和 Laplace 算子 $\tilde{\Lambda}$，则有

引理 6 $F^*(\tilde{M})^\pm$ 为 $\tilde{\delta}$ 和 $\tilde{\Lambda}$ 的不变子空间。

证明 由于 $\pi \circ \tau = \pi$, 故 $(\tau^* \tilde{g}) = \tau^* \pi^* g = (\pi \circ \tau)^* g = \pi^* g = \tilde{g}$. 另一方面，不难看出 $\tau : \tilde{M} \to M$ 反转定向，因此，$\tau^* \tilde{*} = - \tilde{*} \tau^*$, $\tau^* \tilde{\delta} = \tilde{\delta} \tau^*$, $\tau^* \tilde{\Lambda} = \Lambda \tau^*$. 类似引理 3 中 $F^*(\tilde{M})^\pm$ 为 $\tilde{\delta}$ 的不变子空间的证明立即得到 $F^*(\tilde{M})^\pm$ 为 $\tilde{\delta}$ 和 $\tilde{\Lambda}$ 的不变子空间。

令 $\tilde{\delta}^\pm = \delta ; F^*(\tilde{M})^\pm \to F^{*-1}(\tilde{M})^\pm, \Lambda^\pm = \Lambda; F^*(\tilde{M})^\pm \to F^*(\tilde{M})^\pm$，由 π 为局部 C^∞ 等距变换明显地得到

引理 7 $\tilde{d}^+ \pi^* = \pi^* d, \tilde{\delta}^+ \pi^* = \pi^* \delta, \Lambda^+ \pi^* = \pi^* \Lambda$。

由引理 3, 6, 7 和定理 1 知，要考虑 $F^*(M)$ 上的 Laplace 算子 Λ, 只需考虑 $F^*(\tilde{M})^+$ 上的 Laplace 算子 Λ^+。

设 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 为 m 维不可定向的紧致 C^∞ Riemann 流形，则从引理 2 知，$(\tilde{M}, \tilde{g}) = (\tilde{M}, \pi^* g)$ 为 m 维定向紧致 C^∞ Riemann 流形。由 π 为局部 C^∞ 等距变换和 3.2，在 $F^*(\tilde{M})$ 上可定义内积

$$(\tilde{\omega}, \tilde{\eta}) = \int_{\tilde{M}} \tilde{\omega} \wedge \tilde{*} \tilde{\eta} = \int_{\tilde{M}} \langle \tilde{\omega}, \tilde{\eta} \rangle \tilde{*} 1$$

$$= \int_{\tilde{M}} \langle \tilde{\omega}, \tilde{\eta} \rangle dV_{\tilde{\eta}}.$$

它自然可延拓为 $F(\tilde{M}) = \bigoplus_{s=0}^m F^s(\tilde{M})$ 上的内积。于是，利用 $F^*(\tilde{M})^+$ 和 $F(\tilde{M})^+$ 上的内积定义 $F^*(M)$ 和 $F(M)$ 上的内积如下：

$$(\omega, \eta) = (\pi^* \omega, \pi^* \eta)$$

367
\[= \int_{\tilde{\mathcal{M}}} \pi^* \omega \wedge \tilde{*} (\pi^* \eta) = \int_{\tilde{\mathcal{M}}} (\pi^* \omega, \pi^* \eta) dV_i. \]

引理 8 \(F^*(\tilde{\mathcal{M}})^+ \succeq F^*(\tilde{\mathcal{M}})^- \)，因而 \(F^*(\tilde{\mathcal{M}}) = F^*(\tilde{\mathcal{M}})^+ \oplus F^*(\mathcal{M})^- \)
为正交直和分解。

证明 由于 \(\tau : \tilde{\mathcal{M}} \to \mathcal{M} \) 反转定向，故对 \(\tilde{\omega} \in F^*(\tilde{\mathcal{M}})^+ \)，\(\tilde{\eta} \in F^*(\tilde{\mathcal{M}})^- \) 有

\[
(\tilde{\omega}, \tilde{\eta}) = \int_{\tilde{\mathcal{M}}} \tilde{\omega} \wedge \tilde{*} \tilde{\eta} = \int_{\tau_* \tilde{\mathcal{M}}} \tau^*(\tilde{\omega} \wedge \tilde{*} \tilde{\eta})
= \int_{-\tilde{\mathcal{M}}} \tau^* \tilde{\omega} \wedge \tau^* (\tilde{*} \tilde{\eta}) = \int_{-\tilde{\mathcal{M}}} \tilde{\omega} \wedge (\tilde{\eta} \wedge \tilde{*} \tilde{\eta})
= -\int_{\tilde{\mathcal{M}}} \tilde{\omega} \wedge (\tilde{*} \tilde{\eta}) = -(\tilde{\omega}, \tilde{\eta}),
(\tilde{\omega}, \tilde{\eta}) = 0, \quad \text{即} \tilde{\omega} \perp \tilde{\eta}.
\]

引理 9 (1) \((d\omega, \eta) = (\omega, \delta \eta), \omega, \eta \in F^{s-1}(\mathcal{M}), \eta \in F^s(\mathcal{M}) \)，即 \(d \) 和 \(\delta \) 互为伴随算子。
(2) \((\Lambda \omega, \eta) = (\omega, \Lambda \eta), \omega, \eta \in F^s(\mathcal{M}) \)，即 \(\Lambda \) 为自伴随线性算子。
(3) \((\Lambda \omega, \omega) \geq 0 \)；且 \(\Lambda \omega = 0 \)，即 \(\omega \) 为 \(s \) 次调和形式 \(\Leftrightarrow (\Lambda \omega, \omega) = 0 \Leftrightarrow d\omega = 0 \) 和 \(\delta \omega = 0 \)。

证明 (1) \((d\omega, \eta) = (\pi^* d\omega, \pi^* \eta) = (\bar{d} \pi^* \omega, \pi^* \eta) = (\pi^* \omega, \bar{d} \pi^* \eta) = (\pi^* \omega, \pi^* \delta \eta) = (\omega, \delta \eta) \)。
(2), (3) 参阅 4.2 引理 2 的证明。

定理 2 (Hodge 分解定理) 对于任何 \(s = 0, 1, \ldots, m, H^s(\tilde{\mathcal{M}})^\pm = \text{Ker} \Lambda^\pm \) 是有限维的，且有下面的正交直和分解：

\[
F^s(\tilde{\mathcal{M}})^\pm = \Lambda^\pm F^s(\tilde{\mathcal{M}}) \oplus H^s(\tilde{\mathcal{M}})^\pm
= \bar{d}^\pm \delta^s(\tilde{\mathcal{M}})^\pm \oplus \delta^s \bar{d}^\pm (\tilde{\mathcal{M}})^\pm \oplus H^s(\tilde{\mathcal{M}})^\pm
= \bar{d}^\pm (F^{s-1}(\mathcal{M})^\pm \oplus \delta (F^{s+1}(\tilde{\mathcal{M}})^\pm \oplus H^s(\tilde{\mathcal{M}})^\pm.
\]

换句话说，若 \(\tilde{\omega} \in F^s(\tilde{\mathcal{M}})^\pm \)，则存在 \(\tilde{\alpha} \in F^s - 1(\mathcal{M})^\pm, \tilde{\beta} \in F^{s+1}(\tilde{\mathcal{M}})^\pm, \tilde{\gamma} \in H^s(\tilde{\mathcal{M}})^\pm \) 使得 \(\tilde{\omega} = \bar{d}^\pm \tilde{\alpha} + \delta^s \tilde{\beta} + \tilde{\gamma} \) 且 \(\bar{d}^\pm \tilde{\alpha}, \delta^s \tilde{\beta}, \tilde{\gamma} \) 是唯一的。

证明 因为 \(F^s(\tilde{\mathcal{M}})^\pm \) 是 \(\bar{d}, \delta, \Lambda \) 的不变子空间，故

368
\[\partial_{s-1}(F^{s-1}(\tilde{\mathcal{M}})) = \partial_{s-1}(F^{s-1}(\tilde{\mathcal{M}})^+) \oplus \partial_{s-1}(F^{s-1}(\tilde{\mathcal{M}})^-), \]
\[\partial_{s+1}(F^{s+1}(\tilde{\mathcal{M}})) = \partial_{s+1}(F^{s+1}(\tilde{\mathcal{M}})^+) \oplus \partial_{s+1}(F^{s+1}(\tilde{\mathcal{M}})^-), \]
\[\Delta_s(F^s(\tilde{\mathcal{M}})) = \Delta_s^+(F^s(\tilde{\mathcal{M}})^+) \oplus \Delta_s^-(F^s(\tilde{\mathcal{M}})^-), \]
\[H^s(\tilde{\mathcal{M}}) = H^s(\tilde{\mathcal{M}})^+ \oplus H^s(\tilde{\mathcal{M}})^-. \]

再由

\[F^s(\tilde{\mathcal{M}}) = \Delta_s(F^s(\tilde{\mathcal{M}})) \oplus H^s(\tilde{\mathcal{M}}) \]
\[= \partial_{s-1}(F^{s-1}(\tilde{\mathcal{M}})) \oplus \partial_{s+1}(F^{s+1}(\tilde{\mathcal{M}})) \oplus H^s(\tilde{\mathcal{M}}) \]

和正交直和分解

\[F^s(\tilde{\mathcal{M}}) = F^s(\tilde{\mathcal{M}})^+ \oplus F^s(\tilde{\mathcal{M}})^- \]

立即推出正交直和分解

\[F^s(\tilde{\mathcal{M}})^\pm = \Delta^\pm_s(F^s(\tilde{\mathcal{M}})) \oplus H^s(\tilde{\mathcal{M}})^\pm \]
\[= \partial^\pm_s(F^{s-1}(\tilde{\mathcal{M}})^\pm) \oplus \partial^\pm_s(F^{s+1}(\tilde{\mathcal{M}})^\pm) \oplus H^s(\tilde{\mathcal{M}})^\pm \]
\[= \partial^\pm_s(F^{s-1}(\tilde{\mathcal{M}})^\pm) \oplus \partial^\pm_s(F^{s+1}(\tilde{\mathcal{M}})^\pm) + H^s(\tilde{\mathcal{M}})^\pm. \]

此外，从 \(H^s(\tilde{\mathcal{M}})^\pm \subset H^s(\tilde{\mathcal{M}}) \) 和 \(H^s(\tilde{\mathcal{M}}) \) 有限维立即推出 \(H^s(\tilde{\mathcal{M}})^\pm \) 是有限维的.

定理3 (Hodge 分解定理）\设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为 \(m\) 维不可定向的紧致 \(C^\infty\) Riemann 流形. 对于任何 \(s = 0, 1, \ldots, m, H^s(M) = \text{Ker} \Delta_s = \{\omega \in F^s(M) | \Delta_s \omega = 0 \} \) 是有限维的，且有以下的正交直和分解

\[F^s(M) = \Delta_s(F^s(M)) \oplus H^s(M) \]
\[= d\delta(F^s(M)) \oplus \delta d(F^s(M)) \oplus H^s(M) \]
\[= d(F^{s-1}(M)) \oplus \delta(F^{s+1}(M)) \oplus H^s(M). \]

换句话说，若 \(\omega \in F^s(M)\)，则存在 \(\alpha \in F^{s-1}(M), \beta \in F^{s+1}(M), \gamma \in H^s(M)\)，使得 \(\omega = d\alpha + \delta \beta + \gamma\)，且 \(d\alpha, \delta \beta, \gamma\) 是唯一的．

证明 应用定理2，引理5和7．

上面给出了不可定向 \(m\) 维 \(C^\infty\) 紧致 Riemann 流形上的 Hodge 分解定理，这使我们可以将定向 \(m\) 维 \(C^\infty\) 紧致 Riemann 流形中应用 Hodge 分解定理得到的一些结果推广到不可定向的情形．
定理 4（Hodge 同构定理） 设 \((M, g) = (M, \langle, \rangle)\) 为 \(m\) 维紧致 \(C^\infty\) Riemann 流形，则 \(f: H^r_d(M) \to H^r, \{\omega\} \to f(\{\omega\}) = H(\omega)\) 为同构，或 \(f^{-1}: H^r \to H^r_d(M), \omega \to f^{-1}(\omega) = \{\omega\}\) 为同构。

证明 从定理 3 和 4.2 定理 5 立即得到。我们重新讨论如下：

若 \(\omega_1, \omega_2 \in H^r(M), \) 且 \(\{\omega_1\} = f^{-1}(\omega_1) = f^{-1}(\omega_2) = \{\omega_2\}\)，则 \(\delta \omega_1 = \delta \omega_2 = 0, \omega_1 - \omega_2 = d\eta\)。于是，

\[
\begin{align*}
(\omega_1 - \omega_2, \omega_1 - \omega_2, d\eta) &= (\omega_1 - \omega_2, d\eta) \\
&= (\delta \omega_1 - \delta \omega_2, \eta) = (0, \eta) = 0 \\
\omega_1 - \omega_2 &= 0, \omega_1 = \omega_2.
\end{align*}
\]

故 \(f^{-1}\) 为单射。

对任何 \(\{\omega\} \in H^r_d(M)\)，则 \(d\omega = 0\)。由 Hodge 分解定理，令 \(\omega = d\alpha + \delta \beta + \gamma, \gamma \in H^r(M)\)。则

\[
0 = d\omega = d\delta \beta + d\gamma = d\delta \beta
\]

\[
0 = (0, \beta) = (d\delta \beta, \beta) = (\delta \beta, \delta \beta),
\]

\[
\delta \beta = 0, \quad \omega = d\alpha + \gamma
\]

和

\[
f^{-1}(\gamma) = \{\gamma\} = \{d\alpha + \gamma\} = \{\omega\}.
\]

这证明 \(f^{-1}\) 为满射。因而，\(f^{-1}\) 为同构。

类似定理 4，有

推论 1 设 \((M, g) = (M, \langle, \rangle)\) 为 \(m\) 维不可定向的紧致 \(C^\infty\) Riemann 流形，\((\tilde{M}, \tilde{g})\) 如 4.2 所述，则

\[
\tilde{f}_\pm^{-1}: H^r(\tilde{M})^\pm \to H^r_d(\tilde{M})^\pm,
\]

\[
\tilde{\omega} \to \tilde{f}_\pm^{-1}(\tilde{\omega}) = \{\tilde{\omega}\}
\]

为同构。且每个 de Rham 上同调类 \(\{\tilde{\omega}^\pm\} \in H^r_d(\tilde{M})^\pm\) 必存在唯一的调和代表 \(\tilde{\gamma}^\pm \in H^r(\tilde{M})^\pm\)。

定理 5 设 \((M, g) = (M, \langle, \rangle)\) 为 \(m\) 维紧致 \(C^\infty\) Riemann 流形，对任意 \(\alpha \in F^r(M), \Delta \omega = \alpha\) 有解 \(\omega \in F^r(M)\Leftrightarrow\) 对任意 \(\gamma \in H^r(M), \gamma \perp \alpha, \) 即 \(\langle \gamma, \alpha \rangle = 0\)。或 \(\alpha \in (H^r(M))^\perp\)。

证明 参阅 4.2 定理 4 的证明。
类似定理 5，有

推论 2 设 \((M,g) = (M,\langle , \rangle)\) 为 \(m\) 维不可定向的紧致 \(C^\infty\) Riemann 流形，\((\tilde{M},\tilde{g})\) 如 4.2 所述。如果 \(\tilde{a} \in F^r(\tilde{M})^\pm\)，则 \(\Delta \tilde{\omega} = \tilde{a}\) 有解 \(\tilde{\omega} \in F^r(\tilde{M})^\pm\iff\) 对任意 \(\tilde{\gamma} \in H^r(\tilde{M})^\pm\)，有 \(\tilde{\alpha} \perp \tilde{\gamma}\)，即 \(\langle \tilde{\gamma}, \tilde{\alpha} \rangle = 0\) 或 \(\tilde{\alpha} \in (H^r(\tilde{M})^\pm)^\perp\)。

最后，从变分观点来研究 \(\Lambda \omega = 0\)。为此，称 \(\epsilon(\alpha) = (\alpha, \alpha)\) 为 \(\alpha \in F^r(M)\) 的能量函数，则有

定理 6 设 \((M,g) = (M,\langle , \rangle)\) 为 \(m\) 维紧致 \(C^\infty\) Riemann 流形，则 \(\Lambda \omega = 0\)，即 \(\omega\) 为闭和形式 \(\Leftrightarrow \omega\) 为闭形式，且对任意 \(\alpha \in \{\omega\}\)，有 \(\epsilon(\omega) \leq \epsilon(\alpha)\)。

证明 \((\Rightarrow)\) 若 \(\Lambda \omega = 0\)，则 \(d\omega = 0\) 和 \(\delta \omega = 0\) 且对任何 \(\alpha \in \{\omega\}\)，\(\alpha = \omega + d\eta\) 有 \(\omega, d\eta = (\delta \omega, \eta) = (0, \eta) = 0\) 和

\[
\epsilon(\alpha) = \epsilon(\omega + d\eta) = (\omega + d\eta, \omega + d\eta) = \epsilon(\omega) + \epsilon(d\eta) + 2(\omega, d\eta) = \epsilon(\omega) + \epsilon(d\eta) \geq \epsilon(\omega).
\]
显然，等号成立 \(\Leftrightarrow \epsilon(d\eta) = (d\eta, d\eta) = 0 \Leftrightarrow d\eta = 0\)，即 \(\alpha = \omega\)。

\((\Leftarrow)\) 作一变分 \(\omega + td\eta\)，则有

\[\epsilon(\omega) \leq \epsilon(\omega + td\eta)\]

得到

\[
0 = \frac{d}{dt} \bigg|_{t=0} \epsilon(\omega + td\eta) = \frac{d}{dt} \bigg|_{t=0} \left[t^2 \epsilon(d\eta) + 2t(\omega, d\eta) + \epsilon(\omega) \right] = \left[2t \epsilon(d\eta) + 2(\omega, d\eta) \right]_{t=0} = 2(\omega, d\eta) = 2(\delta \omega, \eta).
\]
特别取 \(\eta = \delta \omega\)，则 \(\delta(\omega, \delta \omega) = 0 \Leftrightarrow \delta \omega = 0\)。故再由 \(d\omega = 0\) 就可得

\[\Lambda \omega = (d\delta + \delta d) \omega = d0 + \delta 0 = 0,
\]
即 \(\omega\) 为闭和形式。

读者也可应用上面的必要性和 4.2 定理 5 推得充分性。
4.4 Laplace 算子 Δ 的特征值

设 $(M,g) = (M,\langle,\rangle)$ 为 m 维 C^∞ 向量紧致 Riemann 流形. 本节主要研究 $F^s(M) = C^\infty(\bigwedge^s M)$ 上的 Laplace-Beltrami 算子 Δ 的特征值的性质.

定义 1 如果对实数 λ 存在一个不恒为 0 的 C^∞ 形式 ω 使得 $\Delta \omega = \lambda \omega$, 则 λ 称为 Δ 的**特征值**. 对于特征值 λ, 称满足 $\Delta \omega = \lambda \omega$ 的 C^∞ 形式 ω 为对应于特征值 λ 的 Δ 的**特征形式**. 称 $F^s(M)$ 的线性子空间 $E_\lambda(M) = \{ \omega \in F^s(M) | \Delta \omega = \lambda \omega \}$ 为特征值 λ 的**特征空间**.

引理 1 关于 Δ 的特征值有以下性质:

(1) Δ 的特征值是非负的;
(2) Δ 的特征空间是有限维的;
(3) 特征值无有限的聚点;
(4) 对应于不同的特征值的特征形式是正交的.

证明 (1) 设 λ 为 Δ 的特征值, 则存在不恒为 0 的 C^∞ 形式 ω 使得 $\Delta \omega = \lambda \omega$, $\| \omega \| = \sqrt{\langle \omega, \omega \rangle} = 1$, 则

$$
\lambda = \langle \lambda \omega, \omega \rangle = (\Delta \omega, \omega)
\geq 0;
$$

(4) 设 $\lambda \neq \mu, \mu$ 都为 Δ 的特征值, u 和 v 是分别对应于 λ 和 μ 的特征形式, 即 $\Delta u = \lambda u, \Delta v = \mu v$, 则

$$
\lambda(u,v) = (\lambda u, v) = (\Delta u, v)
= (u, \Delta v) = (u, \mu v) = \mu(u, v)
= (\lambda - \mu)(u,v) = 0, \quad (u,v) = 0,
$$

即 $u \perp v$.

(2) (反证) 假设 Δ 的特征空间 $E_\lambda(M)$ 不是有限维的, 则存在 $\omega_n, n = 1, 2, \cdots$, 使得 $\Delta \omega_n = \lambda \omega_n, \{\omega_n\}$ 为 C^∞ 规范正交的向量. 因为

$$
\| \omega_n \| = 1 \leq c = \max\{1, \lambda\},
$$

$$
\| \Delta \omega_n \| = \| \lambda \omega_n \| = \lambda \leq c = \max\{1, \lambda\},
$$

所以应用 4.2 定理 2, $\{\omega_n\}$ 必有子序列 $\{\omega_{n_k}\}$ 在 $F^s(M)$ 中为 Cauchy
序列，但有
\[\| \omega_n - \omega_{n+1} \|^2 = 2, \]
即距离 \(\rho(\omega_n, \omega_{n+1}) = \| \omega_n - \omega_{n+1} \| = \sqrt{2} \)，立知 \{\omega_n\} 不为 Cauchy
序列，矛盾。因此，\(E^*(M) \) 是有限维的。

（3）留作习题。

引理 2 1. 如果 \(\Delta \) 和 \(G \) 限制到 \((H^*)^\perp\)，则
\[
\Delta: \quad (H^*)^\perp \rightarrow (H^*)^\perp,
\]
\[
G: \quad (H^*)^\perp \rightarrow (H^*)^\perp.
\]
此外，对任意 \(\alpha \in (H^*)^\perp \)，有
\[
\Delta G \alpha = \alpha, \quad G \Delta \alpha = \alpha;
\]

2. \(\eta \) 为 \(G|_{(H^*)^\perp} \) 的特征值 \(\Leftrightarrow \lambda = \frac{1}{\eta} \) 为 \(\Delta|_{(H^*)^\perp} \) 的特征值。

注意，\(0 \) 不是 \(G|_{(H^*)^\perp} \) 的特征值。

证明 1. 由 Green 算子的定义知，\(G(\alpha) \in (H^*)^\perp \)。因为对任意 \(\gamma \in H^* \)，有

\[(\Delta \alpha, \gamma) = (\alpha, \Delta \gamma) = (\alpha, 0) = 0, \]

所以 \(\Delta \alpha \perp \gamma, \Delta \alpha \in (H^*)^\perp \)。因此，确有
\[
\Delta: \quad (H^*)^\perp \rightarrow (H^*)^\perp,
\]
和
\[
G: \quad (H^*)^\perp \rightarrow (H^*)^\perp,
\]
此外，对任何 \(\alpha \in (H^*)^\perp \)，有
\[
\Delta G \alpha = \alpha - H(\alpha) = \alpha
\]
和 \(\Delta \alpha \in (H^*)^\perp \)，
\[
\Delta G \Delta \alpha = \Delta \alpha.
\]
再由 \(G \Delta \alpha \in (H^*)^\perp, \alpha \in (H^*)^\perp \) 推得 \(G \Delta \alpha = \alpha \)。

2. 如果 \(\alpha \in (H^*)^\perp, G \alpha = 0 \cdot \alpha = 0 \)，则 \(\alpha = \Delta G \alpha = \Delta 0 = 0 \)，从而 \(0 \) 不是 \(G|_{(H^*)^\perp} \) 的特征值。

另一方面，由 \(\Delta G \alpha = \alpha \) 和 \(G \Delta \alpha = \alpha \) 可推出 \(\eta \neq 0 \) 为 \(G|_{(H^*)^\perp} \) 的特征值，即存在不恒为 0 的 \(\alpha \in (H^*)^\perp \)，\(G \alpha = \eta \alpha \Leftrightarrow \) 存在不恒为 0 的 \(\alpha \).
$\in (H^*)^\perp$, $\Lambda\alpha = \frac{1}{\eta}a$, 即 $\frac{1}{\eta}$ 为 $\Lambda|_{(H^*)^\perp}$ 的特征值.

易见，0 为 Λ 的特征值 \Leftrightarrow 存在非平凡（不恒为 0）的 s 次 C^∞ 调和形式，即 $H^s \neq 0$。例如，由于常值函数 $c \neq 0, c \in H^0 = H^0(M)$，故 0 为 $\Lambda = \Lambda_0$ 的特征值。

定理 1 $\eta = \sup_{\| \varphi \| = 1} \| G\varphi \| > 0$，且对任意 $\varphi \in (H^*)^\perp, \| G\varphi \| \leq \eta \| \varphi \|$。更进一步，$\frac{1}{\eta}$ 为 Λ 的特征值。

证明 由于 G 为有界线性算子，故 $0 \leq \eta < +\infty$。根据 η 的定义，立即可得 $\| G\varphi \| \leq \eta \| \varphi \|$。

因为 $F^s(M)$ 是无限维的，而 H^s 是有限维的，所以 $(H^*)^\perp \neq \{0\}$，于是存在 $\varphi \in (H^*)^\perp, \| \varphi \| = 1$，由此得到 $\Lambda G\varphi = \varphi \neq 0, G\varphi \neq 0$，$\| G\varphi \| > 0$ 和

$$
\eta = \sup_{\| \varphi \| = 1} \| G\varphi \| > 0.
$$

为了证明 $\frac{1}{\eta}$ 为 Λ 的特征值，令 $\{ \varphi_j \} \in (H^*)^\perp$ 为 η 的极大化序列，即 $\| \varphi_j \| = 1, \| G\varphi_j \| \to \eta$。

因为 $G\varphi_j \in (H^*)^\perp$，

$$
\| G^2\varphi_j - \eta^2\varphi_j \|^2 = \| G^2\varphi_j \|^2 - 2\eta^2(G^2\varphi_j, \varphi_j) + \eta^4
\leq \eta^2 \| G\varphi_j \|^2 - 2\eta^2 \| G\varphi_j \|^2 + \eta^4
\to \eta^2 \cdot \eta^2 - 2\eta^2 \cdot \eta^2 + \eta^4 = 0,
$$

所以，$\| G^2\varphi_j - \eta^2\varphi_j \|^2 \to 0$。进一步，我们证明 $\| G\varphi_j - \eta\varphi_j \| \to 0$。为此，令 $\psi = G\varphi_j - \eta\varphi_j$，则

$$(\psi, G\psi) = (\Delta G\psi_j, G\psi_j) \geq 0$$
$$0 \leq (\psi, G^2\varphi_j - \eta^2\varphi_j)$$
$$= (\psi, G(G\varphi_j - \eta\varphi_j) + \eta(G\varphi_j - \eta\varphi_j))$$
$$= (\psi, G\psi_j + \eta\psi_j)$$
$$= (\psi, G\psi_j) + \eta \| \psi_j \| \geq \eta \| \psi_j \|^2,$$

$$\| G\varphi_j - \eta\varphi_j \| = \| \psi_j \| \to 0.$$
因为 $\|G\varphi_j\| \leq \eta \|\varphi_j\| = \eta \leq c = \max\{1, \eta\}$, $\|\Lambda G\varphi_j\| = \|\varphi_j\| = 1 \leq c = \max\{1, \eta\}$, 所以存在 φ_j 的子序列，不失一般性，仍记为 φ_j，使得 $\{G\varphi_j\}$ 为 Cauchy 序列。在 $F^*(M)$ 上，由

$$l(\beta) = \lim_{j \to +\infty} \eta(G\varphi_j, \beta), \quad \forall \beta \in F^*(M)$$

定义有界线性泛函 $l(\beta)$ 因为 $\eta(G\varphi_j, \beta)$ 为 Cauchy 序列，所以它收敛。由于 $\Lambda G\varphi_j = \varphi_j$ 和

$$|(G\varphi_j - \eta\varphi_j, \varphi)| \leq \|G\varphi_j - \eta\varphi_j\| \|\varphi\| \to 0$$

可得

$$l((\Lambda - \frac{1}{\eta})\varphi) = \lim_{j \to +\infty} \eta(G\varphi_j, (\Lambda - \frac{1}{\eta})\varphi)$$

$$= \lim_{j \to +\infty} \eta((\Lambda - \frac{1}{\eta})G\varphi_j, \varphi)$$

$$= \lim_{j \to +\infty} (\eta\varphi_j - G\varphi_j, \varphi)$$

$$= - \lim_{j \to +\infty} (G\varphi_j - \eta\varphi_j, \varphi)$$

$$= 0,$$

从而，l 为

$$(\Lambda - \frac{1}{\eta})\omega = 0$$

的一个非平凡的弱解。由此和 $\Lambda - \frac{1}{\eta}$ 是椭圆型的得到：存在非 0 的 $\omega \in F^*(M)$，使得

$$(\Lambda - \frac{1}{\eta})\omega = 0,$$

$$\Lambda \omega = \frac{1}{\eta} \omega,$$

即 $\lambda = \frac{1}{\eta}$ 为 Λ 的特征值（参阅 [Wa], p222-258, The Hodge Theorem）。

引理 3 如果已归纳定义

$$\eta_1 = \eta = \sup_{\|\varphi\| = 1} \|G\varphi\|,$$

375
\[\eta = \sup_{\| \varphi \| = 1} \| G \varphi \|, \]

其中 \(\lambda_i = \frac{1}{\eta_i} \) 为 \(A \mid_{(H^*)^\perp} \) 的特征值, \(i = 1, 2, \ldots, n \), 且 \(0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \). 则 \(G \) 和 \(A \) 将 \((H^* \oplus R_n)^\perp \) 映到 \((H^* \oplus R_n)^\perp \), 这里 \(R_n \) 为由 \(\{ \omega_1, \ldots, \omega_n \} \) 张成的 \(F^*(M) \) 的线性子空间, \(\omega_i \) 为对应于 \(\lambda_i \) 的 \(C^\infty \) 特征形式. 如果定义

\[\eta_{n+1} = \sup_{\| \varphi \| = 1} \| G \varphi \|, \]

则 \(\eta_{n+1} > 0 \) 且 \(\lambda_{n+1} = \frac{1}{\eta_{n+1}} \) 为 \(A \) 的一个特征值及 \(\lambda_n \leq \lambda_{n+1} \).

证明 因为对任意 \(\varphi \in (H^* \oplus R_n)^\perp, y \in H^* \), 有

\[
\langle A \varphi, y \rangle = \langle \varphi, A y \rangle = \langle \varphi, 0 \rangle = 0,
\]

\[
\langle A \varphi, \omega_i \rangle = \langle \varphi, A \omega_i \rangle = \langle \varphi, \lambda_i \omega_i \rangle = 0,
\]

所以, \(A \) 将 \((H^* \oplus R_n)^\perp \) 映到 \((H^* \oplus R_n)^\perp \).

类似地, 因为

\[
\langle G \varphi, y \rangle = \langle \varphi, G y \rangle = \langle \varphi, 0 \rangle = 0,
\]

\[
\langle G \varphi, \omega_i \rangle = \langle \varphi, G \omega_i \rangle = \langle \varphi, \frac{1}{\lambda_i} \omega_i \rangle = 0, \quad i = 1, \ldots, n,
\]

所以, \(G \) 也将 \((H^* \oplus R_n)^\perp \) 映到 \((H^* \oplus R_n)^\perp \) 中. 于是由 \(F^*(M) \) 是无限维的线性空间知 \((H^* \oplus R_n)^\perp \neq \{0\} \), 因此, 仿照定理 1 的证明得到

\[\lambda_{n+1} = \frac{1}{\eta_{n+1}} \]

为 \(A \) 的一个特征值, 其中

\[\eta_{n+1} = \sup_{\| \varphi \| = 1} \| G \varphi \| \]

\[\leq \sup_{\| \varphi \| = 1} \| G \varphi \| = \eta_n, \]

\[\lambda_{n+1} = \frac{1}{\eta_{n+1}} \geq \frac{1}{\eta_n} = \lambda_n. \]

定理 2 (\(F^*(M) \) 的完全性) 可以选取 \(A \) 在 \(F^*(M) \) 上的特征值
\(\lambda_1, \lambda_2, \ldots, \lambda_n, \ldots \), 使得

\[0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq \cdots, \quad \lambda_n \to + \infty \]

和每个 \(\Delta \) 的特征值 \(\lambda \) 都包含在序列 \(\{ \lambda_n \} \) 中，并且相应于 \(\lambda \) 的特征空间的维数 \(\dim F^r(M) \) 为 \(\lambda_n = \lambda \) 的个数。设 \(\omega_k \) 为 \(F^r(M) \) 中对应于特征值 \(\lambda_n \) 的规范正交的特征形式。更进一步，关于内积 \((\cdot, \cdot) \)，空间 \(F^r(M) \) 是完全的，即对任意 \(a \in F^r(M) \), 有

\[\lim_{n \to + \infty} \| a - \sum_{i=1}^{n} (a, \omega_i) \omega_i \| = 0. \]

证明 根据引理 1(3)，\(\Delta \) 在 \(F^r(M) \) 上的特征值的集合为至多可数集，并且可以按从小到大排列为 \(0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq \cdots \) 以及 \(\lambda_n \to + \infty \)。由于 \(F^r(M) \) 为无限维的，故引理 3 中的 \((H' + R) \perp \neq \emptyset \)，从而有可数个 \(\eta_i \) 和 \(\lambda_i \)。

如果 \(k = \dim H' > 0 \)，则 \(\lambda_i = 0 \) 为 \(\Delta \) 的特征值，否则 \(\lambda_i > 0 \)。令

\[\beta = \Delta(a - \sum_{i=1}^{k} (a, \omega_i) \omega_i) \in (H')^\perp, \]

则 \(G \beta = G \Delta(a - \sum_{i=1}^{k} (a, \omega_i) \omega_i) = a - \sum_{i=1}^{k} (a, \omega_i) \omega_i \)。由此得到

\[\beta = \Delta G \beta = \Delta a, \]

\[(\beta, \omega_i) = (\Delta a, \omega_i) = (a, \Delta \omega_i) = \lambda_i (a, \omega_i), \quad i > k. \]

\[G(\beta - \sum_{i=k+1}^{n} (\beta, \omega_i) \omega_i) \]

\[= a - \sum_{i=1}^{k} (a, \omega_i) \omega_i - \sum_{i=k+1}^{n} (\beta, \omega_i) G \omega_i \]

\[= a - \sum_{i=1}^{k} (a, \omega_i) \omega_i - \sum_{i=k+1}^{n} \lambda_i (a, \omega_i) \cdot \frac{1}{\lambda_i} \omega_i \]

\[= a - \sum_{i=1}^{k} (a, \omega_i) \omega_i. \]

再由 \(\eta_{n+1}, \lambda_{n+1} \) 的定义和 \(\lambda_{n+1} \to + \infty \) 得到

\[\| a - \sum_{i=1}^{n} (a, \omega_i) \omega_i \| \]

377
\[\begin{align*}
&= \| G(\beta - \sum_{i=k+1}^{n} (\beta, \omega_i) \omega_i) \| \\
&\leq \frac{1}{\lambda_{n+1}} \| \beta - \sum_{i=k+1}^{n} (\beta, \omega_i) \omega_i \| \\
&= \frac{1}{\lambda_{n+1}} \left[\| \beta \|^2 - 2 \sum_{i=k+1}^{n} (\beta, \omega_i) (\beta, \omega_i) \\
&\quad + \sum_{i,j=k+1}^{n} (\beta, \omega_i) (\beta, \omega_j) (\omega_i, \omega_j) \right]^{\frac{1}{2}} \\
&= \frac{1}{\lambda_{n+1}} \left[\| \beta \|^2 - 2 \sum_{i=k+1}^{n} (\beta, \omega_i)^2 + \sum_{i=k+1}^{n} (\beta, \omega_i)^2 \right]^{\frac{1}{2}} \\
&= \frac{1}{\lambda_{n+1}} \left[\| \beta \|^2 - \sum_{i=k+1}^{n} (\beta, \omega_i)^2 \right]^{\frac{1}{2}} \\
&\leq \frac{1}{\lambda_{n+1}} \| \beta \| \to 0 \quad (n \to +\infty),
\end{align*}\]

所以，

\[
\lim_{n \to +\infty} \| \alpha - \sum_{i=1}^{n} (\alpha, \omega_i) \omega_i \| = 0.
\]

最后证明 \(\Delta \) 的任一特征值 \(\lambda \in \{ \lambda_n | n \in \mathbb{N} \} \) 显然，只须对 \(\lambda > 0 \) 加以证明。设 \(\omega \in F^*(M) \) 为对应于特征值 \(\lambda \) 的特征形式，即 \(\Delta \omega = \lambda \omega \) 或 \(G \omega = \eta \omega, \eta = \frac{1}{\lambda} \)，其中 \(\omega \neq 0 \)。令 \(\omega = \omega'' + \omega^\perp, \omega'' \in H', \omega^\perp \in (H')^\perp \)。（反证）如果 \(\Delta \omega = \lambda \omega, \omega \neq 0 \) 且 \(\lambda \in \{ \lambda_n | n \in \mathbb{N} \} \)，则 \(\frac{\lambda}{\lambda} \neq 1 \)，

\[
\Delta \omega^\perp = \Delta \omega'' + \Delta \omega^\perp = \Delta \omega = \lambda \omega = \lambda \omega'' + \lambda \omega^\perp,
\]
其中 \(\omega'' \in H', \omega^\perp \in (H')^\perp \)

\[
(\omega, \omega_k) = \left(\frac{1}{\lambda}, \Delta \omega, \omega_k \right) = \frac{1}{\lambda} (\omega, \Delta \omega_k) \\
= \frac{\lambda}{\lambda} (\omega, \omega_k),
\]

378
\[
(1 - \frac{\hat{\lambda}_n}{\hat{\lambda}})(\omega, \omega_n) = 0, \\
(\omega, \omega_n) = 0, n \in \mathbb{N}. \\
\Lambda\omega^\perp = \lambda\omega^\perp, \\
\omega = \omega'' + \omega^\perp = \omega^\perp \in (H^r)^\perp.
\]
根据定理中已证的结论，\(\|\omega\| = \lim_{n \to \infty} \|\omega\| = \lim_{n \to \infty} \|\omega - \sum_{i=1}^{n} (\omega, \omega_i)\omega_i\| = 0, \omega = 0,\) 这与已知 \(\omega \neq 0\) 相矛盾。所以 \(\lambda \in \{\lambda_n | n \in \mathbb{N}\}\)。

上面已研究了 \(m\) 维 \(C^\infty\) 紧致定向 Riemann 流形 \((M, \langle \cdot, \cdot \rangle)\) 上的 Laplace 算子 \(\Lambda\) 的特征值的重要性质。对于不可定向的流形，由于不能定义积分，直接讨论特征值的性质是不合适的。但是，我们已有 4.3 中的经验，引进 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 的定向 (2 层) 覆叠流形 \((\tilde{M}, M, \pi)\)；它诱导的 \(m\) 维 \(C^\infty\) 定向的紧致 Riemann 流形为 \((\tilde{M}, \tilde{g}) = (\tilde{M}, \pi^*g), F^r(\tilde{M})\) 上的内积 \((\omega, \eta) = (\pi^*\omega, \pi^*\eta)\)。关于 \(\Lambda\) 和 \(\Lambda\) 的特征值有以下的关系。

引理 4 设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为 \(m\) 维不可定向紧致 \(C^\infty\) Riemann 流形，\((\tilde{M}, \tilde{g})\) 为 \((M, g)\) 的定向覆叠 \(C^\infty\) Riemann 流形。记 \(E^r_\Lambda(\tilde{M}) = \bigcap F^r(\tilde{M})\), \(E^r_\Lambda(\tilde{M}) = E^r_\Lambda(\tilde{M}) \cap F^r(\tilde{M})\), 则

\[
E^r_\Lambda(\tilde{M}) = E^r_\Lambda(\tilde{M})^+ \oplus E^r_\Lambda(\tilde{M})^-
\]
为正交直和分解，且 \(\lambda \in \mathbb{R}\) (实数域) 为 \(\Lambda\) 的特征值 \(\Leftrightarrow \lambda \in \mathbb{R}\) 为 \(\Lambda\) 的特征值和 \(E^r_\Lambda(\tilde{M})^+ \neq \{0\}\)。

由此得到 \(\Lambda\) 的特征值集为 \(\Lambda\) 的特征值集的子集。

证明 因为 \(F^r(\tilde{M})^+\) 为 \(\Lambda\) 的不变子空间，所以对任何 \(\tilde{\omega} = \tilde{\omega}^+ + \tilde{\omega}^- \in E^r_\Lambda(\tilde{M}), \omega^\pm \in F^r(\tilde{M})^\pm,\) 有

\[
\Lambda\tilde{\omega}^+ + \Lambda\tilde{\omega}^- = \Lambda\tilde{\omega} = \lambda\tilde{\omega} = \lambda\tilde{\omega}^+ + \lambda\tilde{\omega}^-, \\
\Lambda\tilde{\omega}^\pm = \lambda\tilde{\omega}^\pm, \\
\tilde{\omega}^\pm \in E^r_\Lambda(\tilde{M}) \cap F^r(\tilde{M})^\pm = E^r_\Lambda(\tilde{M})^\pm.
\]

379
从而得到
\[E^*_1(M) = E^*_1(M)^+ \oplus E^*_1(M)^- \]
为正交直和分解.
再证第二部分.
(⇒) 设 \(\Delta \omega = \lambda \omega, \omega \neq 0 \)，则
\[\Delta \pi^* \omega = \pi^* \Delta \omega = \pi^* (\lambda \omega) = \lambda \pi^* \omega. \]
又因 \(\pi^* : F^*(M) \to F^*(\tilde{M})^+ \) 为同构，故 \(\pi^* \omega \neq 0 \)，因而 \(\lambda \) 也为 \(\Delta \) 的特征值，且 \(E^*_1(M)^+ = E^*_1(M) \cap F^*(\tilde{M})^+ \neq \emptyset \).
(⇐) 设 \(\tilde{\omega} \in E^*_1(M)^+, \Delta \tilde{\omega} = \lambda \tilde{\omega}, \tilde{\omega} \neq 0 \)，则由 \(\pi \) 为局部 \(C^\infty \) 微分同胚，存在 \(\omega \neq 0 \)，使 \(\tilde{\omega} = \pi^* \omega \)，且
\[\pi^* \Delta \omega = \Delta \pi^* \omega = \Delta \tilde{\omega} = \lambda \tilde{\omega} = \pi^* (\lambda \omega). \]
再由 \(\pi^* : F^*(M) \to F^*(\tilde{M})^+ \) 为同构推出 \(\Delta \omega = \lambda \omega, \omega \neq 0 \)，即 \(\lambda \) 为 \(\Delta \) 的特征值.
引理 5 设 \(\tilde{\omega} = \tilde{\omega}^+ + \tilde{\omega}^- \in \text{Span}\{E^*_1(M)\} \) (表示由 \(\{E^*_1(M), n \in \mathbb{N}\} \) 张成的线性空间)，则 \(\tilde{\omega}^\pm \in \text{Span}\{E^*_1(M)^\pm\} \).
证明 设 \(\{u_i^\pm | j = 1, \cdots, k_i\} \) 为 \(E^*_1(M) \) 的一个基，记
\[\tilde{\omega}^+ + \tilde{\omega}^- = \tilde{\omega} = \sum_{s=1}^{i} \sum_{j=1}^{k_s} \mu_s^j u_i^s \]
\[= \sum_{s=1}^{i} \sum_{j=1}^{k_s} \mu_s^j u_i^s + \sum_{s=1}^{i} \sum_{j=1}^{k_s} \mu_s^j u_i^s, \]
则由引理 3 得到
\[\tilde{\omega}^\pm = \sum_{s=1}^{i} \sum_{j=1}^{k_s} \mu_s^j u_i^\pm \in \text{Span}\{E^*_1(M)^\pm\}. \]
引理 6 \(F^*(M) \) 在内积 \((,\) 诱导的拓扑下，如果 \(\tilde{\omega}_n \to \tilde{\omega} \)，则 \(\tilde{\omega}_n^\pm \to \tilde{\omega}^\pm \).
证明 从
\[\| \tilde{\omega}_n^\pm - \tilde{\omega}^\pm \| \leq \| \tilde{\omega}_n^+ - \tilde{\omega}^+ \| + \| \tilde{\omega}_n^- - \tilde{\omega}^- \| \]
\[= \| \tilde{\omega}_n - \tilde{\omega} \| \]

380
立即推出：如果 $\tilde{\omega}_n \to \tilde{\omega}$，则 $\tilde{\omega}^\pm \to \tilde{\omega}^\pm$。

定理 3 设 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 为 m 维紧致（不必可定向）C^∞ Riemann 流形，则

(1) $\Delta; F^*(M) \to F^*(\tilde{M})$ 的特征值 $\{\lambda_n | n \in \mathbb{N}\}$ 满足：
$$0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq \cdots$$

且
$$\lim_{n \to +\infty} \lambda_n = +\infty;$$

(2) 对 Δ 的每个特征值 λ_n，它的特征空间 $E^*_\lambda(M) = \{ \omega \in F^*(M) | \Delta \omega = \lambda_n \omega \}$ 是有限维的，且当 $\lambda_i \neq \lambda_j$ 时，$E^*_{\lambda_i}(M) \perp E^*_{\lambda_j}(M)$；

(3) $F^*(M)$ 在内积 (\cdot, \cdot) 诱导的拓扑下有
$$F^*(M) = \text{Span}\{E^*_{\lambda_n}(M)\}.$$

证明 如果 M 为可定向的，则引理 1 和定理 2 就是定理的 $(1), (2)$ 和 (3)。

如果 M 不可定向，则 (M, g) 的定向覆盖流形 $(\tilde{M}, \tilde{g}) = (\tilde{M}, \pi^*g)$ 为 m 维定向紧致 C^∞ Riemann 流形。

(1) 因 $\Delta; F^*(\tilde{M}) \to F^*(\tilde{M})$ 的特征值 $\{\lambda_n | n \in \mathbb{N}\}$ 满足：
$$0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq \cdots,$$

且
$$\lim_{n \to +\infty} \lambda_n = +\infty.$$

对于 M，为证结论 (1)，由引理 4，只须证明存在无限个 λ_n，使得 $E^*_{\lambda_n}(\tilde{M})^+ \neq \{0\}$。因为 $F^*(\tilde{M})^+ \approx F^*(M)$ 和 $F^*(M)$ 无限维，故 $F^*(\tilde{M})^+$ 也是无限维的。

(反证) 假设只有有限个 $E^*_{\lambda_n}(\tilde{M})^+ \neq \{0\}$，则存在自然数 $N > 1$，当 $i \geq N$ 时，$E^*_{\lambda_n}(\tilde{M})^+ = \{0\}$。于是
$$\text{Span}\{E^*_{\lambda_n}(\tilde{M})^+\} \subset F^*(\tilde{M})^+.$$

(有限维) (无限维)

由此，存在 $\tilde{\omega} \in F^*(\tilde{M})^+ - \text{Span}\{E^*_{\lambda_n}(\tilde{M})^+\} = F^*(\tilde{M})^+ -$
根据关于定向流形的本定理的结论 (3), 存在 $\tilde{\omega}_0 \in \text{Span}\{E_i^1(\bar{M})\}$ 使得

$$\tilde{\omega}_0 \to \tilde{\omega} = \tilde{\omega}^+ + \tilde{\omega}^- = \tilde{\omega}^+.$$

其中 $\tilde{\omega}^- = 0$. 因此, 从引理 5 和 6 可得

$$\tilde{\omega}_0 \in \text{Span}\{E_i^1(\bar{M})^+\}, \quad \tilde{\omega}_0^+ \to \tilde{\omega}^+ = \tilde{\omega}$$

以及

$$\tilde{\omega} = \tilde{\omega}^+ \in \text{Span}\{E_i^1(\bar{M})^+\},$$

这与

$$\tilde{\omega} \in F^*(\bar{M})^+ - \text{Span}\{E_i^1(\bar{M})^+\}$$

相矛盾.

(2) 由 π^* 同构, $\pi^*(E_i^1(M)) = E_i^1(\bar{M})^+ \subset E_i^1(\bar{M})$ 和 $E_i^1(\bar{M})$ 有限维推出 $E_i^1(M)$ 是有限维的.

如果 $\lambda_i \neq \lambda_j, \Delta \omega_i = \lambda_i \omega_i, \Delta \omega_j = \lambda_j \omega_j$, 则

$$\lambda_i(\omega_i, \omega_j) = (\lambda_i \omega_i, \omega_j) = (\Delta \omega_i, \omega_j) = (\omega_i, \lambda_j \omega_j) = \lambda_j(\omega_i, \omega_j),$$

$$(\lambda_i - \lambda_j)(\omega_i, \omega_j) = 0, (\omega_i, \omega_j) = 0$$

即 $\omega_i \perp \omega_j$.

(3) 设 $\tilde{\omega} \in F^*(\bar{M})^+$, 由关于定向流形 \bar{M} 的本定理的结论 (3), 存在 $\tilde{\omega}_0 \in \text{Span}\{E_i^1(\bar{M})\}$, 使得

$$\tilde{\omega}_0^+ + \tilde{\omega}_0^- = \tilde{\omega}_0 \to \tilde{\omega} = \tilde{\omega}^+ + \tilde{\omega}^- = \tilde{\omega}^+,$$

故从引理 5 和 6 有

$$\tilde{\omega}_0^+ \to \tilde{\omega}^+ = \tilde{\omega}, \quad \tilde{\omega}_0^+ \in \text{Span}\{E_i^1(\bar{M})^+\}$$

以及

$$\tilde{\omega} = \tilde{\omega}^+ \in \text{Span}\{E_i^1(\bar{M})^+\}.$$

这就证明了 $\text{Span}\{E_i^1(\bar{M})^+\} = F^*(\bar{M})^+$. 再根据 $(\pi^* \omega, \pi^* \eta) = (\tilde{\omega}, \tilde{\eta})$.
和 $\pi^*: E^*_3(M) \to E^*_3(\tilde{M})^+$ 为内积空间的同构得到

$$\text{Span}_{i \in \mathbb{N}} \{ E^*_3(M) \} = P^*(M).$$

第 4 章习题

1. 证明 4.1 引理 2.

2. 在 4.2 定理 2 中，证明：$\psi_j \to \psi$ (提示：$\forall \varepsilon > 0, \exists N \in \mathbb{N}$, 当 $j, k > N$ 时有 $|\langle \psi_j - \psi, \varphi \rangle| \leq \varepsilon \| \varphi \| + |\langle \psi_k, \varphi \rangle - |\langle \psi, \varphi \rangle|)$.

3. 应用 4.2 定理 5 和 4.3 定理 6 必要性的论述证明 4.3 定理 6 的充分性.

4. 证明：(1) 4.4 引理 1(3)，即特征值无有限的聚点.

 (2) 4.4 定理 2 中，对 $\forall \alpha \in F^*(M)$，有

 $$\| \alpha \| = \left[\sum_{i=1}^{\infty} (\alpha, \omega_i)^2 \right]^{\frac{1}{2}}.$$

 (3) 4.4 定理 1 中，

 $$\left(\lambda - \frac{1}{\eta} \right) \omega = 0$$

 的弱解 l 是非平凡的 (即有界线性泛函 l 非恒为 0) 和解 ω 是非 0 的.

 (4) 4.4 中，$\lambda_n \to + \infty$ ($n \to + \infty$).

5. 设 (M, g) 为 m 维紧致 C^∞ Riemann 流形，Δ 为 Laplace-Beltrami 算子，相应于 k 次微分形式，λ_k 的低散谱为 $0 \leq \lambda^1 \leq \lambda^2 \leq \cdots \to + \infty$，记作 $\text{Spec}^k(M) = \{ \lambda^i | i = 1, 2, \cdots \}$，而 $\text{Spec}(M) = \bigcup_{k=0}^{\infty} \text{Spec}^k(M)$. 参阅 Milnor (见[BGM]) 给出的两个等谐但不等距的 16 维平环的例子.

6. 设 $(M, g), (N, h)$ 为紧致 C^∞ 定向 Riemann 流形，g, h 为相应的 Riemann 度量，其积流形为 $(M \times N, g \times h)$. 则

 $$\text{Spec}(M \times N) = \text{Spec}(M) + \text{Spec}(N)$$

 $$= \{ \lambda_i + \mu_j | \lambda_i \in \text{Spec}(M), \mu_j \in \text{Spec}(N) \}.$$
以下题 7—9 参阅 [XZCZC].

7. 设 M 为紧致 C^∞ 定向 Riemann 流形 N 的紧致定向 C^∞ 嵌入极小超曲面.

(1) 如果 $\text{Ric}(N) \geq k > 0$, 则 $\lambda_1 = \frac{k}{2}$;

(2) 如果 $\dim M = 2$, 则 M 的面积 $< 16\pi(1 + g)/k$, 其中 g 为 M 的亏格.

8. 设 (M,g) 和 (\tilde{M},\tilde{g}) 为两个紧致连通的局部对称的共形平坦的 C^∞ Riemann 流形. 如果

$$\text{Spec}^t(M) = \text{Spec}^t(\tilde{M}),$$

m 为 M 的维数, 并满足下面两个条件:

(1) $m(m - 1) \neq 6k(m - k)$;

(2) $m(m - 1)(m - 2)(m - 6) - 30(3m - 8)(m - 2)k(m - k) + 360(m - k)(m - k - 1)k(k - 1) \neq 0$.

则 (M,g) 与 (\tilde{M},\tilde{g}) 等距.

9. 设 (M,J,g) 和 $(\tilde{M},\tilde{J},\tilde{g})$ 为两个紧致连通的局部对称的 Bochner—Kähler 流形, n 是 M 的复维数. 如果 $\text{Spec}^t(M) = \text{Spec}^t(\tilde{M})$, 并且满足以下两个条件:

(1) $m(2m - 1) \neq 3k(2m - k)$;

(2) $m(2m - 1)(2m - 3)(2m - 7) - 15(2m - 3)(3m - 1)k(2m - k) + 90k(k - 1)(2m - k)(2m - k - 1) \neq 0$. 则 (M,J,g) 和 $(\tilde{M},\tilde{J},\tilde{g})$ 全纯等距.

题 10 和 11 参阅 [Xu and Zhang].

10. 设 M 和 \tilde{M} 分别为 $S^{n+1}(1)$ 中的 m 维 C^∞ 伪穿和全穿子流形, 并且 $\text{Spec}^t(M) = \text{Spec}^t(\tilde{M})$, 平均曲率向量的长度 $\|H\| = \|\tilde{H}\|$.

(1) 如果 $m(m - 1) \neq 6k(m - k)$, 则 M 也是全穿点的;

(2) 如果 $m(m - 1) = 6k(m - k)$ 和 M 的第 2 基本形式长度的平方 $S \leq H^2(m^2 - 5m - 48)/5, (m,k) \neq (6,5)$ 或 $(6,1)$, 则 M 也是全穿点的.

384
11. 设 $\psi : M \to S^{m+1}(c)$ 为 m 维伪脐 C^∞ 浸入，并具有平行平均曲率向量，\overline{M} 为 $S^{m+1}(\| H \|^2 + c)$ 的 m 维 C^∞ 全测地子流形，如果 $\text{Spec}^t(M) = \text{Spec}^t(\overline{M})$, $l \leq 6$, (m, k) $\neq (6, 5)$ 或 $(6, 1)$，则 M 是 $S^{m+1}(c)$ 的 C^∞ 全测地子流形。

题 12 和 13 可参阅 [XX].

12. 设 M^{2k} 为 $S^{2k+1}(1)$ 中的紧致极小超曲面，$M_{k,k} = S^t(\sqrt{1/2}) \times S^t(\sqrt{1/2})$ 为 Clifford 极小超曲面。如果

(1) $\text{Spec}^t(M) = \text{Spec}^t(M_{k,k}), 7 \leq k < 20$

或

(2) $\text{Spec}^s(M) = \text{Spec}^s(M_{k,k}), 9 < k \leq 36$ 或 $k = 4$，

则 M 和 $M_{k,k}$ 是 C^∞ 等距的。

13. 设 $M^m = M_{m1} \times M_{m2}, (m_1 \leq m_2, m_1 + m_2 = m)$ 为 $S^{m+1}(1)$ 的紧致极小超曲面，$M_{m_1,m_2} = S^{m_1}(\sqrt{m_1/m_2}) \times S^{m_2}(\sqrt{m_2/m_1})$ 为 Clifford 极小超曲面。如果 $\text{Spec}^t(M^m) = \text{Spec}^t(M_{m_1,m_2}), \| h_1 \|^2 \geq m_2$，

(1) $k = 1, 13 < m < 40$

或

(2) $k = 2, m = 8, 9$ 或 $18 < m \leq 73$，

则 M^m 和 M_{m_1,m_2} 是 C^∞ 等距的，其中 h_1 是 M^m 在 $S^{m+1}(1)$ 中的第 2 基本形式 h 在 M^m 上的限制。更确切地说，选择 $S^{m+1}(1)$ 中的局部 C^∞ 规范正交基 e_1, \cdots, e_{m+1} 使得向量 e_1, \cdots, e_m 是切于 M_{m_1} 的。如果 $h = \sum_{A_1} h_{A_1} \omega^A \otimes \omega^B \otimes e_{m+1}$ 为 C^∞ 浸入流形 M^m 的第 2 基本形式，则

$$h_1 = \sum_{i,j=1}^{m_1} h_{ij} \omega^i \otimes \omega^j \otimes e_{m+1}$$

$$\| h_1 \|^2 = \sum_{i,j=1}^{m_1} h_{ij}^2.$$

且它们与规范正交基 e_1, \cdots, e_{m+1} 的选取无关。

题 14 和 15 可参阅 [XN].

14. 设 M 为 $m + 1$ 维球面 $S^{m+1} = S^{m+1}(1)$ 的紧致极小超曲面.
\[M_{k,m-k} = S^k \left(\sqrt{\frac{k}{m}} \right) \times S^{m-k} \left(\sqrt{\frac{m-k}{m}} \right) \text{ 为 Clifford 超曲面, } V_k = \frac{2\pi^{k/2}}{k\Gamma(k/2)} \text{ 为 } k \text{ 维单位球的体积.} \]

如果 \(\text{Spec}(M) = \text{Spec}(M_{k,m-k}) \)，且
\[
\int_M \|\text{Ric}\| \ast 1 \leq \left[m(m-1)(m-3) + \frac{k^2}{m-k} \right. \\
\left. + \frac{(m-k)^2}{k} \right] V_k V_{m-k}
\]

或者
\[
\int_M \|K\| \ast 1 \leq 2 \left[m(m-3) - \frac{k^2}{m-k} - \frac{(m-k)^2}{k} \right] V_k V_{m-k}
\]

之一成立时，\(M \) 与 \(M_{k,m-k} \) 整体 \(C^\infty \) 等距，其中 \(\|\text{Ric}\| \) 与 \(\|K\| \) 分别为 Ricci 曲率张量和 Riemann-Christoffel 曲率张量关于 Riemann 度量的模.

15. 设 \(M \) 为 \(m+1 \) 维球面 \(S^{m+1} = S^{m+1}(1) \) 的紧致极小超曲面。\(M \) 在每一点的第 2 基本形式的矩阵通过选取适当的规范正交基可化为

\[
\begin{pmatrix}
\lambda_1 \\
\vdots \\
\lambda_m
\end{pmatrix}
\]

并设 \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \)。令

\[
\bar{\lambda}_i = \begin{cases} \\
\lambda = \sqrt{\frac{m-k}{k}}, & i = 1, \cdots, k, \\
\mu = -\sqrt{\frac{k}{m-k}}, & i = k+1, \cdots, m.
\end{cases}
\]

则 \(S^{m+1} \) 中的 Clifford 极小超曲面 \(M_{k,m-k} \)，在每一点的第 2 基本形式的矩阵通过选取适当的规范正交基可写为

386
再设

\[
\begin{pmatrix}
\bar{\lambda}_1 \\
\vdots \\
\bar{\lambda}_m
\end{pmatrix}
\]

\(\alpha : M \to \mathbb{R}^n \)

\[\alpha(p) = \begin{pmatrix}
\bar{\lambda}_1 \\
\vdots \\
\bar{\lambda}_m
\end{pmatrix} \]

显然，\(\alpha \) 连续，而

\[
\beta = \begin{pmatrix}
\bar{\lambda}_1 \\
\vdots \\
\bar{\lambda}_m
\end{pmatrix} \in \mathbb{R}^n
\]

为常向量。如果 \(\text{Spec}(M) = \text{Spec}(M_{i,m-k}) \)，且 \(\| \alpha - \beta \| \) 充分小，则 \(M \) 与 \(M_{i,m-k} \) 整体 \(C^\infty \) 等距。
第 5 章 曲率与拓扑

在 C^∞ Riemann 流形上加了适当的几何（曲率、完备和直径等）和拓扑（紧致、单连通和同胚等）的条件，就可能得出拓扑性质（同胚、微分同胚、同调群、同伦群等）的一些信息，如第 3 章 3.3 中的 Bonnet – Myers 定理（定理 11）和第 2 章 2.3 中的定理 5 和 6。

这一章叙述了下面几个重要定理。

J. L. Synge 定理：具有正 Riemann 截曲率的连通紧致、偶数维的 C^∞ Riemann 流形，如果 M 可定向，则它必单连通，即 $\pi_1 (M) \cong \{1\}$；如果 M 不可定向，则 M 的基本群 $\pi_1 (M) \cong \mathbb{Z}_2$。

与此相关的定理是：$2n + 1$ 维紧致具有正 Riemann 截曲率的 C^∞ Riemann 流形必是可定向的。

Cartan – Hadamard 定理：m 维具有非正 Riemann 截曲率的 C^∞ 单连通完备 Riemann 流形，其指数映射 $\exp_x : T_x M \to M$ 为 C^∞ 微分同胚。因而，MC^∞ 微分同胚于 \mathbb{R}^n。

空间形式的存在唯一性定理：对每个 $c \in \mathbb{R}$ 及自然数 $m \geq 2$，存在唯一（只差一个等距变换）的常 Riemann 截曲率 c 的 m 维空间形式。

比较定理是流形上的分析的基本工具之一，其本质是通过对 Jacobi 场与流形曲率的联系，以及流形曲率的性质进行分析而获得关于流形的更一般的性质。其模式为，从模型空间出发，将所论流形与模型空间作定性或定量的比较，力求得到结论。这一章最后主要论述了 Rauch 比较定理，并应用它证明了著名的。

拓扑球面定理：如果 m 维 C^∞ 紧致单连通 Riemann 流形 (M, g) 的切空间中的平面 P 的 Riemann 截曲率 $R(P)$ 满足
\[0 < \frac{1}{4} < R(P) \leq 1, \]

则 \(M \) 同胚于 \(m \) 维单位球面 \(S^m(1) \).

此外, 还介绍了球面定理的各种推广.

5.1 覆叠空间和 Synge 定理

在这一节中, 我们将应用覆叠空间、万有覆叠空间、定向 2 层
覆叠流形, 单连通等拓扑知识以及微分几何中正 Riemann 截曲率的条件来证明 Synge 定理.

定义 1 设 \(M \) 和 \(\widetilde{M} \) 为道路连通和局部道路连通的拓扑空间.
\(p: \widetilde{M} \to M \) 为连续映射, 使得对任意 \(x \in M \), 有道路连通的开邻域 \(U \)
满足 \(p^{-1}(U) \) 非空且它的每个道路连通分支通过 \(p \) 同胚地映到 \(U \), 则
称 \(U \) 为基本开邻域, \(p \) 称为覆叠投影或投影映射, 而 \((\widetilde{M}, p)\) 称为 \(M \)
的一个覆叠或覆叠空间.

定义 2 设 \((\widetilde{M}, p)\) 为 \(M \) 的覆叠空间, \(\tilde{\gamma}: [0, 1] \to \widetilde{M} \) 为 \(\widetilde{M} \) 中连
接 \(\tilde{\gamma}(0) \) 和 \(\tilde{\gamma}(1) \) 的一条道路, 则 \(\gamma = p\tilde{\gamma}: [0, 1] \to M \) 为 \(M \) 中的一条道路, 即图表

\[
\begin{array}{c}
\widetilde{M} \\
\tilde{\gamma} \\
\downarrow \\
[0, 1] \rightarrow \ \ M \\
\gamma = p\tilde{\gamma}
\end{array}
\]

可交换, 则称 \(\tilde{\gamma} \) 为 \(\gamma \) 的一个提升 (或升腾), 而 \(\gamma \) 为 \(\tilde{\gamma} \) 的投影.

引理 1 设 \((\widetilde{M}, p)\) 为 \(M \) 的覆叠空间, \(\tilde{x} \in \widetilde{M} \), 而 \(x = p(\tilde{x}) \). 则
对以 \(x = \gamma(0) \) 为初始点的任何道路 \(\gamma: [0, 1] \to M \), 存在唯一的以
\(\tilde{\gamma}(0) = \tilde{x} \) 为初始点的道路 \(\tilde{\gamma}: [0, 1] \to \widetilde{M} \), 使得 \(p\tilde{\gamma} = \gamma \) (即 \(\tilde{\gamma} \) 为 \(\gamma \) 的提升).

证明 如果道路 \(\gamma \) 包含在 \(M \) 的某个基本开邻域 \(U \) 中, \(V \) 表示
\(p^{-1}(U) \) 的含 \(\tilde{x} \) 的道路连通分支. 因为 \(p: V \to U \) 为同胚映射, 所以在
中存在唯一的 \tilde{y}，使得 $\tilde{y}(0) = \tilde{x}, p\tilde{y} = y$.

设 $\{U_i\}$ 为 M 的基本开邻域的一个开覆盖，则 $\{p^{-1}(U_i)\}$ 为区间的 $[0, 1]$ 的一个开覆盖，$\lambda > 0$ 为 $[0, 1]$ 的该开覆盖的一个 Lebesgue 数，取自然数 n，使得 $\frac{1}{n} < \lambda$。将区间 $[0, 1]$ 划分成子区间 $[0, \frac{1}{n}]$, $[\frac{1}{n}, \frac{2}{n}], \ldots, [\frac{n-1}{n}, 1]$。注意 p 映每个子区间到 M 的基本开邻域 $\{U_i\}$ 的某一个中。

在这些子区间上，从 $[0, \frac{1}{n}]$ 开始逐次地定义 \tilde{y} 得到定义在 $[0, 1]$ 上的整体的 \tilde{y}。

\tilde{y} 的唯一性是下面更一般的引理的结果。

引理 2 设 (\tilde{M}, p) 为 M 的覆盖空间，N 为连通和局部连通的拓扑空间。$f_0, f_1 : N \rightarrow \tilde{M}$ 使得 $p f_0 = p f_1$ 是已给的任意连续映射，则集合 $\{y \in N | f_0(y) = f_1(y)\} = \emptyset$ 或者 N。

证明 设 $A = \{y \in N | f_0(y) = f_1(y)\} \neq \emptyset$, $y \in A$, 则由 f_0, f_1, p 连续得

$$x = p f_0(y) = p f_1(y).$$

令 U 为 x 的基本开邻域，利用 $p f_0$ 和 $p f_1$ 连续性和 N 的局部连通性，可以得到 y 的一个连通开邻域 W 使得 $p f_0(W) \subset U, p f_1(W) \subset U$。因为 $f_0(W)$ 和 $f_1(W)$ 是连通的，所以，它们各自必须包含在 $p^{-1}(U)$ 的一个连通分支中。由 $y \in A$ 知 $W \cap A \neq \emptyset$，因此 $f_0(W)$ 和 $f_1(W)$ 包含在 $p^{-1}(U)$ 的相同的连通分支 V 中。从而 $p : V \rightarrow U$ 为同胚映射蕴含着 $f_0(y) = f_1(y)$. 这就证明了 A 为 N 中的闭集。

由 $p f_0 = p f_1$ 和 p 为局部同胚立即推出集合 $A = \{y \in N | f_0(y) = f_1(y)\}$ 中的每个点都是内点，即 A 为 N 中的开集。

综合上述，A 为 N 中既开又闭的非空子集。由于 N 连通，故必有 $A = N$。

设 (\tilde{M}, p) 为 M 上的覆盖空间，在 \tilde{M} 中如果 $\tilde{y}_0 \sim \tilde{y}_1$，则由 p 连续知 $p\tilde{y}_0 \sim p\tilde{y}_1$。反之，若 $p\tilde{y}_0 \sim p\tilde{y}_1$，是否有 $\tilde{y}_0 \sim \tilde{y}_1$？这里～表示同伦。
下面引理是这个问题的回答。

引理 3 设 \((\bar{M}, p)\) 为 \(M\) 的覆盖空间，\(\bar{y}_0, \bar{y}_1 : [0, 1] \to \bar{M}\) 为 \(\bar{M}\) 中的道路，它们有相同的初始点 \(\bar{x}_0\)，即 \(\bar{y}_0(0) = \bar{y}_1(0) = \bar{x}_0\)。如果 \(p \bar{y}_0 \sim p \bar{y}_1\) (保端点的同伦)，则 \(\bar{y}_0 \sim \bar{y}_1\) 且 \(\bar{y}_0\) 和 \(\bar{y}_1\) 有相同的终点。

证明 由条件 \(p \bar{y}_0 \sim p \bar{y}_1\)，即存在连续映射 \(F : [0, 1] \times [0, 1] \to M\)，使得

\[
\begin{align*}
F(t, 0) &= p\bar{y}_0(t), \\
F(t, 1) &= p\bar{y}_1(t), \\
F(0, s) &= p\bar{y}_0(0) = p\bar{y}_1(0) = p(\bar{x}_0), \\
F(1, s) &= p\bar{y}_0(1) = p\bar{y}_1(1).
\end{align*}
\]

类似引理 1，应用 Lebesgue 数的论证方法和 \(F\) 的连续性，可以将矩形 \([0, 1] \times [0, 1]\) 分割：

\[
0 = t_0 < t_1 < \cdots < t_n = 1, \\
0 = s_0 < s_1 < \cdots < s_m = 1,
\]

使得 \(F\) 将每个小矩形 \([t_i, t_{i+1}] \times [s_j, s_{j+1}]\) 映入 \(M\) 的某个基本邻域中，\(i = 0, 1, \ldots, n, j = 0, 1, \ldots, m\)。

首先，因为 \(F\) 将 \([0, t_i] \times [0, s_j]\) 映到 \(p(\bar{x}_0)\) 的一个基本开邻域中，所以在此小矩形 \([0, t_i] \times [0, s_j]\) 上定义 \(\bar{F}\)，使得

\[
p\bar{F} = F, \\
\bar{F}(0, s) = \bar{x}_0, \ s \in [0, s_j].
\]

然后，逐次在 \([t_{i-1}, t_i] \times [0, s_j]\) 上延拓映射 \(\bar{F}, i = 2, \ldots, n\)。注意在任何两个相邻小矩形的公共部分上定义是一致的。因此，\(\bar{F}\) 就定义在矩形 \([0, 1] \times [0, s_j]\) 上。接着在矩形 \([0, 1] \times [s_j, s_{j+1}]\) 的小矩形上定义 \(\bar{F}\)，等等。最终，就定义了一个 \(\bar{F} : [0, 1] \times [0, 1] \to \bar{M}\) 使得 \(p\bar{F} = F\) 和 \(\bar{F}(0, s) = \bar{x}_0, \ \forall \ s \in [0, 1]\)。

由引理 2 知 \(\bar{F}\) 是唯一的。类似地，由引理 1 的唯一性，可看到

\[
\bar{F}(t, 0) = \bar{y}_0(t), \bar{F}(t, 1) = \bar{y}_1(t), \\
\bar{F}(0, s) = \bar{x}_0, \ \forall \ s \in [0, 1]
\]

最后，连续映射 \(\bar{F}\) 将连通集 \(\{1\} \times [0, 1]\) 映到 \(\bar{M}\) 中的连通集 \(\bar{F}(\{1\})\)。
\[\times [0,1]. \] 由于 \(p(\tilde{F}(\{1\} \times [0,1])) = x_0 \), 所以, \(\tilde{F}(\{1\} \times [0,1]) = \{x_1\} \) 且

\[p(\tilde{x}_1) = p\tilde{y}_0(1) = p\tilde{y}_1(1). \]

这就证明了在 \(\tilde{F} \) 下, \(\tilde{y}_0 \sim \tilde{y}_1 \), 且 \(\tilde{y}_0 \) 与 \(\tilde{y}_1 \) 有相同的终点 \(\tilde{x}_1 \).

引理 4 设 \((\tilde{M}, p)\) 为 \(M \) 的覆叠空间, 则对任意 \(x \in M \), 集合 \(p^{-1}(x) \) 有相同的基数（势），即 \(p^{-1}(x) \) 彼此是一一对应的.

证明 设 \(x_1, x_2 \in M \) 为任何两点，在 \(M \) 中选择一条道路 \(y : [0, 1] \to M \) 使 \(y(0) = x_1, y(1) = x_2 \). 对 \(\forall \ y_i \in p^{-1}(x_i) \), 在 \(\tilde{M} \) 中提升 \(y_i \) 到 \(\tilde{y} \) (即 \(p\tilde{y} = y_i \)), 使得 \(\tilde{y}(0) = y_i \in p^{-1}(x_i) \), 则

\[\tilde{h} : p^{-1}(x_1) \to p^{-1}(x_2), \]

\[y_1 \to \tilde{y}(1) = y_2 \]

为所要求的映射. 应用逆道路 \(y^{-1}(y^{-1}(t) = y(1 - t)) \). 用类似的方法可以定义一个映射, 它与 \(h \) 互为逆映射. 记此映射为 \(h^{-1} : p^{-1}(x_2) \to p^{-1}(x_1) \). 这就证明了 \(p^{-1}(x_1) \) 和 \(p^{-1}(x_2) \) 是一一对应的, 从而它们有相同的基数（势）.

定义 3 集合 \(p^{-1}(x), x \in M \) 的共同基数（势）称为覆叠空间 \((\tilde{M}, p)\) 的基数.

定义 4 设 \(M \) 为道路连通的拓扑空间, 如果对某个 \(x_0 \in M \), 任何闭道路 \(y : [0, 1] \to M, y(0) = y(1) = x_0 \) (以 \(x_0 \) 为初始点和终点) 都同伦于 \(M \) 中的常值道路 \(x_0 \), 即存在连续映射 \(F : [0, 1] \times [0, 1] \to M \), 使得

\[
\begin{align*}
F(t, 0) &= y(t), \\
F(t, 1) &= x_0, \quad \forall \ t \in [0, 1], \\
F(0, s) &= x_0 = F(1, s), \quad \forall \ s \in [0, 1].
\end{align*}
\]

则称 \(M \) 为单连通的拓扑空间.

引理 5 (1) \(M \) 是单连通拓扑空间 \(\iff \)

(2) 对 \(\forall \ x \in M \) 和 \(\forall \xi : [0, 1] \to M, \xi(0) = \xi(1) = x \), 必有 \(\xi \) 同伦于 \(M \) 中的常值道路 \(x \) \(\iff \)

(3) 对 \(\forall \ x, y \in M \) 和任何连接 \(x \) 到 \(y \) 的道路 \(y_0 \) 和 \(y_1 \), 必有 \(y_0 \sim y_1 \).
存在连续映射 \(G: [0, 1] \times [0, 1] \to M \)，使得
\[
\begin{align*}
G(t, 0) &= \gamma_0(t), \\
G(t, 1) &= \gamma_1(t), \quad \forall \ t \in [0, 1], \\
G(0, s) &= x, \\
G(1, s) &= y, \quad \forall \ s \in [0, 1].
\end{align*}
\]

证明 (1) \(\Rightarrow \) (2) 对固定的 \(x_0 \) 和 \(\forall \ x \in M \)，设 \(\gamma \) 为连接 \(x_0 \) 到 \(x \) 的一条道路，\(\alpha, \beta \) 是以 \(x_0 \) 为基点的任意两条闭道路。显然，
\[\alpha \sim \beta \iff \xi = \gamma^{-1} \alpha \gamma \sim \zeta = \gamma^{-1} \beta \gamma,\]
即等价类有关系:
\[
[a] = [\beta] \iff \gamma^{-1} \alpha \gamma = [\gamma^{-1} \beta \gamma].
\]
因此, 定义对应
\[
f: \pi_1(M, x_0) \to \pi_1(M, x) \\
[a] \mapsto f([a]) = \gamma^{-1} \alpha \gamma \\
g: \pi_1(M, x) \to \pi_1(M, x_0) \\
[\xi] \mapsto g([\xi]) = \gamma \xi \gamma^{-1}.
\]
于是，
\[
g \circ f([a]) = g(\gamma^{-1} \alpha \gamma) = \gamma \gamma^{-1} \alpha \gamma \gamma^{-1} = [\alpha],
\]
\[
f \circ g([\xi]) = f(\gamma \xi \gamma^{-1}) = \gamma^{-1} \gamma \xi \gamma \gamma^{-1} = [\xi].
\]
从而, \(f \) 和 \(g \) 都是一一对应 (实际上, \(f \) 为以 \(x_0 \) 为基点的基本群 \(\pi_1(M, x_0) \) 和以 \(x \) 为基点的基本群 \(\pi_1(M, x) \) 之间的同构, 而 \(g \) 为其同构逆).

因此, \(M \) 为单连通拓扑空间 \(\iff \pi_1(M, x_0) \) 仅含一个元素 (一个等价类) \(\iff \) 对 \(\forall \ x \in M, \pi_1(M, x) \) 仅含一个等价类 \(\iff \) 对 \(\forall \ x \in M \) 和 \(\forall \xi: [0, 1] \to M, \xi(0) = \xi(1) = x \), 必有 \(\xi \) 同伦于 \(M \) 中的常值道路 \(x \).

(2) \(\Rightarrow \) (3) 对 \(\forall \ x, y \in M \) 和任何连接 \(x \) 到 \(y \) 的道路 \(\gamma_0 \) 和 \(\gamma_1, \gamma_0 \gamma_1^{-1} \) 为以 \(x \) 为基点的闭曲线, 由 (2), \(\gamma_0 \gamma_1^{-1} \) 在 \(M \) 中同伦于常值道路 \(x \), 即存在连续映射
\[
F: [0, 1] \times [0, 1] \to M
\]
393
满足
\[
\begin{align*}
F(t, 0) &= \gamma_0 \gamma_t^{-1}(t) \\
F(t, 1) &= x, \quad \forall \ t \in [0, 1], \\
F(0, s) &= x = F(1, s), \quad \forall \ s \in [0, 1] \\
F(\frac{1}{2}, 0) &= y.
\end{align*}
\]

于是，由
\[
G(t, s) = \begin{cases}
F(t, s), t \in [0, \frac{1}{2}] \\
F(\frac{1}{2}, 2s(1 - t)), t \in [\frac{1}{2}, 1]
\end{cases}
\]
立即推得 \(\gamma_0 \sim \gamma_0 c_i \sim G(\ast, \ast); \) 同理, \(G(\ast, 1) \sim c_i \gamma_1 \sim \gamma_1,\) 所以 \(\gamma_0 \sim \gamma_1,\) 其中 \(c_i\) 为常值 \(x_i\) 的道路, \(i = 0, 1.\)

(3) \Rightarrow (1) 由常值道路 \(x_0\) 是一条特殊道路, (3) 推出 (1).

定义 5 设 \((\widetilde{M}, p)\) 为 \(M\) 上的复叠空间, 如果 \(\widetilde{M}\) 是单连通的, 则称 \((\widetilde{M}, p)\) 为 \(M\) 上的复有复叠空间.

定义 6 设 \(M\) 为拓扑空间. 如果对 \(\forall \ x \in M\), 存在 \(x\) 的开邻域 \(U\), 使得 \(U\) 中以 \(x\) 为基点的闭道路 \(\gamma\) 在 \(M\) 中总同伦于常值闭道路 \(x\), 则称 \(M\) 为半局部单连通空间.

显然, 单连通空间必为半局部单连通空间, 但反之不真. 例如 \(S^1\) 是半局部单连通的, 但非单连通. 特别地, 每个流形都是半局部单连通的. 这是因为在流形的每一点处必有同胚于 \(R^n\) 中开单位球体的开邻域 \(U\), 而 \(U\) 中任何以 \(x\) 为基点的闭道路在 \(U\) (因而在 \(M\)) 中必同伦于常值道路 \(x\).

定义 7 设 \((\widetilde{M}, p)\) 和 \((M', p')\) 是 \(M\) 上的两个复叠空间. 如果存在连续映射 \(h: \widetilde{M} \to M'\), 使图表
\[
\begin{array}{ccc}
\widetilde{M} & \xrightarrow{h} & M' \\
p & \downarrow & p' \\
\downarrow & & \downarrow \\
M & & M'
\end{array}
\]

则称 \((\widetilde{M}, p)\) 和 \((M', p')\) 同构.
可交换，即 \(p' \circ h = p \)，则称 \(h \) 为 **叠加（同态）映射**；如果 \(h \) 为同胚，则称 \(h \) 为 **叠加同构映射** 或 **叠加等价映射** 或 **叠加变换**。此时，称 \((\tilde{M}, p) \) 与 \((M', p') \) 是 **叠加等价的**。记作 \((\tilde{M}, p) \sim (M', p') \)。易见 \(h^{-1} \) 也是一个叠加等价映射，且 \(\sim \) 为一个等价关系。

在给 \(M \) 附加一定条件后，我们给出 \(M \) 上的万有叠加空间的存在唯一性定理。

引理 6 设 \(M \) 是道路连通和局部道路连通空间，则

(1) 若 \(M \) 有万有叠加空间，则该叠加空间在不区分等价的前提下是唯一确定的；

(2) 若 \(M \) 是半局部连通的，则 \(M \) 必有一个万有叠加空间。

证明 参阅 [Mu], p101, Corollary 14.5.

引理 7 设 \((\tilde{M}, p) \) 是 \(M \) 上的万有叠加空间。\(\tilde{x}_i \in \tilde{M}, p(\tilde{x}_i) = x \in M, i = 1, 2 \) 则存在唯一的叠加变换 \(\tilde{h}: \tilde{M} \rightarrow \tilde{M} \)，使得 \(\tilde{h}(\tilde{x}_1) = \tilde{x}_2 \)。

证明 (唯一性) 由引理 2 立即可得。我们直接证明如下。

设 \(\tilde{h}: \tilde{M} \rightarrow \tilde{M} \) 为叠加变换，满足 \(\tilde{h}(\tilde{x}_1) = \tilde{x}_2 \)。对 \(\forall \tilde{y} \in \tilde{M} \)，因为 \(\tilde{M} \) 道路连通，所以可选择一条道路 \(\overset{\varphi}{\rightarrow}: [0, 1] \rightarrow \tilde{M} \) 连接 \(\tilde{x}_1 = \varphi(0) \) 和 \(\tilde{y} = \varphi(1) \)。在 \(M \) 和 \(\tilde{M} \) 中分别考虑道路 \(p \circ \overset{\varphi}{\rightarrow} \) 和 \(h \circ \overset{\varphi}{\rightarrow} \) 为道路 \(p \circ \overset{\varphi}{\rightarrow} \) 的提升，它的初始点是 \(\tilde{x}_2 \)，且 \(\tilde{h}(\tilde{y}) = \tilde{h} \circ \overset{\varphi}{\rightarrow} (1) \)。所以 \(\tilde{h} \) 是唯一的。

(存在性) 根据唯一性的证明，我们来定义所需的叠加变换 \(\tilde{h} \)。

任取 \(\tilde{y} \in \tilde{M} \)，选道路 \(\overset{\varphi}{\rightarrow}: [0, 1] \rightarrow \tilde{M} \)，使得 \(\varphi(0) = \tilde{x}_1, \varphi(1) = \tilde{y} \)。则 \(p \circ \overset{\varphi}{\rightarrow} \) 为 \(M \) 中以 \(p \circ \overset{\varphi}{\rightarrow}(0) = p(\tilde{x}_1) = x \) 为初始点的一条道路，应用引理 1 得到道路 \(\overset{\varphi}{\rightarrow}: [0, 1] \rightarrow \tilde{M} \) 使得 \(\varphi(0) = \tilde{x}_2 \) 和 \(p \circ \overset{\varphi}{\rightarrow} = p \circ \overset{\varphi}{\rightarrow} \) 定义

\[
\tilde{h}(\tilde{y}) = \overset{\varphi}{\rightarrow}(1).
\]

为此，设 \(\alpha \) 和 \(\beta \) 是 \(M \) 中从 \(\tilde{x}_1 \) 到 \(\tilde{y} \) 的两条道路，\(\alpha \beta^{-1} \) 是以 \(\tilde{x}_1 \) 为基点的 \(\tilde{M} \) 中的闭道路，由于 \(\tilde{M} \) 是单连通的，所以 \(\alpha \beta^{-1} \) 同伦于常值道路 \(\tilde{x}_2 \)。由此得到 \(p(\alpha \beta^{-1}) = p(\alpha)p(\beta)^{-1} \) 是 \(M \) 中以 \(x = p(\tilde{x}_1) = p(\tilde{x}_2) \) 为基点的闭道路，它在 \(M \) 中同伦于常值道路 \(x \)。因此，易证 \(p(\alpha)p(\beta)^{-1} \)
在\(\bar{M}\)中以\(\bar{z}_2\)为初始点的提升也是一条以\(\bar{z}_2\)为基点的闭道路. 于是，\(p(\alpha)\)和\(p(\beta)\)在\(\bar{M}\)中的提升具有相同的初始点\(\bar{z}_2\)和相同的终点. 所以\(\bar{h}(\bar{y})\)与\(\bar{M}\)中连接\(\bar{z}_1\)到\(\bar{y}\)的道路的选取无关, 即\(\bar{h}\)的定义是确切的.

再证\(\bar{h}\)是连续的. 设\(\bar{y} \in \bar{M}, W\)为\(\bar{h}(\bar{y})\)的任一开邻域, 选取\(p\bar{h}(\bar{y}) = p(\bar{y})\)的基本开邻域\(U \subset p(W)\), 并令\(W_1 \subset W\)为\(\bar{M}\)中\(p^{-1}(U)\)的包含\(\bar{h}(\bar{y})\)的道路连通分支, 因\(p\)连续和\(\bar{M}\)局部道路连通, 故可选择\(\bar{M}\)中含\(\bar{y}\)的道路连通开邻域\(V\)使得\(p(V) \subset U\). 容易证明, 对\(\forall \bar{z} \in V, by p(\bar{z}) \in U, \bar{M}\)中取连接\(\bar{y}\)与\(\bar{z}\)的道路\(\bar{y} \subset V\)上, 则\(p(\bar{y}) \subset U\). 于是在\(\bar{M}\)中以\(\bar{h}(\bar{y})\)为初始点的提升\(\bar{w}_1 \subset W_1\), 从而\(\bar{w}_1\)的终点在\(W_1\)中, 即\(\bar{h}(V) \subset W_1 \subset W\), 所以\(\bar{h}\)是连续的.

由\(\bar{h}\)的定义, 显然有\(p \circ \bar{h} = p\), 因此\(\bar{h}\)是覆盖同态映射.

类似可求得覆盖同态映射\(\bar{f}: \bar{M} \rightarrow \bar{M}\), 使得\(\bar{f}(\bar{z}_2) = \bar{z}_1\). 根据\(\bar{h}\)和\(\bar{f}\)的定义, 对\(\forall \bar{y} \in \bar{M}, \bar{z} = \bar{h}(\bar{y})\), 必有\(\bar{f}(\bar{z}) = \bar{y}\), 即\(\bar{f} = \bar{h}^{-1}\). 或者从\(\bar{f} \circ \bar{h}(\bar{z}_1) = \bar{f}(\bar{z}_2) = \bar{z}_1 = \text{Id}_\bar{U}(\bar{z}_1)\)和引理2立即得到\(\bar{f} \circ \bar{h} = \text{Id}_\bar{U}\), 同理有\(\bar{h} \circ \bar{f} = \text{Id}_\bar{U}\), 故\(\bar{f} = \bar{h}^{-1}\). 这就证明了\(\bar{h}\)是覆盖变换.

设\(M\)为\(m\)维\(C^\infty\)流形, \(p: \bar{M} \rightarrow M\)为覆盖投影(注意\(p\)为满映射), \((\bar{M}, p)\)为覆盖空间, \(\{U, \{x^1, \cdots, x^m\}\}\)为\(M\)上的正规(法)凸坐标系, \(\bar{U}\), 为\(p^{-1}(U)\)的连通分支, 且\(p: \bar{U} \rightarrow U\)为同胚, 定义\(\{y^1, \cdots, y^m\} = \{x^1 \circ p, \cdots, x^m \circ p\}\)为\(\bar{U}\)上的坐标函数. 容易直接验证\(\bar{M}\)成为一个\(C^\infty\)流形, \(p\)为局部\(C^\infty\)同胚. 因此, 如果\((M, g)\)为\(C^\infty\)Riemann 流形, 则\((\bar{M}, \hat{g}) = \bar{M}, p^* g\)也为\(C^\infty\)Riemann 流形, 于是, \(p: \bar{M} \rightarrow M\)成为一个局部\(C^\infty\)等距.

引理8 如果\((M, g)\)完备, 则\((\bar{M}, \hat{g}) = (\bar{M}, p^* g)\)也完备.

证明 (反证) 假设\((\bar{M}, \hat{g}) = (\bar{M}, p^* g)\)不完备, 则存在一条正规(弧长为参数的)测地线\(\bar{\gamma}: [0, b) \rightarrow \bar{M}\), 使得\(b < + \infty\), 且\([0, b)\)为测地线的最大定义域. 由于\(p\)为局部\(C^\infty\)等距(注意\(p\)将局部最短线变为局部最短线), 故\(p(\bar{\gamma}): [0, b) \rightarrow M\)为\(M\)中的一条测地线. 因为\((M, g)\)是完备的, 故\(p(\bar{\gamma})(b)\)有定义, 记作\(p(\bar{\gamma})(b) = x \in M\). 设\(U\)为
x 的正规凸坐标邻域，且 $a < b$，使得 $p(\tilde{y})(a) \in U$. 如果 \tilde{U} 为 $p^{-1}(U)$ 的包含 $\tilde{y}(a)$ 的连通分支，则等距 $p^{-1}: U \to \tilde{U}$ 将测地线 (它的定义域已超过 b) 映到 \tilde{U} 中的相应的测地线 \tilde{y} 也可延拓到 b 之外，这与 $[0, b)$ 的最大性矛盾。

推论 1 在引理 6 中，如果 M 为 m 维 C^∞ 流形，则必须存在 M 的唯一 (不区分覆盖等价) 的 C^∞ 万有覆盖空间 \tilde{M}.

进一步，如果 (M, g) 为 C^∞ Riemann 流形，则 $(\tilde{M}, \tilde{g}) = (\tilde{M}, p^*g)$ 为由 g 诱导的 C^∞ Riemann 流形，且 (M, g) 和 (\tilde{M}, \tilde{g}) 是局部 C^∞ 等距的。此外，对 $\forall x \in M, p^{-1}(x) = \{\tilde{x}_1, \tilde{x}_2, \cdots, \tilde{x}, \cdots\}$ (将 MC^∞ 嵌入到 Euclid 空间为 C^∞ 正则子流形，根据覆盖空间的定义并用反证法知 $p^{-1}(x)$ 为至多可数集)，则存在唯一的 C^∞ 覆盖变换 $h: \tilde{M} \to \tilde{M}$ 为 C^∞ 整体等距，且 $h(\tilde{x}_i) = \tilde{x}_i$.

证明 根据引理 6，必存在唯一的万有覆盖空间 \tilde{M}. 再由引理 7 中 h 的定义知覆盖变换 h 是 C^∞ 的. 由于 p 为局部 C^∞ 等距及 $p \circ h = p$，故 h 也为局部 C^∞ 等距. 又因为 h 为 C^∞ 同胚，所以 h 确实是一个整体 C^∞ 等距.

应用两个最重要的覆盖空间 (万有覆盖空间和定向 2 层覆盖流形)，我们来证明 Synge 定理.

定理 1 (J. L. Synge) 设 $(M, g) = (M, \langle, \rangle)$ 为具有正 Riemann 曲率的连通紧致，偶数维的 C^∞ Riemann 流形.

(1) 如果 M 可定向，则它必单连通，即 $\pi_1(M) = \{1\}$；

(2) 如果 M 不可定向，则 M 的基本群 $\pi_1(M) \approx \mathbb{Z}_2$ (模 2 整数群).

证明 (1) 由引理 6，设 \tilde{M} 为 M 的万有覆盖空间，而 $p: \tilde{M} \to M$ 为覆盖投影. 记 $\{U, \{x^1, \cdots, x^n\}\}$ 为 M 中的凸正规 (法) 坐标系，$\{x^1, \cdots, x^n\}$ 为相应的正规 (法) 坐标. 记 \tilde{U} 为 $p^{-1}(U)$ 的一个连通分支，使得 $p: \tilde{U} \to U$ 为同胚，而 $\{y^1, \cdots, y^n\}, y^i = x^i \circ p$ 为 \tilde{U} 上的坐标函数. 易见，\tilde{M} 为一个 C^∞ 流形. $p: \tilde{M} \to M$ 为 C^∞ 满映射，且为局部 C^∞ 微分同胚. 此外，$(\tilde{M}, \tilde{g}) = (\tilde{M}, p^*g)$ 为由 g 诱导的 C^∞ Riemann 流形，而 p
为局部\mathcal{C}^∞等距. 因为M紧致, 故(M, g)是完备的. 根据引理8, (\tilde{M}, \tilde{g})是完备的. (注意, 即使M紧致, 但它的万有覆盖空间\tilde{M}未必是紧致的, 例如$M = S^1 \times S^1, \tilde{M} = \mathbb{R}$).

因为ρ是局部等距的, 故对M中从x出发的每一条道路ξ, 都在\tilde{M}中存在着唯一的道路$\tilde{\xi}$, 使得$\tilde{\xi}$在$p^{-1}(x)$的一个特定的点\tilde{t}_1出发, 且$p(\tilde{\xi}) = \xi$, 即$\tilde{\xi}$为ξ的以\tilde{t}_1为初始点的提升.

(反证) 假设M不是连通的, 即$\pi_1(M) \neq \{1\}$. 易见$p: \tilde{M} \to M$为一个非平凡的覆盖投影, 即$p^{-1}(x)$至少含有两个不同的元素. 设$\gamma: [0, 1] \to M$是以x为基点的不同伦于零的分歧\mathcal{C}^∞闭道路. 它等价于$\gamma(0) = \gamma(1) = x$, 且它的以$\tilde{t}_1$为初始点的提升$\tilde{\gamma}$是以$p^{-1}(x) = \{x_1, x_2, \ldots\}$中不同于$\tilde{t}_1$的点为终点的.

令$\lambda = \inf_{s \neq t} \rho(\tilde{z}_s, \tilde{z}_t)$, 其中$\rho$为由$\tilde{g}$诱导的距离函数. 根据引理7, 存在覆盖变换$\tilde{h}: \tilde{M} \to \tilde{M}$是整体等距的, 且$\tilde{h}(\tilde{z}_s) = \tilde{z}_t$. 于是,

$$
\rho(\tilde{z}_s, \tilde{z}_t) = \rho(\tilde{h}(\tilde{z}_s), \tilde{h}(\tilde{z}_t)) = \rho(\tilde{z}_t, \tilde{z}_s),
$$

$$
\lambda = \inf_{s \neq t} \rho(\tilde{z}_s, \tilde{z}_t) = \inf_{s \neq t} \rho(\tilde{z}_t, \tilde{z}_s).
$$

由覆盖空间的定义, 存在$x \in M$的正规凸坐标开邻域U, 使得$p^{-1}(U)$的含\tilde{t}_1的道路连接分支\tilde{U}_i与U同胚, 且$\tilde{U}_i \cap \tilde{U}_j = \emptyset, \forall i \neq j$, 所以$\lambda = \inf_{s \neq t} \rho(\tilde{z}_s, \tilde{z}_t) > 0$, 由此推出存在$\{\tilde{z}_k | k \geq 2\}$的子序列$\tilde{z}_k$, 使得$\lim_{k \to \infty} \rho(\tilde{z}_1, \tilde{z}_k) = \lambda$及$\{\tilde{z}_k | i \in \mathbb{N}\}$为有界集. 再由$\tilde{M}$的完备性和$\exp_i$将紧致集映成紧致集知, 存在$\tilde{z} \in \tilde{M}$, 使得$\{\tilde{z}_k | i \in \mathbb{N}\}$有一个子序列收敛于$\tilde{z}$, 为方便起见, 仍用$\{\tilde{z}_k\}$记此子序列. 由$\rho$的连续性知$\tilde{z} \in p^{-1}(x)$. 于是存在某个$j$使$\tilde{z} = \tilde{z}_j$. 因为$p^{-1}(x)$是离散的, 所以存在自然数$N$, 当$i > N$时有$\tilde{z}_i = \tilde{z}_j$. 因此$\rho(\tilde{z}_1, \tilde{z}_j) = \lim_{i \to +\infty} \rho(\tilde{z}_1, \tilde{z}_i)\rho(\tilde{z}_1, \tilde{z}_j) = \lambda$. 设$\gamma$为连接$\tilde{z}_1$到$\tilde{z}_j$的一条最短测地线, 则$\gamma = p(\tilde{\gamma})$是一条以$x$为基点的闭道路. 容易看出,$\tilde{\gamma}$为测地线,$p$为局部等距蕴含着$\gamma$是从$x$出发的以$x$为终点的长度最短的测地线. (注意:$\gamma$在$x$处可能有“转点”, 即$\gamma'(0) \neq \gamma'(1)$).

对每一点$x \in M$, 都必有一条闭道路γ, 它不同伦于零, 且在
所有以 x 为基点的不同伦于零的闭道路中具有最短长度，我们定义函数

$$f: \ M \to \mathbb{R}, \ \ f(x) = L(\gamma_x).$$

因为

$$|f(x) - f(y)| = |L(\gamma_x) - L(\gamma_y)| \leq 2\rho(x, y)$$

(ρ 为由 g 诱导的距离函数)，所以 f 为连续函数。于是，f 在紧致拓扑空间 M 上的某点 $x_0 \in M$ 达到绝对极小。这证明 γ_{x_0} 为 M 上的所有不同伦于零的分段 C^∞ 闭道路中的具有绝对最短长度的途径。

因为 $\gamma = \gamma_{x_0}$ 必须局部长度极小，再应用第 3 章 3.3 定理 3 知，γ 是一条规范的测地线，且 $\gamma(0) = \gamma(1), \gamma'(0) = \gamma'(1)$，即 γ 为闭测地线。由于 M 是可定向的，故平行移动 $P^\nu: T_{x_0}M \to T_{x_0}M$ 作为线性变换的行列式为 1，其中 $x_0 = \gamma(0) = \gamma(1)$。因此，$P^\nu$ 的特征值为

$$\lambda_1, \lambda_2, \ldots, \lambda_l, -1, \ldots, -1, 1, \ldots, 1,$$

这里 $\lambda_1, \ldots, \lambda_l$ 是模为 1 的复数。因为 P^ν 为正交变换，且 $\dim M$ 为偶数，所以 $k + l$ 为偶数，再由 $\det P^\nu = 1$ 推出 l 和 k 都是偶数。又因为 γ 为一条闭测地线，所以 $P^\nu(\gamma'(0)) = \gamma'(1) = \gamma'(0)$，即 $l \geq 2$。因此，必存在一个单位向量 $e \in T_{x_0}M$。使得 $P^\nu(e) = e$，且 $e \perp \gamma'(0)$。设 X 为沿 γ 的平行向量场，使得 $X(0) = e$，由于 e 是 P^ν 的不变向量，所以 $X(1) = e$。现设 $\{\gamma_x\}$ 为一个单参数闭道路族，使得 $\gamma_x = \gamma$，而且它的横截向量场正好是 X（例如，取 $\gamma_x(t) = \exp_{x_0}(ux(t))$）。由第 3 章 3.3 定理 5 的单参数曲线族的弧长的第二变分公式 $X' = X(\text{因 } X(0) = e \perp \gamma'(0))$，所以 $X' = X' \equiv 0$，X 与 γ' 线性无关以及正 Riemann 截曲率的假设，有

$$L''(0) = \int_0^1 \left(\| X' \|^2 - \langle R(X, \gamma')\gamma', X \rangle \right)(t) dt$$

$$= - \int_0^1 \langle R(X, \gamma')\gamma', X \rangle (t) dt < 0.$$
\[L(u) = L(0) + L'(0)u + \frac{L''(0)}{2!}u^2 + o(u^2) \]
\[= L(0) + u^2\left[\frac{L''(0)}{2} + o\left(\frac{u^2}{u^2}\right)\right] < L(0), \]

这就产生了矛盾，所以 \(M \) 必是单连通的。

（2）根据第 4 章 4.3，不可定向的连通紧致 \(C^\infty \) Riemann 流形 \((M, g)\) 的定向 2 层覆盖流形 \((\widetilde{M}, \pi)\) 是一个 \(C^\infty \) 连通紧致定向流形，而 \((\widetilde{M}, \pi = \pi^* g)\) 为与 \((M, g)\) 局部 \(C^\infty \) 等距的 Riemann 流形。由于 \((M, g)\) 具有正 Riemann 截曲率，从而 \((\widetilde{M}, \pi)\) 也具有正 Riemann 截曲率。根据 (1) 的结果，\(\widetilde{M} \) 是单连通的。

最后，我们证明 \(\pi_1(M) \approx \mathbb{Z}_2 \)。取定基点 \(x \in M \)，任何以 \(x \) 为基点的闭道路 \(\gamma \)，它在 \(\widetilde{M} \) 中的提升为 \(\widetilde{\gamma} \)，记 \(\tilde{x}_0 = \tilde{\gamma}(0), \tilde{x}_1 = \tilde{\gamma}(1) \)。如果 \(\tilde{\gamma}(0) = \tilde{\gamma}(1) \)，则 \(\tilde{\gamma} \) 为 \(\widetilde{M} \) 中的闭道路。由上证得 \(\widetilde{M} \) 是单连通的，\(\tilde{\gamma} \) 同伦 \(\gamma_0 \)，其中 \(\gamma_0(t) = \gamma(0) \)，从而 \(\pi(\tilde{\gamma}) \) 同伦 \(\pi(\gamma_0) = x \)；如果 \(\tilde{\gamma}(0) \neq \tilde{\gamma}(1) \)，由于 \(\widetilde{M} \) 单连通和引理 5，\(\widetilde{M} \) 中凡以 \(\tilde{\gamma}(0) \) 为基点，\(\tilde{\gamma}(1) \) 为终点的道路是彼此同伦等价的，因而它们在 \(M \) 上的投影也是彼此同伦等价的以 \(x \) 为基点的闭道路，但与常值 \(x \) 的闭道路不同伦等价，这证明了 \(\pi_1(M) \approx \mathbb{Z}_2 \)。

定理 2 设 \((M, g)\) 为 \(2n + 1 \) 维紧致有正 Riemann 截曲率的 \(C^\infty \) Riemann 流形，则 \(M \) 可定向。

证明 设 \((\widetilde{M}, \pi)\) 为 \(M \) 的定向 2 层覆盖流形，其中 \(\pi: \widetilde{M} \to M \) 为覆盖映射。任取 \(x \in M, \pi^{-1}(x) = \{\tilde{x}_1, \tilde{x}_2\} \)（其中 \(\tilde{x}_1 \) 和 \(\tilde{x}_2 \) 为 \(x \) 处的两个相反的定向），记 \(L(x) \) 为 \(\tilde{x}_1 \) 和 \(\tilde{x}_2 \) 关于 \((\widetilde{M}, \tilde{g}) = (\widetilde{M}, \pi^* g)\) 的距离，显然 \(L: M \to \mathbb{R}, x \to L(x) \) 为连续函数。由 \(M \) 紧致知 \(L \) 在 \(x_0 \in M \) 处达到最小值 \(L(x_0) > 0 \)。

根据第 3 章 3.1 推论 1，\(M \) 紧致蕴涵着 \((M, g)\) 完备，再由本节引理 8，\((\widetilde{M}, \pi^* g)\) 也完备，从而有最短测地线 \(\tilde{\gamma} \) 连接 \(x_0 \) 和 \(x_0 \) 中两个点。\(\gamma = \pi(\tilde{\gamma}) \) 为以 \(x_0 \) 为基点的分段 \(C^\infty \) 闭测地线（注意 \(\pi \) 为局部 \(C^\infty \) 等距，它将测地线变为测地线）。

400
（反正）假设 \(M \) 不可定向，根据[徐森林、薛春华, 80 页，定理 6(3)]，存在闭道路 \(\gamma \)，沿 \(\gamma \) 平行移动一圈得正交变换 \(P_{x_0}: T_{x_0}M \rightarrow T_{x_0}M \)，其变换行列式为 \(-1\)，\(P_{x_0} \) 之特征值排列为

\[
\lambda_1, \overline{\lambda_1}, \ldots, \lambda_j, \overline{\lambda_j}, -1, \ldots, -1, 1, \ldots, 1
\]

因此，\(k \) 为奇数，\(l = 2n + 1 - 2j - k \) 为偶数。于是，存在向量 \(e \perp \gamma'(0) \)，\(P_{x_0}(e) = e \)。余下的与定理 1（Synge 定理）完全相同的论证推出矛盾。所以 \(M \) 是可定向的。

5.2 等距变换和空间形式

在 5.1 和第 2 章 2.1 中，我们已经提到等距变换。这一节，我们将详细研究它。

定义 1 设 \((V_i, g_i)\) 为内积空间，\(i = 1, 2\)。我们称保持内积的线性同构（正交变换）\(f: V_1 \rightarrow V_2 \) 为等距变换，即对 \(\forall X, Y \in V_1 \)，有

\[
g_2(f(x), f(Y)) = g_1(X, Y).
\]

显然，等距变换 \(f \) 保模、保夹角、保距离。

设 \((M_i, g_i)\) 为 \(m\) 维 \(C^\infty\) Riemann 流形，\(i = 1, 2\)。如果 \(C^\infty\) 映射 \(f: M_1 \rightarrow M_2 \)，对任意 \(x \in M_1 \)，\(df(x): T_xM_1 \rightarrow T_{f(x)}M_2 \) 为等距变换，则称 \(f \) 为局部 \(C^\infty\) 等距（同尺）映射。此时，\(\dim M_1 = \dim M_2 \)，且由反函数定理知 \(f \) 必须是局部 \(C^\infty\) 微分同胚的。记 \(g_1 = f^*g_2, g_1(X, Y) = g_2(df(x), df(Y)) = f^*g_2(X, Y) \)。容易看出，局部 \(C^\infty\) 等距映射保曲率、长度、保局部最短线、保测地线。

如果 \(f \) 既是局部 \(C^\infty\) 等距映射，又是整体 \(C^\infty\) 微分同胚，则称 \(f \) 为（整体）\(C^\infty\) 等距（同尺）变换。

定理 1 \(C^\infty\) 等距变换 \(f: M_1 \rightarrow M_2 \) 保 Levi-Civita 联络、保曲率张量、保 Riemann-Christofel 曲率张量、保 Ricci 张量以及保 Riemann 截曲率、保数量曲率。

证明 设 \(\nabla', R' \) 分别为 \(M \) 上的 Levi – Civita 联络和 Riemann
- Christofel 曲率张量, \(X, Y, Z, W \) 为 \(M_1 \) 上的 \(C^\infty \) 切向量场, 则

\[
df([X,Y]) = [\df(X), \df(Y)],
\]

\[
2g_2(\nabla^2_{\frac{t}{t(X)}} \df(Y), \df(Z))
\]

\[
= \df(X)g_2(\df(Y), \df(Z)) + \df(Y)g_2(\df(Z), \df(X))
- \df(Z)g_2(\df(X), \df(Y)) - g_2(\df(Y), [\df(X), \df(Z)])
- g_2(\df(X), [\df(Y), \df(Z)]) - g_2(\df(Z), [\df(Y), \df(X)])
\]

\[
= \df(X)g_2(\df(Y), \df(Z)) + \df(Y)g_2(\df(Z), \df(X))
- \df(Z)g_2(\df(X), \df(Y)) - g_2(\df(Y), [\df(X), \df(Z)])
- g_2(\df(X), \df([Y, Z])) - g_2(\df(Z), \df([Y, X]))
\]

\[
= \{Xg_1(\frac{t}{t(X)}, \frac{t}{t(Y)}, \frac{t}{t(Z)}) + Yg_1(\frac{t}{t(Z), \frac{t}{t(Y)}, \frac{t}{t(X)})}
- Zg_1(\frac{t}{t(Y)}, \frac{t}{t(X)}) - g_1(\frac{t}{t(Y), \frac{t}{t(X)}}, \frac{t}{t(Z)})
- g_1(\frac{t}{t(Y), \frac{t}{t(X)}, \frac{t}{t(Z)}) - g_1(\frac{t}{t(Y), \frac{t}{t(X)}, \frac{t}{t(Z)})}
\} \cdot f^{-1}
\]

\[
= 2g_1(\nabla^2_{\frac{t}{t(X)}} \df(Y)) = f^{-1}(\nabla^2_{\frac{t}{t(X)}} \df(Y))
\]

由 \(\df(Z) \) 为 \(M_2 \) 上的任意 \(C^\infty \) 切向量场, 所以

\[
\nabla^2_{\frac{t}{t(X)}} \df(Y) = \df(\nabla^2_{\frac{t}{t(X)}} \df(Y))
\]

即 \(f \) 保 Levi-Civita 联络.

\[
R^2(\df(X), \df(Y)) \df(Z)
\]

\[
= \nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z) - \nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z)
- \nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z)
\]

\[
= \df(\nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z) - \nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z) - \nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z)
= \df(\nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z) - \nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z) - \nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z)
\]

\[
= df(\nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z) - \nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z) - \nabla^2_{\frac{t}{t(X)}} \nabla^2_{\frac{t}{t(Y)}} \df(Z)
\]

即 \(f \) 保曲率张量.

于是, 有

\[
R^2(\df(X) \wedge \df(Y)) = \frac{g_2(R^2(\df(X), \df(Y)) \df(Y)) \df(Y), \df(X))}{\| \df(X) \wedge \df(Y) \|^2}
\]

\[
= \frac{g_2(\df(R^2(X,Y)Y)) \df(X))}{\| \df(X) \wedge \df(Y) \|^2}
\]

402
\[
= \frac{g_1(R^1(X,Y)Y,X)}{\| X \wedge Y \|} = R^1(X \wedge Y).
\]

知 f 保 Riemann 截曲率.

其他结论是明显的.

引理 1 设 \(p: \tilde{M} \to M \) 为 \(m \) 维 \(C^\infty \) 连通 Riemann 流形间的局部 \(C^\infty \) 等距映射，\(\tilde{M} \) 是完备的，则 \(p \) 为满映射。进一步，它是覆叠投影，且 \(M \) 也是完备的。

证明 先证 \(p \) 是满映射。由于 \(p \) 为局部 \(C^\infty \) 等距映射，故 \(p(\tilde{M}) \) 为 \(M \) 中的开集。另一方面，如果 \(y \) 是 \(p(\tilde{M}) \) 在 \(M \) 中的任一聚点，则必存在 \(\tilde{x} \in \tilde{M} \) 使得 \(p(\tilde{x}) \) 与 \(y \) 之间有一条测地线相连接。由 \(\tilde{M} \) 的完备性知，这条测地线在 \(\tilde{M} \) 中可提升为从 \(\tilde{x} \) 出发的测地线，它的终点在 \(p \) 下的象是 \(y \)，从而 \(y \in p(\tilde{M}) \)，\(p(\tilde{M}) \) 是 \(M \) 中的闭集。因为 \(M \) 连通，所以 \(p(\tilde{M}) = M \)，即 \(p \) 为满映射。

再证 \(p \) 为覆叠投影。显然，局部 \(C^\infty \) 等距映射 \(p: \tilde{M} \to M \) 将最短线映为最短线，测地线映为测地线。因此，如果 \(p(\tilde{x}) = x \)，则图表

\[
\begin{array}{ccc}
T_i \tilde{M} & \xrightarrow{d\tilde{p}} & T_i M \\
\exp_\tilde{x} & \downarrow & \downarrow \exp_x \\
\tilde{M} & \xrightarrow{p} & M
\end{array}
\]

是可交换的，即 \(p \circ \exp_x = \exp_x \circ (d\tilde{p}) \)（如果 \(\tilde{M}, M \) 不假定是完备的，则 \(T_i M, T_i M \) 分别可用其开子集 \(\tilde{A}, A \) 代替，使得 \(\exp_\tilde{x}, \exp_x \) 分别在 \(\tilde{A}, A \) 中有定义，且 \(d\tilde{p}(\tilde{A}) = A \)）。

现选 \(\delta \) 充分小，使得 \(\exp_x: B(\delta) \to B_\delta \) 为 \(C^\infty \) 微分同胚，其中 \(B(\delta) = \{ v \in T_i M \mid \| v \| < \delta \}, B_\delta = \{ y \in M \mid \rho(y, x) < \delta \} \)。由于 \(p \) 为局部 \(C^\infty \) 微分同胚，故 \(p^{-1}(x) \) 为离散点集，记 \(p^{-1}(x) = \{ \tilde{x}_i \} \)。对每个 \(i \)，令

\[
\tilde{B}(\delta) = \{ \tilde{v} \in T_i \tilde{M} \mid \| \tilde{v} \| < \delta \}, \\
\tilde{B}_\delta = \{ \tilde{y} \in \tilde{M} \mid \tilde{\rho}(\tilde{y}, \tilde{x}_i) < \delta \}.
\]

可以证明 (1°) \(p^{-1}(B_\delta) = \bigcup_i \tilde{B}_\delta \);
事实上, 由 \(p \) 为局部 \(C^\infty \) 等距映射, 它使距离不变, 故 \(\bigcup \bar{B}_i \subseteq p^{-1}(B_0) \). 反之, 若 \(\bar{z} \in p^{-1}(B_0) \), 则在 \(B_0 \) 中有唯一的一条最短测地线 \(\zeta; [0, 1] \rightarrow B_0 \) 使得 \(\zeta(0) = p(\bar{z}), \zeta(1) = x \). 因为 \(p \) 为局部 \(C^\infty \) 等距映射, 所以存在一条测地线 \(\bar{\zeta}; [0, 1] \rightarrow \bar{M} \) 使得 \(\bar{\zeta}(0) = \bar{z} \) 且

\[
p(\bar{\zeta}(t)) = \zeta(t), \quad t \in [0, 1],
\]

即 \(\bar{\zeta} \) 为以 \(\bar{z} \) 为初始点的 \(\zeta \) 的提升. 于是, \(p(\bar{\zeta}(1)) = \zeta(1) = x, \bar{\zeta}(1) \in p^{-1}(x), \bar{\zeta}(1) = \bar{x}_i \) (某个 \(i \)). 显然, \(L(\bar{\zeta}) = L(\zeta) < \delta \). 这就证明了 \(\bar{z} = \bar{\zeta}(0) \in \bar{B}_i, p^{-1}(B_0) \subseteq \bigcup \bar{B}_i \), 于是 \(p^{-1}(B_0) = \bigcup \bar{B}_i \).

\(\text{(2°)} \) 对任意 \(i, p; \bar{B}_i \rightarrow B_0 \) 是 \(C^\infty \) 微分同胚;

由 \(\bar{M} \) 的完备性, 得交换图表:

\[
\begin{array}{ccc}
\bar{B}'(\delta) & \xrightarrow{dp} & B(\delta) \\
\exp_{\bar{z}} & \downarrow & \downarrow \exp_z \\
\bar{B}_i & \xrightarrow{p} & B_0
\end{array}
\]

并且 \(\exp_{\bar{z}} \) 为满映射. 此外, 从 \(dp \big|_{\bar{B}'(\delta), \exp_{\bar{z}}} \) 为 \(C^\infty \) 微分同胚可得

\[
p \circ \exp_{\bar{z}} = \exp_z \circ dp
\]

也是 \(C^\infty \) 微分同胚, 故 \(\exp_{\bar{z}} \) 为 \(C^\infty \) 浸入, 从而 \(\exp_{\bar{z}} \) 为 \(C^\infty \) 微分同胚, 因此

\[
p = \exp_z \circ dp \cdot (\exp_{\bar{z}})^{-1}
\]

也是 \(C^\infty \) 微分同胚.

\(\text{(3°)} \) \(\bar{B}_i \cap \bar{B}_j = \emptyset, i \neq j. \)

(反证) 假设 \(\bar{B}_i \cap \bar{B}_j \neq \emptyset, i \neq j. \) 取 \(\bar{z} \in \bar{B}_i \cap \bar{B}_j \). 由 \(\text{(2°)} \), 在 \(\bar{B}_i, \bar{B}_j \) 中分别有唯一的正规 (弧长参数化的) 测地线 \(\bar{\zeta}_i, \bar{\zeta}_j \) 连接 \(\bar{z} \) 到 \(\bar{x}_i, \bar{x}_j \). 令 \(\zeta \) 为 \(B_0 \) 中唯一的正规测地线连接 \(p(\bar{z}) \) 到 \(x \). 由于 \(p; \bar{B}_i \rightarrow B_0 \) 和 \(p; \bar{B}_j \rightarrow B_0 \) 为等距映射, 所以

\[
p(\bar{\zeta}_i) = \zeta = p(\bar{\zeta}_j).
\]

从 \(p; \bar{M} \rightarrow M \) 为局部 \(C^\infty \) 同胚, 过 \(\bar{z} \in \bar{M} \) 至多有一个提升, 而 \(\bar{\zeta}_i, \bar{\zeta}_j \) 都是过 \(\bar{z} \in \bar{M} \) 的 \(\zeta \) 的提升, 故必有 \(\bar{\zeta}_i = \bar{\zeta}_j \). 特别地, \(\bar{z}_i = \bar{\zeta}_i(1) = \bar{\zeta}_j(1) = \bar{x}_i, i = j \), 这与 \(i \neq j \) 相矛盾.

404
综合(1°)、(2°)、(3°)，\(p \) 为 \(C^\infty \) 覆盖映射。

最后，从 \(p \circ \exp_\ast = \exp \circ (dp) \)，\(\tilde{M} \) 完备(\(\exp \) 在 \(T_x \tilde{M} \) 上都有定义)，\(p \) 为局部 \(C^\infty \) 等距(\(dp \) 为线性同构) 和 \(p \) 为满映射可得 \(\exp \) 在 \(T_xM \) 上都有定义，从而 \(M \) 是测地完备和完备的。或者由 \(\tilde{M} \) 的完备性和 \(p \) 为覆盖投影推得 \(M \) 中任何 Cauchy 点列必收敛，因而 \(M \) 是完备的。

引理 2 设 \(\tilde{M} \) 和 \(M \) 分别为连通和单连通的 \(C^\infty \) Riemann 流形，\(p: \tilde{M} \to M \) 为局部 \(C^\infty \) 等距的覆盖投影，则 \(p \) 为整体 \(C^\infty \) 等距变换。

证明 只须证 \(p \) 为同胚。（反证）假设 \(p \) 不为同胚，由于 \(p \) 为覆盖投影，当然为满映射，从而 \(p \) 不为单射，即存在 \(x \in M, p^{-1}(x) \) 为至少两个点的集合，设 \(\tilde{x}_1, \tilde{x}_2 \in p^{-1}(x), \tilde{x}_1 \neq \tilde{x}_2 \)。因为流形 \(\tilde{M} \) 连通等价于道路连通，故在 \(\tilde{M} \) 中存在连接 \(\tilde{x}_1 \) 和 \(\tilde{x}_2 \) 的道路 \(\tilde{\gamma} \)。于是，\(p \circ \tilde{\gamma} \) 为 \(M \) 中以 \(x \) 为基点的闭道路。\(M \) 单连通蕴涵着存在连续映射

\[F: [0, 1] \times [0, 1] \to M, \]

使得

\[F(t, 0) = p \circ \tilde{\gamma}(t), \]
\[F(t, 1) = x, \quad t \in [0, 1], \]
\[F(0, s) = x = F(1, s), s \in [0, 1]. \]

（即闭道路 \(p \circ \tilde{\gamma} \) 在 \(M \) 中可缩为一点）。设 \(F \) 在 \(\tilde{M} \) 中的提升为 \(\bar{F}: [0, 1] \times [0, 1] \to \tilde{M} \)，即 \(\bar{F} \) 为连续映射，且 \(p \circ \bar{F} = F \)。对任意 \(s \in [0, 1], \)

\[\bar{F}(0, s) = \tilde{x}_1, \quad \bar{F}(1, s) = \tilde{x}_2. \]

特别地，\(\bar{F}([0, 1] \times \{1\}) \) 连通，且 \(p \circ \bar{F}([0, 1] \times \{1\}) = F([0, 1] \times \{1\}) = x, \bar{F}([0, 1] \times \{1\}) \subset p^{-1}(x), \bar{F}([0, 1] \times \{1\}) = \tilde{x}_1. \) 于是

\[\tilde{x}_1 = F(1, 1) = \tilde{x}_2, \]

矛盾。

引理 3 设 \((M, g) \) 为 \(C^\infty \) 完备 Riemann 流形，\(x \in M \)，\(\exp: T_xM \to M \) 无共轭点，则 \(\exp_x \) 为覆盖投影。
证明 因为 \(\exp_z T_z M \rightarrow M \) 无共轭点等价于 \(\exp_z \) 处处非零（见第 3 章 3.2 定理 2），所以 \(\exp_z \) 为局部 \(C^\infty \) 同胚（见[徐]2, 80 页，定理 3），从而 \((T_z M, \exp_z g)\) 为 \(C^\infty \) Riemann 流形。

先证 \((T_z M, \exp_z g)\) 是完备的。为此，考虑 \(T_z M\) 中的射线 \(y_t : [0, +\infty) \rightarrow T_z M\)，使得对 \(\forall t \in [0, +\infty)\)
\[
 y(t) = tv,
\]
其中 \(v \in T_z M\) 为单位向量。由 \(\exp_z\) 的定义知 \(\exp_z\) 将 \(T_z M\) 中的射线映为 \(M\) 中自 \(x\) 出发的测地线。据 \(\exp_z g\) 的定义，\(T_z M\) 中的射线就是 \((T_z M, \exp_z g)\) 的测地线，\(\exp_z g\) 是测地完备的。再应用 Hopf － Rinow 定理 (2)（第 3 章 3.1 定理 7），就得 \(\exp_z g\) 是完备的。于是，
\[
 \exp_z : (T_z M, \exp_z g) \rightarrow (M, g)
\]
为局部 \(C^\infty\) 等距的满映射。根据引理 1，
\[
 \exp_z : T_z M \rightarrow M
\]
为 \(C^\infty\) 覆盖映射。

引理 4 设 \((M, g)\) 为 \(m\) 维 \(C^\infty\) 单连通完备 Riemann 流形，且在某点 \(x \in M\)，\(\exp_z : T_z M \rightarrow M\) 无共轭点，则 \(\exp_z\) 为 \(C^\infty\) 微分同胚。

证明 因为 \((M, g)\) 是 \(C^\infty\) 完备 Riemann 流形，\(\exp_z : T_z M \rightarrow M\) 无共轭点，据引理 3，\(\exp_z\) 为 \(C^\infty\) 覆盖映射。

再由 \(M\) 的单连通性和引理 2，\(\exp_z\) 为 \(C^\infty\) 微分同胚。

注意，\(\mathbb{R}^3\) 中是常的 \(2\) 维柱面 \(S^1 \times \mathbb{R}\) 无共轭点，但 \(\exp_z\) 非同胚，这是因为 \(S^1 \times \mathbb{R}\) 不是单连通的。

定理 2 (Cartan － Hadamard) 设 \((M, g)\) 为 \(m\) 维具有非正 Riemann 轮曲率的 \(C^\infty\) 单连通完备 Riemann 流形。则对 \(\forall x \in M\)，
\[
 \exp_z : T_z M \rightarrow M
\]
为 \(C^\infty\) 微分同胚（此时，\(MC^\infty\) 微分同胚于 \(\mathbb{R}^m\)）。

证明 根据第 3 章 3.2 定理 7，\(\exp_z : T_z M \rightarrow M\) 无共轭点，再由引理 4，\(\exp_z\) 为 \(C^\infty\) 微分同胚。

引理 5 设 \((M, g)\) 为 \(m\) 维 \(C^\infty\) Riemann 流形，\(a > 0\) 为常数。则平面 \(X \wedge Y\) 关于 \((M, ag)\) 的 Riemann 轮曲率为

406
\[R^*(X \wedge Y) = \frac{1}{a} R^i(X \wedge Y) = \frac{1}{a} R(X \wedge Y). \]

证明 根据第1章1.3关于联络系数的公式

\[R^*_{ij} = \frac{1}{2} \sum_{r=1}^{n} g^{ir} \left(\frac{\partial g_{rj}}{\partial x^i} + \frac{\partial g_{ri}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^r} \right). \]

在 \(M \) 的同一个局部坐标系中，关于 \((M, ag)\) 和 \((M, g)\) 的联络系数是相同的，从而它们诱导出相同的 Levi – Civita 联络，故有

\[
R^*(X \wedge Y) = \frac{ag(R(X,Y)Y,X)}{ag(X,X) \cdot ag(Y,Y) - [ag(X,Y)]^2} = \frac{1}{a} R^i(X \wedge Y) = \frac{1}{a} R(X \wedge Y).
\]

引理 6 设 \((M,g) = (M,\langle , \rangle)\) 为常 Riemann 路曲率 c 的 m 维 \(C^\infty\) Riemann 流形, \(x \in M, v \in T_xM, \| v \| = 1, v^\perp\) 为 \(v\) 于 \(T_x M\) 中的正交补空间，\(R\) 为 \(M\) 的曲率张量，则

\[R(w,v)w = \begin{cases} c w, & w \in v^\perp, \\ 0, & w = \alpha v (\alpha \in \mathbb{R}). \end{cases} \]

证明 由第1章1.4定理3(3)得

\[
R(w,v)w = c \langle v, v \rangle w - \langle v, w \rangle v = \begin{cases} c w, & w \in v^\perp, \\ 0, & w = \alpha v. \end{cases}
\]

引理 7 设 \(\tilde{M}, M\) 为 m 维 \(C^\infty\) Riemann 流形, \(\tilde{M}\) 连通, \(f: f_1, f_2: \tilde{M} \to M\) 为两个局部 \(C^\infty\) 等距映射, 使得对某个 \(\tilde{x}_0 \in \tilde{M}, f_i(\tilde{x}_0) = f_2(\tilde{x}_0) = x_0 \in M, \) 且 \(df_1(\tilde{x}_0) = df_2(\tilde{x}_0); T_{\tilde{x}_0}\tilde{M} \to T_{x_0}M, \) 则 \(f_1 = f_2,\) 其中 \(df_i(\tilde{x}_0)\) 表示 \(df_i\) 在 \(T_{\tilde{x}_0}\tilde{M}\) 上的限制, \(i = 1, 2.\)

证明 令 \(A = \{ \tilde{x} \in \tilde{M} | f_1(\tilde{x}) = f_2(\tilde{x}), df_1(\tilde{x}) = df_2(\tilde{x}) \} \subset \tilde{M}.\) 由题设 \(\tilde{z} \in A, \) 且 \(A \neq \emptyset.\) 如若 \(\tilde{z} \in A,\) 则存在 \(\delta > 0,\) 使得 \(\exp_\tilde{z} : B(\delta) \to \exp_\tilde{z}B(\delta) \subset \tilde{M}\) 为 \(C^\infty\) 微分同胚，其中 \(B(\delta) = \{ x \in T_{\tilde{x}}\tilde{M} | \| x \| < \delta \}.\) 由

\[
f_1 = \exp_\tilde{z} \circ df_1(\tilde{z}) \circ \exp_\tilde{z} \circ f_2, \quad f_1(\tilde{z}) = z = f_2(\tilde{z}),
\]

407
对 $\forall \tilde{y} \in \exp_\tilde{y}B(\delta)$，有

$$df_1(\tilde{y}) = df_2(\tilde{y}),$$

这就证明了 $\exp_\tilde{y}(B(\delta)) \subset A$，即 A 为 \tilde{M} 中的开集.

根据 f_i 和 df_i 的连续性 $(i = 1, 2)$ 知 A 为 \tilde{M} 中的闭集，再由 \tilde{M} 连通和 A 非空就得 $A = \tilde{M}$，从而

$$f_1 = f_2.$$

定理 3 设 \tilde{M}, M 为两个 m 维空间形式，其常 Riemann 截曲率为 $c, \tilde{x} \in \tilde{M}, x \in M, \{\tilde{e}_1, \cdots, \tilde{e}_n\}, \{e_1, \cdots, e_n\}$ 分别为 $T_x\tilde{M}, T_xM$ 的规范正交基，则存在唯一的等距变换 $f; \tilde{M} \to M$ 使得

$$f(\tilde{x}) = x, df(\tilde{e}_i) = e_i, \quad i = 1, \cdots, m.$$

证明 由引理 5，只须对 $c = -1, 0, 1$ 给出证明，不失一般性，只须考虑 $\tilde{M} = H^n, \mathbb{R}^n$ 和 S^n 的情形。

先考虑 $c = -1$ 或 0. 由 Cartan—Hadamard 定理，$\exp_{\tilde{x}}: T_{\tilde{x}}\tilde{M} \to \tilde{M}$ 和 $\exp_x: T_xM \to M$ 都是 C^∞ 微分同胚，令等距变换

$$F: T_{\tilde{x}}\tilde{M} \to T_xM,$$

使得

$$F(\tilde{e}_i) = e_i, \quad i = 1, \cdots, m.$$

则

$$f; \tilde{M} \to M, \quad f = \exp_x \circ F \circ (\exp_{\tilde{x}})^{-1}$$

为一个 C^∞ 微分同胚。

现在证明 f 是等距变换，即对 $\forall \tilde{y} \in \tilde{M}, \forall X \in T_{\tilde{y}}\tilde{M}$，有

$$\| df(X) \| = \| X \| .$$

由 Cartan—Hadamard 定理，存在 $T \in T_{\tilde{y}}\tilde{M}, W \in T_{\tilde{y}}(T_{\tilde{y}}\tilde{M})$，使得

$$\tilde{y} = \exp_\tilde{y}T, \quad X = (d \exp_{\tilde{y}})_T(W).$$

在将 $T_{\tilde{y}}(T_{\tilde{y}}\tilde{M})$ 与 $T_{\tilde{y}}\tilde{M}$ 叠合后，令

$$\tilde{y}_u(t) = \exp_{\tilde{y}}(T + uW),$$

则

408
\[\tilde{U}(t) = \frac{\partial \tilde{\gamma}_0}{\partial u} |_{u=0} \]

为 \(\tilde{\gamma}_0 \) 的横截向量场在测地线 \(\tilde{\gamma}_0 \) 上的限制，根据 \(\tilde{U}(t) \) 为沿 \(\tilde{\gamma}_0 \) 的 Jacobi 场，且

\[\tilde{U}(0) = 0, \tilde{U}'(0) = W, \tilde{U}(1) = X. \]

在 \(M \) 中令

\[\gamma_0(t) = \text{exp}_2(F(Y) + uF(W)), \]

\[U(t) = \frac{\partial \gamma_0}{\partial u} |_{u=0} \]

为 \(\gamma_0 \) 的横截向量场在 \(\gamma_0 \) 上的限制，同理 \(U(t) \) 为沿 \(\gamma_0 \) 的 Jacobi 场，且

\[U(0) = 0, U'(0) = F(W). \]

因为

\[f\tilde{\gamma}_0(t) = \text{exp}_2 \circ F \circ (\text{exp}_2)^{-1}(\text{exp}_2t(Y + uW)) \]

\[= \text{exp}_2 \circ F(t(Y + uW)) \]

\[= \text{exp}_2t(F(Y) + uF(W)) = \gamma_0(t), \]

所以，\(df(\tilde{U}(t)) = U(t) \)。从而

\[df(X) = df(\tilde{U}(1)) = U(1). \]

沿测地线 \(\tilde{\gamma}_0, \gamma_0 \) 分别选取平行规范正交标架场 \(\{\tilde{e}_1(t), \cdots, \tilde{e}_m(t)\}, \{e_1(t), \cdots, e_m(t)\} \) 使得

\[\tilde{e}_i(0) = \tilde{e}_i, e_i(0) = e_i, \quad i = 1, \cdots, m. \]

记

\[\tilde{U}(t) = \sum_i \tilde{f}_i(t)\tilde{e}_i(t), \quad U(t) = \sum_i f_i(t)e_i(t). \]

由引理 6，

\[R(\tilde{\gamma}'_0(t), \tilde{U}(t)), \tilde{\gamma}'_0(t) \]

\[= \| \tilde{\gamma}'_0(t) \| ^2 R\left(\frac{\tilde{\gamma}'_0(t)}{\| \tilde{\gamma}'_0(t) \|}, \tilde{U}(t) \right) \frac{\tilde{\gamma}'_0(t)}{\| \tilde{\gamma}'_0(t) \|} \]

\[= \| \tilde{\gamma}'_0(t) \| ^2 R\left(\frac{\tilde{\gamma}'_0(t)}{\| \tilde{\gamma}'_0(t) \|}, \tilde{U}(t) \right) - \frac{\langle \tilde{U}(t), \tilde{\gamma}'_0(t) \rangle \tilde{\gamma}'_0(t)}{\| \tilde{\gamma}'_0(t) \| ^2 \tilde{\gamma}'_0(t)} \] \frac{\tilde{\gamma}'_0(t)}{\| \tilde{\gamma}'_0(t) \|} \]

\[= \| \tilde{\gamma}'_0(t) \| ^2 \cdot c\{\tilde{U}(t) - \frac{\langle \tilde{U}(t), \tilde{\gamma}'_0(t) \rangle \tilde{\gamma}'_0(t)}{\| \tilde{\gamma}'_0(t) \| ^2 \tilde{\gamma}'_0(t)}\}. \]

409
由于平行移动保持内积，所以
\[\langle \tilde{\gamma}_0'(t), \tilde{\gamma}_0'(t) \rangle = \langle \tilde{\gamma}_0(0), \tilde{\gamma}_0(0) \rangle = \langle T, T \rangle. \]
\[\langle \tilde{\gamma}_0'(t), \tilde{e}_i'(t) \rangle = \langle \tilde{\gamma}_0'(0), \tilde{e}_i'(0) \rangle = \langle T, \tilde{e}_i \rangle. \]
由此和 \(\tilde{e}_i'(t) = 0 \)，且 \(\tilde{U}(t) \) 满足 Jacobi 方程，有
\[\tilde{U}''(t) + R(\tilde{\gamma}_0'(t), \tilde{U}(t)) \tilde{\gamma}_0(t) = 0 \]
\[\Leftrightarrow \sum_i \tilde{f}_i''(t) \tilde{e}_i(t) + \| \tilde{\gamma}_0(t) \| ^2 \cdot c \langle \tilde{U}(t) \]
\[\quad - \frac{\langle \tilde{U}(t), \tilde{\gamma}_0'(t) \rangle}{\| \tilde{\gamma}_0'(t) \| ^2} \tilde{\gamma}_0(t) \rangle = 0 \]
\[\Leftrightarrow \tilde{f}_i''(t) + \sum_j \tilde{f}_j(t) \langle c \| T \| ^2 \delta_{ij} - c \langle T, \tilde{e}_j \rangle \langle T, \tilde{e}_i \rangle \rangle = 0 \]
再由 \(\sum_i \tilde{f}_i(0) \tilde{e}_i = \tilde{U}(0) \) 和 \(\sum_i \tilde{f}_i'(0) \tilde{e}_i = \tilde{U}'(0) = W \) 推得 \(\tilde{f}_i \) 满足 2 阶常微分方程组:
\[
\begin{cases}
\tilde{f}_i''(t) + \sum_j \tilde{f}_j(t) \langle c \| T \| ^2 \delta_{ij} - c \langle T, \tilde{e}_j \rangle \langle T, \tilde{e}_i \rangle \rangle = 0 \\
\tilde{f}_i(0) = 0 \\
\tilde{f}_i'(0) = \langle W, \tilde{e}_i \rangle, i = 1, \cdots, m.
\end{cases}
\]
再从 \(\| T \| ^2 = \| F(T) \| ^2, \langle T, \tilde{e}_i \rangle = \langle F(T), F(\tilde{e}_i) \rangle = \langle F(T), e_i \rangle, \)
\(\langle W, \tilde{e}_i \rangle = \langle F(W), F(\tilde{e}_i) \rangle = \langle F(W), e_i \rangle, \) 以及微分方程组解的存在
唯一性定理得到
\[\tilde{f}_i(t) = f_i(t), \quad i = 1, \cdots, m. \]
因此
\[\| X \| ^2 = \| \tilde{U}(1) \| ^2 = \sum_i \tilde{f}_i^2(1) = \sum_i f_i^2(1) \]
\[= \| U(1) \| ^2 = \| df(\tilde{U}(1)) \| ^2 = \| df(X) \| ^2, \]
\[\| df(X) \| = \| X \|. \]
故当 \(c = -1 \) 或 0 时，\(f_i: \tilde{M} \to M \) 为所求的等距变换。

当 \(c = 1 \) 时，不妨设 \(\tilde{M} = S^n \)，记 \(-\tilde{x} \) 为 \(\tilde{x} \) 的对径点，则 \(\exp_{\tilde{x}}^{-1}: S^n \to \{ -\tilde{x} \} \to T_i S^n \) 是 \(C^\infty \) 映射。于是，应用与 \(c = -1 \) 或 0 时类似的方
法得到 $f = \exp_\cdot F \cdot \exp_1; S^n - \{-\tilde{x}\} \rightarrow M$ 为局部 C^∞ 等距映射（因为 \exp_\cdot 在 F 的象集未必是 C^∞ 微分同胚，所以 f 也未必是整体等距！）。

再将 f 延拓到整个 S^n 上，为此，取 $\tilde{z} \in S^n - \{\tilde{x}, -\tilde{x}\}$，记 $z = f(\tilde{z})$。因为 f 是局部 C^∞ 等距映射，所以有下面的交换图表：

$$
\begin{array}{c}
T_\frac{\tilde{z}}{\tilde{z}} S^n \xrightarrow{df} T_\frac{\tilde{z}}{\tilde{z}} M \\
\exp_1^{-1} \quad \uparrow \quad \uparrow \quad \exp_\cdot \\
S^n - \{-\tilde{x}, -\tilde{z}\} \rightarrow M
\end{array}
$$

即在 $S^n - \{-\tilde{x}, -\tilde{z}\}$ 上，$f = \exp_\cdot \cdot df \cdot \exp_1^{-1}$。由于 $df: T_\frac{\tilde{z}}{\tilde{z}} S^n \rightarrow T_\frac{\tilde{z}}{\tilde{z}} M$ 为等距变换，故与上面相同的推导可知

$$
\exp_\cdot \cdot df \cdot \exp_1^{-1}; S^n - \{-\tilde{z}\} \rightarrow M
$$

为局部 C^∞ 等距映射。因此，令

$$
f(-\tilde{x}) = \exp_\cdot \cdot df \cdot \exp_1^{-1}(-\tilde{x})
$$

便将 f 延拓到整个 S^n 上成为 C^∞ 等距映射。由引理 1 知 f 是一个覆盖映射。再由 M 的单连通并应用引理 2，立即得到 f 为整体等距。此外，从 f 的定义知 $df(\tilde{e}_i) = e_i$。f 即为满足条件的等距变换。

根据引理 7，f 又是唯一的。

注 1 \mathbf{R}^3 中 $S^1 \times \mathbf{R}$ 与 \mathbf{R}^2 都是 Riemann 褶曲率为 0 的 2 维完备 Riemann 流形，但它们并不同胚，当然更不等距。这是因为 $S^1 \times \mathbf{R}$ 不是单连通的缘故。

定理 4（空间形式的存在唯一性定理）对每个 $c \in \mathbf{R}$ 及自然数 $m \geq 2$，存在唯一（只差一个等距变换）的常 Riemann 褶曲率 c 的 m 维空间形式。

证明（存在性）由引理 5 和第 1 章 1.4 例 1, 2, 3, 4, 5。

（唯一性）根据定理 3，在等距不计下，常 Riemann 褶曲率 c 的 m 维空间形式是唯一的。

引理 8 设 (M, g) 为 m 维 C^∞ Riemann 流形，如果对 $\forall x, y \in M, T_x M$ 中的规范正交基 $\{\tilde{e}_1, \cdots, \tilde{e}_n\}$ 和 $T_y M$ 中的规范正交基 $\{e_1, \cdots,$
\(e_m \), 必存在等距变换

\[f : M \to M \]

使得

\[f(x) = y, df(\vec{e}_i) = e_i, \quad i = 1, \cdots, m, \]

则 \((M, g)\) 具有常 Riemann 萎曲率。

证明 对 \(\forall x_1, x_2 \in M, P_i \) 为 \(x_i \) 处的 2 维平面, \(i = 1, 2, \{\vec{e}_1, \vec{e}_2\} \) 和 \(\{e_1, e_2\} \) 分别为 \(P_1 \) 和 \(P_2 \) 中的规范正交基. 则由题设, 必存在等距变换

\[f : M \to M \]

使得 \(f(x_1) = x_2 \), 且 \(df(\vec{e}_i) = e_i, i = 1, 2 \). 根据定理 1,

\[R_{x_1}(\vec{e}_1 \wedge \vec{e}_2) = R_{x_2}(e_1 \wedge e_2). \]

所以, \((M, g)\) 为常 Riemann 萎曲率的 \(C^\infty \) Riemann 流形.

综合定理 3 和引理 8, 我们有

推论 1 设 \((M, g)\) 为 \(m \) 维 \(C^\infty \) Riemann 流形. 则 \(M \) 为空间形式 \(\Leftrightarrow (M, g) \) 是连续的完备的, 且对 \(\forall x, y \in M, T, M \) 中的规范正交基 \(\{\vec{e}_1, \cdots, \vec{e}_m\} \) 和 \(T_x M \) 中的规范正交基 \(\{e_1, \cdots, e_m\} \), 必存在等距变换

\[f : M \to M \]

使得

\[f(x) = y, df(\vec{e}_i) = e_i, \quad i = 1, \cdots, m. \]

定义 2 设 \((M, g)\) 为 \(m \) 维 \(C^\infty \) Riemann 流形, \(\rho \) 为由 \(g \) 诱导的距离函数. 如果对任意 \(p_1, p_2, q_1, q_2 \in M, \rho(p_1, p_2) = \rho(q_1, q_2) \), 必有等距变换 \(f : M \to M \), 使得

\[f(p_i) = q_i, \quad i = 1, 2. \]

则称 \((M, g)\) 是**两点齐性的空间**.

如果对任意 \(x, y \in M \), 必有等距变换 \(f : M \to M \) 使得

\[f(x) = y, \]

则称 \((M, g)\) 为**齐性 Riemann 流形**.

显然, 两点齐性的空间必为齐性 Riemann 流形.

推论 2 \(m \) 维空间形式 \(M \) 是两点齐性的空间.
证明 设 \(p_1, p_2, q_1, q_2 \in M, \rho(p_1, p_2) = \rho(q_1, q_2) = \alpha \). 由于空间形式 \(M \) 是完备的，令 \(\xi, \eta : [0, \alpha] \rightarrow M \) 为正规（弧长为参数）测地线，使得 \(\xi(0) = p_1, \xi(\alpha) = p_2, \eta(0) = q_1, \eta(\alpha) = q_2 \)。在 \(T_i, M \) 和 \(T_j, M \) 中选取规范正交基 \(\{ \hat{e}_1, \ldots, \hat{e}_m \} \) 和 \(\{ e_1, \ldots, e_m \} \) 满足 \(\xi'(0) = \hat{e}_1, \eta'(0) = e_1 \)，则由定理 3，存在等距变换 \(f : M \rightarrow M \)，使得 \(f(p_i) = q_i, df(\hat{e}_i) = e_i, i = 1, \ldots, m \)。于是，\(f(\xi(t)) = \eta(t) \)。特别地，

\[
f(p_i) = f(\xi((i - 1)\alpha)) = \eta((i - 1)\alpha), \quad i = 1, 2.
\]

因此，\(M \) 是两点齐性的空间。

5.3 Rauch 比较定理和

topology 定理

比较定理是流形上分析的基本工具之一，其基本性质是通过对 Jacobi 场与流形曲率的联系，以及流形曲率的性质进行分析而获得关于流形的性质。另一方面，从 Jacobi 方程，它又是微分方程在几何中应用。

我们已经看到，在 Cartan-Hadamard 定理中，以 \(\mathbb{R}^n \) 作模型，用 “流形 \(M \) 的曲率 \(\leq 0 \)” 代替 “\(\mathbb{R}^n \) 的曲率 \(= 0 \)”，这样的流形 \(C^\infty \) 微分同胚于 \(\mathbb{R}^n \)；在 Bonnet-Myers 定理中，以 \(S^n \) 作模型，用 “流形 \(M \) 的 Ricci 曲率 \(\leq m - 1 \)” 代替 “\(S^n \) 的 Ricci 曲率 \(= m - 1 \)”，这样的流形与 \(S^n \) 一样是紧致的，且直径 \(d(M) \leq \pi \)。这两种情形，都是从模型空间出发，将所论流形与模型空间作定性的比较，力求得到结论。

定量的比较定理主要有 Rauch 比较定理、Hesse 比较定理和

Laplace 比较定理。1951 年，Rauch 将 1 维的 Sturm 定理作了不平凡的 \(m \) 维推广，从而发现了 Rauch 比较定理。该定理的发现不仅是一个大突破，而且为以后发现的比较定理建立了证明模式。

定理 1（Rauch 比较定理） 设 \((M, g) \) 和 \((\tilde{M}, \tilde{g}) \) 都为 \(m \) 维 \(C^\infty \) Riemann 流形，\(y : [0, b] \rightarrow M, \tilde{y} : [0, b] \rightarrow \tilde{M} \) 为正规（弧长为参
数）测地线 U, \vec{U} 分别为沿 y, \vec{y} 的 Jacobi 场，满足 $U(0) = 0, \vec{U}(0) = 0, U'(0) \perp \gamma'(0), \vec{U}'(0) \perp \vec{y}'(0)$, $\| \vec{U}'(0) \| = \| U'(0) \|$. 此外，还有

(1) $\gamma(0)$ 沿 y 无共轭点；
(2) $R(t) \geq \bar{R}(t), \forall t \in [0, b]$, 其中

 $R(t) = \min \{ T_{y(t), M} 中含 \gamma'(t) 的平面的截面率 \}$,

 $\bar{R}(t) = \max \{ T_{y(t), \bar{M}} 中含 \vec{y}'(t) 的平面的截面率 \}$.

则

$$\| U(t) \| \leq \| \vec{U}(t) \|, \forall t \in [0, b].$$

证明 首先证明 $U(t)$ 是正常的 Jacobi 场. 根据第 3 章 3.2 定理 3,

$$U(t) = U^\perp(t) + (\lambda + \mu t) \gamma'(t),$$

其中 $U^\perp(t) \perp \gamma'(t), t \in [0, b]$. 由题设得

$$0 = U(0) = U^\perp(0) + \lambda \gamma'(0)$$

$$\begin{cases}
U^\perp(0) = 0 \\
\lambda = 0.
\end{cases}$$

再有

$$0 = \frac{d}{dt} 0 = \frac{d}{dt} \langle U^\perp(t), \gamma'(t) \rangle$$

$$= \langle U'(t), \gamma'(t) \rangle = \langle U'(t) - \mu \gamma'(t), \gamma'(t) \rangle$$

$$= \langle U'(t), \gamma'(t) \rangle - \mu.$$

特别地，从 $U'(0) \perp \gamma'(0)$ 得 $\mu = \langle U'(0), \gamma'(0) \rangle = 0$, 于是 $U(t) = U^\perp(t)$, 即 U 为正常的 Jacobi 场. 同理，\vec{U} 也为正常 Jacobi 场.

继续证明定理的结论.

如果 $\| U'(0) \| = \| \vec{U}'(0) \| = 0$, 再由 $U(0) = 0, \vec{U}(0) = 0$ 和第 3 章 3.2 引理 1, $U(t) = 0, \vec{U}(t) = 0, t \in [0, b]$. 因此,

$$\| U(t) \| = 0 = \| \vec{U}(t) \|.$$

如果 $\| U'(0) \| = \| \vec{U}'(0) \| \neq 0$, 则存在 $c > 0$, 使得

$$f(t) = \langle U(t), U(t) \rangle > 0,$$

414
\[
\bar{f}(t) = \langle \bar{U}(t), \bar{U}(t) \rangle > 0, \quad \forall \ t \in (0, c).
\]

根据 L'Hospital 法则得到

\[
\lim_{\varepsilon \to 0^+} \frac{\bar{f}(\varepsilon)}{f(\varepsilon)} = \lim_{\varepsilon \to 0^+} \frac{\bar{f}'(\varepsilon)}{f(\varepsilon)} = \lim_{\varepsilon \to 0^+} \frac{\langle \bar{U}'(\varepsilon), \bar{U}(\varepsilon) \rangle}{\langle U'(\varepsilon), U(\varepsilon) \rangle}
= \lim_{\varepsilon \to 0^+} \frac{\langle \bar{U}(\varepsilon) - \bar{U}(0), \bar{U}(\varepsilon) \rangle}{\langle U(\varepsilon) - U(0), U(\varepsilon) \rangle}
= \frac{\| \bar{U}(0) \|^2}{\| U'(0) \|^2} = 1.
\]

另一方面，在 (0, c) 上，由 \(f, \bar{f} > 0, \) 对 \(\forall \ \beta \in (0, c), \) 令

\[
J(t) = \frac{1}{\| U(\beta) \|} U(t),
\]

\[
\bar{J}(t) = \frac{1}{\| \bar{U}(\beta) \|} \bar{U}(t), \quad t \in [0, \beta].
\]

由下面的引理 1 得

\[
\frac{\langle U'(\beta), U(\beta) \rangle}{\| U(\beta) \|^2} = \langle J'(\beta), J(\beta) \rangle
\leq \langle \bar{J}'(\beta), \bar{J}(\beta) \rangle = \frac{\langle \bar{U}'(\beta), \bar{U}(\beta) \rangle}{\| \bar{U}(\beta) \|^2},
\]
即

\[
\frac{f'}{f} \leq \frac{\bar{f}'}{\bar{f}}.
\]

两边积分可得

\[
\ln f(t) |^t_0 \leq \ln \bar{f}(t) |^t_0, \quad \ln \frac{f(t)}{f(\varepsilon)} \leq \ln \frac{\bar{f}(t)}{\bar{f}(\varepsilon)},
\]

\[
\frac{\bar{f}(\varepsilon)}{f(\varepsilon)} \leq \frac{\bar{f}(t)}{f(t)},
\]

其中 \(0 < \varepsilon < t < c. \) 所以
\[\frac{\tilde{f}(t)}{f(t)} \geq \lim_{r \to 0^+} \frac{\tilde{f}(e)}{f(e)} = 1, \]

即 \(f(t) \leq \tilde{f}(t), \forall t \in (0, c) \). 由于在 \([0, b]\) 上 \(f \geq 0 \) 和 \(\gamma(0) \) 沿 \(\gamma(t) \),
\(0 \leq t \leq b \) 无共射点, 恒有 \(f(t) > 0, t \in [0, b] \), 所以恒有 \(f(t) \leq \tilde{f}(t) \), 即对 \(\forall t \in [0, b] \) 有
\[\| U(t) \| \leq \| \tilde{U}(t) \|. \]

引理 1
在 Rauch 比较定理的条件下, 设 \(J, \tilde{J} \) 分别是沿 \(\gamma, \tilde{\gamma} \) 的正常 Jacobi 场 (即 \(J' \perp \gamma', \tilde{J}' \perp \tilde{\gamma}' \)), 使得 \(J(0) = 0, \tilde{J}(0) = 0 \), 且对某个 \(\beta \in [0, b], |J(\beta)| = |\tilde{J}(\beta)| \), 则
\[\langle J'(\beta), J(\beta) \rangle \leq \langle \tilde{J}'(\beta), \tilde{J}(\beta) \rangle. \]

证明
令 \(\{e_1(t), \ldots, e_m(t)\}, \{\tilde{e}_1(t), \ldots, \tilde{e}_m(t)\} \) 分别为沿 \(\gamma, \tilde{\gamma} \) 的平行规范正交基场, 且使
\[J(\beta) = \alpha e_1(\beta), \quad \tilde{J}(\beta) = \alpha \tilde{e}_1(\beta), \]
\[e_m(t) = \gamma'(t), \quad \tilde{e}_m(t) = \tilde{\gamma}'(t). \]

于是, \(J(t) = \sum_{i=1}^{m-1} \alpha_i(t)e_i(t), \tilde{J}(t) = \sum_{i=1}^{m-1} \tilde{\alpha}_i(t)\tilde{e}_i(t), \)

我们定义一个沿 \(\gamma(t), 0 \leq t \leq \beta \) 的向量场
\[J_1(t) = \sum_{i=1}^{m-1} \tilde{\alpha}_i(t)e_i(t). \]

于是, 由第 3 章 3.2 引理 2 和 3.3 推论 2 得
\[\langle J'(\beta), J(\beta) \rangle \]
\[= \langle J'(t), J(t) \rangle \bigg|_0^\beta - \int_0^\beta \langle J''(t), J(t) \rangle dt \]
\[+ R(J(t), \gamma'(t)) \gamma'(t), J(t) \rangle dt \]
\[= I_0^\beta(J, J) \leq I_0^\beta(J_1, J_1) \]
\[= \int_0^\beta \left[\| J_1' \|^2 - \left\langle R \left(\sum_{i=1}^{m-1} \tilde{\alpha}_i e_i, \gamma' \right), \sum_{j=1}^{m-1} \tilde{\alpha}_j \tilde{e}_j \right\rangle \right] dt \]
\[= \int_0^\beta \left[\| J_1' \|^2 - \left\langle R(e_i, \gamma'), e_i \right\rangle \right] dt \]

416
\[= \int_0^\beta \left\| J' \right\|^2 - \sum_i \tilde{\alpha}_i^2 \langle R(e_i, y'), y', e_i \rangle \right] dt \]
\[= \int_0^\beta \left\| J' \right\|^2 - \sum_i \tilde{\alpha}_i^2 (t) \cdot R(t) \right] dt \]
\[\leq \int_0^\beta \left\| J' \right\|^2 - \sum_i \tilde{\alpha}_i^2 (t) \cdot \tilde{R}(t) \right] dt \]
\[\leq \int_0^\beta \left\| J' \right\|^2 - \sum_i \tilde{\alpha}_i^2 (t) \langle \tilde{R}(e_i, \tilde{y}), \tilde{y}', e_i \rangle \right] dt \]
\[= I_0^\beta \langle \tilde{J}, J \rangle = \langle J'(\beta), J(\beta) \rangle. \]

注 1 定理 1 中，如果 \(m = \dim M \geq \dim \tilde{M} = \tilde{m} \)，即，只须将 \(\tilde{J}(t), J_1(t) \) 改为
\[\tilde{J}(t) = \sum_{i=1}^{\tilde{m}-1} \tilde{\alpha}_i(t) \tilde{e}_i(t), \]
\[J_1(t) = \sum_{i=1}^{m-1} \alpha_i(t) e_i(t). \]
就可以用完全类似的证明，结论仍成立。

我们还可以用另一种方式叙述 Rauch 比较定理。

定理 1'（Rauch 比较定理） 设 \((M, g)\) 和 \((\tilde{M}, \tilde{g})\) 为 \(m \) 维 \(C^\infty \) Riemann 流形，\(x \in M, \tilde{x} \in \tilde{M}, \phi; T_x M \to T_{\tilde{x}} \tilde{M} \) 为线性等距变换。令 \(p \in T_x M, \tilde{p} = \phi(p) \). \(\gamma; [0, 1] \to M, \gamma(t) = \exp_{tp}, \tilde{\gamma}; [0, 1] \to \tilde{M}, \tilde{\gamma}(t) = \exp_{t\tilde{p}} \) 为两条测地线。\(X \in T_x (T_x M) \equiv T_x M, \tilde{X} = d\phi(X) \equiv \phi(X) \in T_{\tilde{x}} (T_x \tilde{M}) \equiv T_{\tilde{x}} \tilde{M} \)（“\(\equiv \)” 表示视作叠合）。此外，还有

1. \(\gamma(0) \) 沿 \(\gamma \) 无共轭点；
2. \(R(t) \geq \overline{R}(t), \forall t \in [0, 1] \)，其中 \(R(t) \) 和 \(\overline{R}(t) \) 如定理 1 中所述。

则
\[\| d \exp_{\tilde{X}} \| \leq \| d \exp_{\tilde{X}} \|. \]

证明 根据下面的引理，\(d \exp \) 在半径方向总是一个等距映射，再由下面的 Gauss 引理，要证 \(\| d \exp_{\tilde{X}} \| \leq \| d \exp_{\tilde{X}} \| \)，只须对 \(X \perp p, \tilde{X} \perp \tilde{p} \) 加以证明。
用 $y_\ast(t) = \exp_t(p + uX)$ 定义 γ 的变分 $\{y_\ast\}$（单参数测地线族），记 $U(t)$ 为 $\{y_\ast\}$ 的横截向量场在 γ 上的限制，则 U 是沿 γ 的 Jacobi 场，$U(0) = 0, U'(0) = X, U(1) = d\exp_p X$. 同样，用 $\tilde{y}_\ast(t) = \exp_t(\tilde{p} + u\tilde{X})$ 定义 $\{\tilde{y}_\ast\}$，相应的 $\tilde{U}(t)$ 为沿 $\tilde{\gamma}$ 的 Jacobi 场，$\tilde{U}(0) = 0, \tilde{U}'(0) = \tilde{X}, \tilde{U}'(1) = d\exp_p \tilde{X}$. 于是，应用定理 1，有

$$\|d\exp_p X\| = \|U(1)\| \leq \|\tilde{U}(1)\| = \|d\exp_p \tilde{X}\|.$$

引理 2 设 (M, g) 为 m 维 C^∞ Riemann 流形，则 $d\exp_p$ 在半径方向总是一个等距映射，即

$$\|d\exp_p p\| = \|p\|, \quad p \in T_p M - \{0\}.$$

证明 设 tp 为 $T_p M$ 中的径向线段，

$$\gamma(t) = \exp_tp, \quad t \in [0, 1]$$

为 M 中的径向测地线（不必是弧长参数的），则

$$\gamma'(0) = p.$$

由 \exp_p 的定义知，$\exp_tp = \gamma(1)$，从而

$$d\exp_p p = (d\exp_p)\gamma'(1),$$

$$\|d\exp_p p\| = \|\gamma'(1)\| = \|\gamma'(0)\| = \|p\|.$$

引理 3（Gauss 引理） 设 (M, g) 为 m 维 C^∞ Riemann 流形，$x \in M, p \in T_p M - \{0\}, X \in (T_p M, \equiv T_p M)$. 如果 $X \perp p$, 则

$$d\exp_p X \perp \gamma'(1),$$

即 $d\exp_p X \perp d\exp_p p$，其中 $\gamma'(1)$ 是测地线 $\gamma = \exp_tp; [0, 1] \to M$ 在 $t = 1$ 处的切向量.

证明 由于 $X \perp p$, 故可选曲线 $\xi; [0, \varepsilon] \to T_x M$, 使得 $\xi(0) = p, \xi'(0) = X$, 且 ξ 的象 $\xi([0, \varepsilon]) \subset S(\|p\|)(T_p M$ 中以 x 为中心，$\|p\|$ 为半径的球面).

考虑 M 中的 C^∞ 长方形

$$\Gamma: \quad [0, 1] \times [0, \varepsilon] \to M$$

$$(t, u) \to \exp_t \xi(u),$$

令 $T = d\Gamma(\frac{\partial}{\partial t}), U = d\Gamma(\frac{\partial}{\partial u})$. 易见 $\gamma(t) = \Gamma(t, 0), \gamma'(1) = T(\gamma(1)),$
\[d \exp_* X = U(\gamma(1)) \]. 由于 \(T \) 的每条 \(t \) 曲线皆为长度 \(|p| \) 的测地线, \(T \) 为其切向量, 故 \(\langle T, T \rangle = \|p\|^2 \) (与 \(t, u \) 无关). 于是, 由 \(\nabla_t T = 0 \) 和 \\
\[[T, U] = d\Gamma([\frac{\partial}{\partial t}, \frac{\partial}{\partial u}]) = d\Gamma(0) = 0 \] 得 \\
\[T(U, T) = \langle \nabla_t U, T \rangle + \langle U, \nabla_t T \rangle \]
\[= \langle \nabla_t U, T \rangle \]
\[= \langle \nabla_t T, T \rangle + \langle [T, U], T \rangle \]
\[= \langle \nabla_t T, T \rangle \]
\[= \frac{1}{2} U \langle T, T \rangle = \frac{1}{2} U(\|p\|^2) = 0. \]

因此, \(\langle U, T \rangle \) 沿着每条 \(t \) 曲线是常数, 于是 \\
\[\langle d \exp_* X, \gamma'(1) \rangle = \langle U(\gamma(1)), T(\gamma(1)) \rangle \]
\[= \langle U(\gamma(0)), T(\gamma(0)) \rangle \]
\[= \langle 0, T(\gamma(0)) \rangle = 0, \]

即 \(d \exp_* X \perp \gamma' (1) \).

作为 Rauch 定理的应用, 我们有以下的一些推论.

推论 1 Rauch 比较定理蕴涵着: 如果沿测地线 \(\gamma \) 无共轭点,则沿 \(\tilde{\gamma} \) 也无共轭点. 换言之, 沿 \(\gamma \) 的第 1 个共轭点 (如有的话) 必须出现在沿 \(\tilde{\gamma} \) 的第 1 个共轭点 (如果有的话) 之前.

证明 1 由 Rauch 比较定理 1' 和 \(\varphi \) 为线性等距变换以及沿测地线 \(\gamma \) 无共轭点得到 \\
\[0 = d \exp_* \tilde{X} \Leftrightarrow \]
\[0 = \|d \exp_* \tilde{X}\| \geq \|d \exp_* X\| \geq 0 \]
\[\Leftrightarrow d \exp_* X = 0 \]
\[\Leftrightarrow \|X\| = 0 \Leftrightarrow X = 0 \]
\[\Leftrightarrow \tilde{X} = d\varphi(X) \equiv \varphi(X) = 0, \]
从而沿 \(\tilde{\gamma} \) 无共轭点.

证明 2 (反证) 假设 \(\tilde{\gamma}(c)(0 < c < b) \) 是沿 \(\tilde{\gamma} \) 的 \(\tilde{\gamma}(0) \) 的第 1 个共轭点. \(\tilde{U} \) 为沿 \(\tilde{\gamma} \) 且 \(\tilde{U}(0) = 0, \tilde{U}(c) \neq 0 \) 的非 0 Jacobi 场. 由第 3 章 3.2 引理 1, 有 \(\tilde{U}'(0) \neq 0. \) 设 \(\tilde{U} \) 为沿 \(\gamma \) 的 Jacobi 场, 使得 \(U(0) = 0 \) 和
\[\| U'(0) \| = \| \tilde{U}'(0) \| \neq 0, \text{ 根据 Rauch 比较定理 1, } \| U(t) \| \leq \| \tilde{U}(t) \|. \]

有

\[0 \leq \| U(c) \| = \lim_{t \to e^-} \| U(t) \| \leq \lim_{t \to e^-} \| \tilde{U}(t) \| = \| \tilde{U}(c) \| = 0, \]

\[\| U(c) \| = 0, \text{ 即 } U(c) = 0. \]

这就证明了 \(U \) 为 \([0, e] \) 上使 \(U(0) = 0, U(c) = 0 \) 的非 0 Jacobi 场，因此，\(\gamma(c) \) 为 \(\gamma(0) \) 沿 \(\gamma \) 的共轭点，它与沿测地线 \(\gamma \) 无共轭点相矛盾。

推论 2 设 \(M \) 为 \(m \) 维 \(C^\infty \) 非正曲率的完备 Riemann 流形，则对 \(\forall \ x \in M, \)

\[\exp_x: \quad T_xM \to M \]

为距离膨胀映射，即对 \(\forall \ x \in T_xM, \)

\[\| X \| \leq \| \text{d} \exp_x X \|. \]

证明 对具有平坦 Riemann 度量的流形 \(T_xM \)（截曲率恒为 0，无共轭点）和 \(M \)，应用 Rauch 比较定理 1' 得到

\[\| X \| \leq \| \text{d} \exp_x X \|, \quad \forall \ \ x \in T_xM. \]

推论 3 (Cartan-Hadamard 定理) 设 \(M \) 为 \(m \) 维 \(C^\infty \) 非正曲率的完备 Riemann 流形，则对 \(\forall \ x \in M, \exp_x: \quad T_xM \to M \) 无共轭点。

证明 由推论 2，

\[\text{d} \exp_x X = 0 \iff 0 = \| \text{d} \exp_x X \| \geq \| X \| \geq 0 \]

\[\iff \| X \| = 0 \iff X = 0. \]

因此，\(\text{d} \exp_x X \) 是非异的，从而 \(\exp_x: \quad T_xM \to M \) 无共轭点。

下面的结果最初是由 Bonnet 得到的。

推论 4 设 \(M \) 为 \(m \) 维 \(C^\infty \) Riemann 流形，其 Riemann 截曲率 \(R(P) \) 满足（\(P \) 为切空间中的任意 2 维平面）

\[0 < c_0 \leq R(P) \leq c_1, \]

其中 \(c_0 \) 和 \(c_1 \) 都为正常数。如果 \(\gamma: [0, b] \to M \) 为测地线，使 \(\gamma(b) \) 为 \(\gamma(0) \) 沿 \(\gamma \) 的第 1 个共轭点，则
\[
\frac{\pi}{\sqrt{c_1}} \leq b \leq \frac{\pi}{\sqrt{c_6}}.
\]

证明 后一个不等式已在第 3 节 3.2 定理 8 中证过，但是，也可对 \(M \) 和第 3 节 3.1 例 2 中球面 \(S^n(\frac{1}{\sqrt{c_1}}) \) 应用推论 1 得到。

再对 \(S^n(\frac{1}{\sqrt{c_1}}) \) 和 \(M \) 应用推论 1，就得

\[
\frac{\pi}{\sqrt{c_1}} \leq b.
\]

关于比较定理的进一步结果，读者可参阅 [To], [Ts], [Be], [Wa]。

作为 Rauch 比较定理的一个重要应用，我们来研究正曲率 Riemann 流形的拓扑，也就是证明著名的拓扑球面定理。

定义 1 设 \((M, g)\) 为 \(m\) 维 \(C^\infty\) Riemann 流形，\(0 < \delta \leq 1\)，如果 \((M, g)\) 的 Riemann 曲率率 \(R(P)\) (P 为切空间中的 2 维平面) 对某个数 \(a > 0\) 满足

\[
a\delta \leq R(P) \leq a,
\]

则称 \((M, g)\) 为 \(\delta - \) 括的。

上述不等式中的正数 \(a\) 不是基本的。设平面 \(P\) 关于 \((M, g)\) 与 \((M, \tilde{g}) = (M, ag)\) 的 Riemann 曲率率分别为 \(R(P)\) 与 \(\tilde{R}(P)\) (这里 \(a > 0\) 为常数)，根据 5.2 引理 5，\(\tilde{R}(P) = \frac{R(P)}{a}\)。因此，\((M, g)\) 对某个 \(a\) 是 \(\delta - \) 括的，我们将此度量“正规化”为 \(\tilde{g} = ag\)，使得

\[
\delta \leq \tilde{R}(P) \leq 1.
\]

在给出拓扑球面定理之前，先叙述几个有用的定理。

Brown 定理（参阅 [Br]）：如果 \(m\) 维紧致流形 \(M = U_1 \cup U_2, U_i\) 为开集且同胚于 \(R^n, i = 1, 2\)，则 \(M\) 同胚于 \(S^n\)。

设 \((M, g)\) 为 \(m\) 维 \(C^\infty\) Riemann 流形，我们称

\[
i(M) = \inf_{x \in M} \{\delta(x) | \delta(x) \text{ 是 } T,M \text{ 中使 } \exp \text{ 在其上为 } C^\infty \}
\]

微分同胚的最大开球半径)。
为 M 的单一半径。
易见，对紧致流形 $M, i(M) \geq 0$. 因此，对 $\forall x \in M$, \exp 在 $B_r(i(M))$ 上为 C^∞ 微分同胚。

Klingenberg 定理 (参阅 [CE], p98—101): 如果 M 为 m 维 C^∞ 紧致单连通 Riemann 流形，$\frac{1}{4} \leq R(P) \leq 1$, 则

$$i(M) \geq \pi.$$

下面叙述并证明拓扑球面定理。

定理 2 (拓扑球面定理) 设 (M, g) 为 m 维 C^∞ 紧致单连通 Riemann 流形，切空间平面 P 的 Riemann 截面率 $R(P)$ 满足

$$0 < \frac{1}{4} < R(P) \leq 1.$$

则 M 同胚于 m 维单位球面 $S^m(1)$.

证明 设紧致流形 M 的直径为

$$d(M) = \max_{x,y \in M} \{\rho(x,y)\} = \rho(p,q),$$

其中 $p,q \in M, \rho$ 为由 g 诱导的距离函数。

由 M 的紧致性以及 Bonnet-Myers 定理 (第 3 章 3.3 定理 11) 或上面的推论 4 可知 $d(M) < \pi / \sqrt{\frac{1}{4}} = 2\pi$. 再由 Klingenberg 定理知 $i(M) \geq \pi$. 于是

$$i(M) \geq \pi > \frac{1}{2} d(M).$$

下面证明：对 $\forall x \in M$, 如果 $\rho(x,p) \geq i(M)$, 则 $\rho(x,q) < i(M)$. 由此，令 y_1 为从 p 到 x 的最短测地线，则 $L(y_1) = \rho(x,p) \geq i(M)$. 由于 p,q 相距最远，从而不难证明 (见习题 6) 有一条连接 p 到 q 的最短测地线 y_2 使得 y_1 和 y_2 的夹角 $\leq \pi \over 2$. 再取一条连接 x 到 q 的最短测地线 ξ, 即 $L(\xi) = \rho(x,q)$. 由 $R(P) \geq \frac{1}{4}$ 及 M 的紧致性得到

$$R(P) \geq \frac{1}{r^2} \geq \frac{1}{4},$$

422
其中 $r < 2$ 为正常数。

考虑 \mathbb{R}^3 中半径为 r 的球面 $S^2(r)$，它的 Riemann 截曲率为 $\frac{1}{r^2}$。在 $S^2(r)$ 中作测地三角形 ABC，使得 A 为北极，测地线 AB, AC 的分别为 $L(y_1) \times L(y_2) = d(M)$，夹角 $\angle A = \theta$. 因为

$$AB = L(y_1) \geq i(M) \geq \pi,$$

$$AC = L(y_2) = d(M) \geq i(M) \geq \pi,$$

所以 B, C 都在南半球. 易见

$$BC \leq \frac{1}{4} \cdot 2\pi r < \frac{1}{4} \cdot 2\pi \cdot 2 = \pi \leq i(M).$$

由 M 的截曲率 $\geq S^2(r)$ 的截曲率，我们应用 Toponogov 比较定理，即三角形比较定理（读者可应用 Rauch 比较定理证明该定理，见习题 5）得到

$$d(x, q) = L(\zeta) \leq BC \leq i(M).$$

这就证明了

$$x \in \exp_r(B_r(i(M))) \cup \exp_r(B_r(i(M))),$$

$$M = \exp_r(B_r(i(M))) \cup \exp_r(B_r(i(M)))$$

（参阅 [Ts]），可直接应用 Rauch 比较定理证明这一等式），这表明 M 为两个同胚于 \mathbb{R}^n 的开集之并（读者对此并的等式可直接构造出 M 与球面 $S^n(1)$ 之间的同胚），根据 Brown 定理，M 同胚于 S^n.

拓扑球面定理为 Rauch 在 1951 年首先所证明. 当时他将 $\frac{1}{4}$ 换成接近 $\frac{3}{4}$ 的数 0.74. 后来，Berger 和 Klingenberg 成功地将 $R(P)$ 的下界推进到 $\frac{1}{4}$，对于偶数维流形，$0 < \frac{1}{4} < R(P) \leq 1$ 是最佳的条件了. 因为复的和四元数射影空间以及 Cayley 平面在标准度量下是 $\frac{1}{4} - \text{挤的}$(即满足 $\frac{1}{4} \leq R(P) \leq 1$)，而它们不同胚于球面 $S^n(1)$.

下面介绍球面定理的推广.

如果 $\frac{1}{4} \leq R(P) \leq 1$, 由 Bonnet-Myers 定理和 Klingenberg 定理
可得 $\pi \leq i(M) \leq d(M) \leq 2\pi$.

Toponogov 最大直径定理 设 M 为 m 维 C^∞ 紧致 Riemann 流形，$\frac{1}{4} \leq R(P), d(M) = 2\pi$. 则 M 等距同构于 $S^*(2)$.

更一般地，有

最大直径定理 设 M 为 m 维 C^∞ 紧致 Riemann 流形，其 Ricci 曲率为 $(m - 1)c^2 > 0, d(M) = \frac{\pi}{c}$. 则 M 等距同构于 $S^m(\frac{1}{c})$.

证明可参阅[CE], p110.

Berger 最小直径定理 设 M 为 m 维 C^∞ 紧致单连通 Riemann 流形，$\frac{1}{4} \leq R(P) \leq 1, d(M) = \pi$. 则 M 或者等距同构于 $S^m(1)$ 或者等距同构于复射影空间、四元数射影空间和 Cayley 数射影空间之一.

在后三种情形，截曲率可达到 $\frac{1}{4}$ 和 1.

定理 (Berger) 设 M 为 m 维 C^∞ 紧致单连通 Riemann 流形，$\frac{1}{4} \leq R(P) \leq 1, \pi < d(M)$. 则 M 同胚于 S^m.

证明可参阅[CE], p111.

Grove 和 Shiohama(参阅[GS])改进了 Berger 的结果得出了

定理 (Grove-Shiohama) 设 M 为 m 维 C^∞ 紧致 Riemann 流形 (M 不必单连通)，$0 < \frac{\delta}{4} \leq R(P), \frac{\pi}{\sqrt{\delta}} < d(M)$. 则 M 同胚于 $S^m(1)$.

注 2 从 $\frac{1}{4} < R(P) \leq 1$, 存在 $\delta > 1$, 使得 $\frac{\delta}{4} \leq R(P) \leq 1$, 可推出

$$d(M) \geq i(M) \geq \pi > \frac{\pi}{\sqrt{\delta}}$$

及

$$0 < \frac{\delta}{4} \leq R(P).$$

所以，Grove-Shiohama 定理是拓扑球面定理的推广.

424
在5.2中已经证明的定理3就是

定理 完备单连通1-挤(常截曲率1) m 维 C^∞ 流形 Riemann等距于通常的球面 $S^n(1)$.

Wolf(见[Wol])给出了完备1-挤 C^∞ Riemann 流形的完全分类.

第3章3.3定理11已经证明的 Bonner-Myers 定理就是

定理(Bonner- Myers) 完备连通 δ-挤 ($\delta > 0$) 的 m 维 C^∞ Riemann 流形是紧致的, 且其基本群 $\pi_1(M)$ 是有限的.

该定理表明, 对 $\delta > 0, C^\infty$ Riemann 流形完备 δ-挤的充分必要条件是紧致 δ-挤的.

5.1已经证明的定理就是

定理(Synge) 偶数维完备连通 δ-挤 ($\delta > 0$) 的 C^∞ Riemann 流形 M 或者是

(1) 可定向, 则它是单连通的；

或者

(2) 不可定向, 则 $\pi_1(M) \cong \mathbb{Z}_2$.

Rauch(见[R])证明了 $\frac{3}{4}$-挤的完备单连通 Riemann 流形同胚于球面. 对于偶数维流形, 自从 Myers 和 J. H. C. Whitehead 以来Klingenberg(见[Kl])首先作了割迹的系统研究, 将这个“挤数”(pinching number)下降到 $\delta = 0.54\cdots$. Berger(见[Be]1,2)改进了Klingernberg的方法, 最后得到

定理(Berger) 设 M 为偶数维完备单连通 δ-挤的 C^∞ Riemann流形. 如果 $\delta > \frac{1}{4}$, 则 M 同胚于球面; 如果 $\delta = \frac{1}{4}$, 则 M 或者同胚于球面, 或者等距于秩为1的紧致对称空间.

精炼割迹的结果并应用 Berger 定理的证明方法, Klingenberg(见[Kl]2,3)得到了

定理(Klingenberg) 奇数维完备单连通 $\frac{1}{4}$-挤的 C^∞ Riemann流形同胚于球面.
在拓扑球面定理中，M 同胚于 $S^n(1)$，但不知 M 是否 C^∞ 微分同胚于 $S^n(1)$？众所周知，当 $m \leq 6$ 时，同胚于 $S^n(1)$ 的微分流形必与 $S^n(1)$ C^∞ 微分同胚；对 $m \geq 7$，存在某些流形与 $S^n(1)$ 同胚但不微分同胚（参阅 [KM]）。

条件 $\frac{1}{4} < R(P) \leq 1$ 是否能保证 M C^∞ 微分同胚于 $S^n(1)$？这依然是一个未解决的问题。但是，Gromoll（见 [Gr]）证明了

定理（Gromoll） 存在一个序列 $\frac{1}{4} = \delta_1 < \delta_2 < \delta_3 < \ldots$，

$$\lim_{m \to +\infty} \delta_m = 1,$$

使得 m 维完备单连通 δ_{m-2} 挤 $(\delta_{m-2} \leq R(P) \leq 1)$ 的 C^∞ Riemann 流形 M C^∞ 微分同胚于球面 $S^n(1)$。

此外，还有

定理 对任何 m，存在 $\delta_m (\delta_m \downarrow 0, 68 \ldots，当 m \to + \infty)$，使得 m

维紧致单连通 δ_m 挤的 C^∞ Riemann 流形 M C^∞ 微分同胚于 $S^n(1)$。

这是许多人共同奋斗的结果，他们是 Calabi-Gromoll（1966 年左右），Sugimoto-Shiohama（1970 年左右）（参阅 [CE] Chapter 7，[1R]）。

著名数学家陈省身（S.S. Chern）提出了一个有趣的猜测：偶数维的完备 δ 挤 $(\delta > 0)$ C^∞ Riemann 流形 M 具有正的 Euler 示性数 $\chi(M)$。第 3 章 3.3 定理 11 指出 M 是紧致的。由于向定 2 层原叠 \tilde{M} 可定向且与 M 局部等距，根据 5.1 定理 1（Synge），\tilde{M} 必单连辑。从而 $H^1(\tilde{M}, R) \approx H^1(\tilde{M}, R) = 0$。再由第 4 章 4.3 定理 1，$H^1(M, R) \approx H^1(\tilde{M}, R) = 0$，由此和 Poincaré 对偶定理得到 $H^3(M, R) = 0$。于是，对于 $\dim M = 4，\chi(M) = 1 - 0 + \dim H^1(M, R) - 1 > 0$。它也可由 Gauss-Bonner 公式得到（参阅 [Cher]）。至于 $\dim M = 2$，显然 $\chi(M) = 1 - 0 + 1 = 2 > 0$，再应用 Gauss-Bonnet 公式，Berger（见 [Be]）证明了：对 $2n$ 维 δ 挤 $(\delta > 0)$ 的 C^∞ 完备 Riemann 流形 M 有 $|\chi(M)| \leq 2^{-n} (2n)! \delta^{-n}$。利用调和形式，Berger（见 [Be]）证明了：$2n + 1$ 维的 $2(n - 1)/(8n - 1)$ 挤的完备 C^∞ Riemann 流形 M 的第 2 Betti 数 $b_2(M) = 0$。

426
具有正截曲率的 C^∞ Riemann 流形的例子很少。在紧致单连通的情形下仅有通常的球面，复射影空间，四元数射影空间，Cayley 平面以及由 Berger（见[Be]，也参阅[E]）发现的 7 维和 13 维的两个齐性空间。特别地，我们不知道是否存在紧致的积流形 $M = M_1 \times M_2$，它具有正截曲率的 Riemann 度量。甚至对特殊的两个 2 维球面 $S^2(1)$ 的积 $S^2(1) \times S^2(1)$，它仍是未解决的问题。

值得提出的是；Gromoll 和 Meyer（参阅[GM]）证明了

定理（Gromoll- Meyer） 具有正截曲率的完备非紧致 C^∞ Riemann 流形 M，如果 $m = \dim M \geq 5$，则 M C^∞ 微分同胚于 \mathbb{R}^m。

以上每个定理都表明，只要给 C^∞ Riemann 流形加上适当的几何（曲率，完备，直径）和拓扑（紧致，单连通，同胚）的条件，就可能得到拓扑性质（同胚，微分同胚，同调群，同伦群）的一些信息。当然，条件加得越强，信息传出得越多，越强。

第 5 章习题

1. (A. Weinstein) 设 M 为具有正 Riemann 截曲率的偶数维紧致可定向 Riemann 流形。证明：任何保持定向的等距变换 $f: M \rightarrow M$ 必有不动点。

由此证明 Synge 定理。

2. 设 M, n 为 m 维 C^∞ Riemann 流形，$\gamma: [0, b] \rightarrow M, n$ 为正规测地线。假设对所有的 2 维平面 $P_i \subset T_{\gamma(t)}M_i, i = 1, 2$，Riemann 截曲率满足：

$$R_1(P_1) \leq R_2(P_2).$$

证：γ_1 的指数 $\leq \gamma_2$ 的指数（参阅[Spi]，Vol. 4, p343）。

3. (Morse-Schoenberg 比较定理) 设 M 为 m 维 C^∞ Riemann 流形，$\gamma: [0, L] \rightarrow M$ 为正规测地线，$r > 0$ 为常数。
(1) 如果对所有的 $P \subset T_{x_0} M$, Riemann 裁曲率 $R(P) \leq \frac{1}{r^2}$ 及 γ 的长度 $L > \pi r$, 则 γ 的指数 $= 0$

且 γ 不含共轭点。

由此得到，如果恒有 M 的裁曲率 ≤ 0, 则沿任何测地线 γ 无共轭点。

(2) 如果对所有的 $P \subset T_{x_0} M$, Riemann 裁曲率 $K(P) \geq \frac{1}{r^2}$ 和 γ 的长度 $L > \pi r$, 则存在 $t_0 \in (0, L)$ 使得 $\gamma(t_0)$ 共轭与 $\gamma(0)$, 从而 γ 不具有最短长度。

(参阅[Spi], Vol. 4, p344, 336－338).

4. 设 M 为非正 Riemann 裁曲率的单连通完备 Riemann 流形。ABC 为 M 中的测地三角形(即三角形的三边都是最短测地线), 其三内角分别为 A, B, C, 对应的三边的长分别为 a, b, c. 证明:

(1) $a^2 + b^2 - 2abc \cos C \leq c^2$;

(2) $A + B + C < \pi$.

进一步，如果 Riemann 裁曲率严格负, 则上述不等式是严格的（即等号不会成立）。

(参阅[伍沈虞], 141 页)

5. 叙述并证明 5.3 拓扑球面定理的证明中指出的 Toponogov 三角形比较定理(参阅[CE], p42, Theorem 2.2).

6. (Berger) 设 M 为紧致 C^∞ Riemann 流形, $p, q \in M, \rho(p, q) = \max\{\rho(x, y) | x, y \in M\}$, 则对 \forall $v \in T_p M$, 存在从 q 到 p 的最短测地线 γ, 使得 $\gamma'(0)$ 与 v 的夹角 $< (\gamma'(0), v) \leq \frac{\pi}{2}$ (参阅[CE], p106, Lemma 6.2).

7. 叙述并证明 Sturm 比较定理, Hessian 比较定理和 Laplace 算子比较定理(参阅[伍沈虞], 142－157 页)

8. (Klingenberg) 设 M 为偶数维紧致单连通 C^∞ Riemann 流形，且对任何 $q \in M$ 和任何 2 维平面 $P \subset T_q M$, 它的 Riemann 裁曲率 428
$R(P) > 0$. 则对某个点 $p \in M,T,M$ 中的割迹 $C(p)$ 和 T,M 中的共轭迹相交.

进一步，如果对某个 $r > 0$ 还有 $R(P) \leq \frac{1}{r^2}$，则 M 的直径 $d(M) \geq \pi r$.

（参阅[Spi], Vol. 4, p374.）

9. 设 (\tilde{M}, \tilde{g}) 为 m 维 C^∞ Riemann 流形，$(M, \ast g)$ 为 (\tilde{M}, \tilde{g}) 中的紧致 C^∞ 超曲面 ($i: M \to \tilde{M}$ 为包含映射). 分别记 R_M 和 $R_{\tilde{M}}$ 为 M 和 \tilde{M} 的 Riemann 距曲率. 如果存在点 $p \in \tilde{M}$ 使得 $M \subset \tilde{M} - C(p) - \{p\} (C(p) 为 p 的割迹) 且 Riemann 距曲率 $R_M(P) > R_{\tilde{M}}(P), \forall \ 2$ 维平面 $P \subset T_xM, \forall \ x \in M$.

则 M 同胚于球面 $S^{m-1}(1)$.

10. 设 M 为单位球面 $S^m = S^m(1)$ 中的紧致 C^∞ 超曲面，则存在 $q \in S^m$ 使得 $M \subset S^m - \{q, -q\}$, 如果 $R_M(P) > 1$, 则 M 同胚于 S^{m-1}.

11. 设 \tilde{M} 为双曲空间形式（或具有非正 Riemann 距曲率的单连通完备 Riemann 流形），则对 $\forall \ x \in M$, 割迹 $C(x) = \emptyset$.

此外，如果 M 为 \tilde{M} 的紧致超曲面，且 $R_M > R_{\tilde{M}}$，则 M 同胚于球面 S^{m-1}.

12. 设 M 为偶数维可定向的 C^∞ Riemann 流形，$R(P)$ 为平面 P 的 Riemann 距曲率，且 $0 < R(P) \leq c$，则

(1) (Klingenberg) 如果 p,q 满足 $q \in C(p)$ 和 $\rho(p,q) = i(M)$，则 q 共轭于 p. 因此，$i(M) \geq \pi/ \sqrt{c};$

(2) (Synge) M 是单连通的.

（参阅[CE], p98）

下面的第 13—17 题可参阅[Go], p82—95.

13. m 维紧致可定向的具有正定 Ricci 曲率张量的 C^∞ Riemann 流形 M 的第 1 个 Betti 数 $b_1(M) = 0$.

14. m 维紧致可定向的具有正常 Riemann 距曲率的
C^∞ Riemann 流形 M 的 Betti 数 $b_k(M) = 0 (0 < k < m)$. 进一步，如果 M 连通，则它为同调球面.

15. m 维紧致可定向的局部平坦（参阅第 1 章习题 2 以及 1.7 定义 3, 定理 1）的 C^∞ Riemann 流形 M 的第 k 个 Betti 数 $b_k(M) = C_n^k$ (组合数).

特别地，m 维环面 $T^n = S^1 \times \cdots \times S^1$ 的第 k 个 Betti 数 $b_k(T^n) = C_n^k$.

16. 设 $m = 2n$ 和 $\delta > \frac{1}{4}$ 或 $m = 2n + 1$ 和 $\delta > \frac{2(m - 1)}{8m - 5}$. 证明 m 维紧致可定向的具有 δ- 挤的 C^∞ Riemann 流形 M 的第 2 个 Betti 数 $b_2(M) = 0$.

17. 设 $\delta > \frac{2}{11}$. 证明 5 维 δ- 挤的紧致可定向 C^∞ Riemann 流形为同调球面.

18. 设 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 为 m 维 C^∞ 完备 Riemann 流形，且 Riemann 截曲率 $\langle R(X, Y)Y, X \rangle \leq 0$，则同伦群 $\pi_i(M) = 0, i > 1$ 和 $\pi_1(M)$ 不含异于恒等元的有限阶元素（参阅[Mi], p103）

19. 设 (M, g) 为 m 维连通 C^∞ Riemann 流形，如果对任意 $p \in M$, 存在等距变换 $I, \, M \to M$, 使得 $I(p) = p$ 且它关于点 p 是测地反射的，即过 p 的任何测地线有 $I(p(t)) = p(-t)$，其中 $p(0) = p$(关于 p 是几何对称的) 则称 (M, g) 为对称空间.

设 (M, g) 为对称空间，则

(1) 设 γ 为 M 中的测地线，$p = \gamma(0), q = \gamma(c)$，则 $I_r(\gamma(t)) = \gamma(t + 2c)$ (假定 $\gamma(t)$ 和 $r(t + 2c)$ 已定义). 此外 I_rI_r 保持沿 γ 的平行向量场；

(2) M 是完备的；

(3) I_r 是唯一的；

(4) (M, g) 为局部对称空间，即对 $\forall \, p \in M$, 存在 p 的正规 (法) 邻域 U，使得在 U，上关于 p 的几何对称是一个等距.

20. C^∞ Riemann 流形 (M, g) 是局部对称的 $\Leftrightarrow \nabla R = 0 \Leftrightarrow$ 对沿 m 维 C^∞ Riemann 流形 (M, g) 中的任何测地线 γ 的任何 C^∞ 平行向量场 $X, Y, Z, R(X, Y)Z$ 也必为沿 γ 的 C^∞ 平行向量场 \Leftrightarrow 平行移动下保持 Riemann 截曲率. 即对每一条 C^∞ 曲线 $\gamma: [0, 1] \to M$ 及任何一个 2 维平面 $P \subset T_{\gamma(0)} M$ 为 P 沿 C^∞ 曲线 γ 平移得到的 2 维平面 $P'(P)$ 有相同的 Riemann 截曲率，即 $R(P'(P)) = R(P)$.

21. (Cartan) m 维完备、单连通 C^∞ 局部对称空间是对称空间.
（参阅[CE], p71, 并应用 Cartan–Ambrose 定理（第 5 章 5.2 定理 2）。）

22. 设 (M, g) 为局部对称空间, $\gamma: \mathbb{R} \to M$ 为测地线, $X = \gamma'(0)$ 为 $p = \gamma(0)$ 处的速度向量(切向量), 定义线性变换

$$K_X: T_p M \to T_p M$$

$$K_X(Y) = R(Y, X)X,$$

记 $\lambda_1, \cdots, \lambda_m$ 为 K_X 的特征值, 其中 $m = \dim M$. 则沿 γ 的点 p 的共轭点为 $\gamma(\pi k / \sqrt{\lambda})$, 其中 k 为任何非 0 的整数, λ 为 K_X 的任何正特征值. $\gamma(t)$ 作为共轭点的重数等于使得 t 是 $\pi \sqrt{\lambda}$ 的倍数的 λ 的数目.

（参阅[Mi], p109—111。）
参考文献

[Ad] Adams, J. F., On the non-existence of elements of Hopf in-
variant one, Ann. of Math. 72 (1960), 20—104. (MR25 #
4530.)

[Al] Almgren, F. J. Jr., Some interior regularity theorems for mini-
mal surfaces and extension of Bernstein's theorem, Ann. of
Math., 84 (1966), 277—292.

[Am] Ambrose, W., The Cartan structural equations in classical Rie-
mannian geometry, J. Indian Math. Soc. 24 (1960), 23—76.
(MR23 # A1317.)

[Ar] Artin, E., Geometric Algebra, Interscience # 3. Interscience,
New York, 1957.

[Be] Berger, M., Sur quelques variétés riemanniennes suffisament
A3606.)

[Be] Berger, M., Les variétés riemanniennes \(\frac{1}{4} \) — pincées, Ann.
3478.)

[Be] Berger, M., On the characteristic of positively pinched Rie-
1917. (MR26 # 720.)

[Be] Berger, M., Les variétés riemanniennes homogènes normales
simplement connexes à courbure strictement positive, Ann.
A2919.)

[Be] Berger, M., An extension of Rauch's metric comparison theorem
(MR26#720.)

[Cher] Chern, S. S., Differentiable manifold, University of Chicago, Mimeographed Notes (1953).

[CCK] Chern, S. S., do Carmo, M. and Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of

[Gr] Gromoll, D., Differenzierbare Strukturen und Metriken Positiv-

[Kl] Klingenberg, W., Contributions to Riemannian geometry in the
large, Ann. of Math. 69 (1959), 654—666. (MR21 #4445.)

436

[R] Rauch, H. E., A contribution to differential geometry in the large, Ann. of Math. 54(1951), 38—55. (MR 13, 159.)

[Simo], Simons, J., A note on minimal varieties, Bull. Amer. Math. Soc. 73 (1967), 491–495. (MR 34 #5520.)

[Spi], Spivak, M., A comprehensive introduction to differential geometry IV, Publish or perish Inc., Berkeley, 1979.

\[\text{[Wa]}_1\] Warner, F. W., Conjugate loci of constant order, Ann. of Math. 86 (1967), 192–212. (MR 35#4857.)

\[\text{[XN]}\] Xu, S. L., and Ni, Y. L. The spectrum of the Laplace operation on compact minimal hypersurfaces, to appear.

\[\text{[XX]}_1\] Xu, S. L. and Xia, Q. L., On the spectrum of Clifford hypersurface $M_{1,*2}$, Journal of Mathematical Study (数学研究), 29 (4) (1996).

\[\text{[XX]}_2\] Xu, S. L. and Xia, Q. L., Conformal deformation of a close Riemannian submanifold to minimal submanifold, to appear.

\[\text{[XZ]}\] Xu, S. L. and Zhang, H. M., The isospectrum problem of compact submanifolds on sphere, Journal of Mathematical Study

索 引

一 划
一般协变导数算子 98
一般的长度第 1 变分公式 291
一般的长度第 2 变分公式 295

三 划
万有覆叠空间 394
三角形比较定理（Toponogov 比较定理） 423，428
下（次）调和函数 107
上（超）调和函数 107
上微分算子 347

四 划
切丛 4
不可定向的流形 39
双曲空间（Poincaré 空间） 70
内导数 89
无穷小变换 269
无挠的 191

五 划
平行平均曲率向量 152
正则性定理 353
平均曲率 116，152
平均曲率向量 152
平坦空间 70
平坦线性联络 127
凸坐标邻域的存在性 256
半局部单连通空间 394
丛图卡 3
丛图册 3
可定向的流形 39
丛（全）空间 3
正规（法）坐标系 253
长度第 1 变分公式 290
长度第 2 变分公式 293
长度第 2 变分公式的形式 294
对称空间 432
对称联络 48
正常变分 288，306
正常变分向量场 289
正螺旋面 179

441
六 划
关于 ξ 是映点的 153
齐性 Riemann 流形 412
协变导数 12, 125
共轭的 270
共轭的重数 301
全幅(点)子流形 153
伪幅(点)子流形 153
全测地子流形 151
全测地浸入 151
曲率 Ω 形式 126
曲率方阵的变换公式 132
曲率方阵 Ω 127
曲率张量 12, 16
向量场的平移方程 27
收缩映射 21
伪 Riemann 度量张量 147
伪 Riemann 流形 147

七 划
极小子流形 152
极小子浸入 152
余切丛 7
余切向量 7
余切空间 7
形状算子 138
两点齐性的空间 412
局部平坦(局部仿射)的流形 146

局部对称空间 432
余标架场 134
局部 C^∞ 标架场 125
局部 C^∞ 等距(同尺)映射 401
体积元素 42, 94
体积第 1 变分公式 310
体积第 2 变分公式 321
层数 364, 392

八 划
单一半径 422
变分 289
变分向量场 306
拓扑球面定理 422
定向 39
定向流形 39
定向覆盖 364
定向覆盖投影 364
定向覆盖流形 364
拟极小子流形 242
空间形式 84
空间形式的存在唯一性定理 411
单连通 392
线性联络 11, 125
线性联络的存在性定理 129
法丛 42
法(丛)联络 110, 143
沿 平行的 15

九 划
复（解析）结构 185
迷向子流形 153
测地完备的流形 250
测地线 27
测地线变分 268
活动标架法 134
复环面 209
挠张量 16
临界子流形 312
殆（近）复结构 189
殆（近）复流形 189
临界道路 289
指数映射 exp 250
指数 $i(\infty)$ 330
殆（近）Hermite 流形 192
殆（近）Kähler 流形 192

十 划
调和形式 347
调和函数 96
能量函数 371
弱解 353

十一划
第 1 个共轭点 271
第 1 基本形式 113

第 2 基本形式 113
基本 2 形式（Kähler 形式） 192
基本开邻域 389
基曲线 289
梯度场 95
常截率流形 56
常 Riemann 截曲率的空间形式的等距定理 84

十二划
最大直径定理 424
提升（升腾） 389
散度 94, 97, 98
散度定理 104
割点 282
割迹 283
联络系数 16
联络 1 形式 125
联络方阵的变换公式 126
等距变换 401
最短测地线 254
最短测地线存在定理 264

十三划
零化空间 300
零化数 301, 330
数量曲率 86

443
十四划
稳态的 312
稳定的 326

十五划
增广指数 $\alpha(\omega)$ 330
整体平坦的线性联络 128
整体极小化的极小
子流形 326
整体 C^∞ 等距（同尺）
变换 401
横截向量场 289

十八划
覆叠 364,389
覆叠同构映射 395
覆叠投影 389
覆叠空间 364,389
覆叠的层数 364
覆叠变换 395
覆叠（同态）映射 395
覆叠等价映射 395

Berger 定理 424,425
Berger 最小直径定理 424
Bianchi 第 1 恒等式 56,
58,132
Bianchi 第 2 恒等式 56,
444

58,132
Bonnet 定理 420
Bonnet—Myers 定理 299,425
Brown 定理 421
Cartan 结构方程 17
Cartan-Hadamard 定理 279,
406,420
Christofell 记号 55
Cliford 极小超曲面 182
Cliford 环面 182
Codazzi-Mainai方程 110,
143
C^1 切向量场 6
C^1 向量场 3
C^1 余切向量场 8
C^1 截面 3
C^∞ 平行截面 127
C^∞ 平凡向量丛 3
C^∞ 齐性 Riemann 流形 266
C^∞ 向量丛 3
C^∞ Riemann 度量 32
de Rham 上同调群 359
de Rham 上同调群的 Poincaré
对偶定理 362
Einstein 流形 88
Fubini-Study 度量 211
Gauss 公式 110,143
Gauss 引理 418
Gauss 曲率 116
<table>
<thead>
<tr>
<th>内容</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss 曲率方程</td>
<td>110</td>
</tr>
<tr>
<td>Gauss 绝妙定理</td>
<td>118</td>
</tr>
<tr>
<td>Gauss 映射</td>
<td>119</td>
</tr>
<tr>
<td>Green 定理</td>
<td>94</td>
</tr>
<tr>
<td>Green 第 1 和第 2 公式</td>
<td>107, 108</td>
</tr>
<tr>
<td>Green 算子</td>
<td>357</td>
</tr>
<tr>
<td>Gromoll 定理</td>
<td>426</td>
</tr>
<tr>
<td>Gromoll-Meyer 定理</td>
<td>427</td>
</tr>
<tr>
<td>Grove-Shiohama 定理</td>
<td>424</td>
</tr>
<tr>
<td>Hermite 度量</td>
<td>192, 196</td>
</tr>
<tr>
<td>Hermite 流形</td>
<td>196</td>
</tr>
<tr>
<td>Hesse 泛函</td>
<td>296</td>
</tr>
<tr>
<td>Hodge 分解定理</td>
<td>354, 369</td>
</tr>
<tr>
<td>Hodge 同构定理</td>
<td>359, 370</td>
</tr>
<tr>
<td>Hodge 星算子</td>
<td>346</td>
</tr>
<tr>
<td>Hopf-Bochner 定理</td>
<td>107</td>
</tr>
<tr>
<td>Hopf-Rinow 定理 (完备的等价性)</td>
<td>264</td>
</tr>
<tr>
<td>Jacobi 方程</td>
<td>268</td>
</tr>
<tr>
<td>Jacobi 场</td>
<td>268, 329</td>
</tr>
<tr>
<td>Jacobi 场的分解定理</td>
<td>271</td>
</tr>
<tr>
<td>Kähler 流形</td>
<td>192, 196</td>
</tr>
<tr>
<td>Klingenberg 定理</td>
<td>426</td>
</tr>
<tr>
<td>Laplace-Beltrami 算子</td>
<td>96, 98, 347</td>
</tr>
<tr>
<td>Levi-Civita 联络</td>
<td>48</td>
</tr>
<tr>
<td>Levi-Civita 联络 1 形式</td>
<td>135</td>
</tr>
<tr>
<td>Lie 导数</td>
<td>91</td>
</tr>
<tr>
<td>(m) 维复射影空间</td>
<td>187</td>
</tr>
<tr>
<td>(m) 维解析流形</td>
<td>185</td>
</tr>
<tr>
<td>Morse 指数定理</td>
<td>332</td>
</tr>
<tr>
<td>Morse-Schoenberg 比较定理</td>
<td>428</td>
</tr>
<tr>
<td>Myers-Steenrod 定理</td>
<td>259</td>
</tr>
<tr>
<td>pinching 常数</td>
<td>222</td>
</tr>
<tr>
<td>Rauch 比较定理</td>
<td>413, 417</td>
</tr>
<tr>
<td>Ricci 张量场</td>
<td>85</td>
</tr>
<tr>
<td>Riemann 曲率张量</td>
<td>(\Omega = (\Omega_i)) 127</td>
</tr>
<tr>
<td>Riemann 度量的存在性</td>
<td>34</td>
</tr>
<tr>
<td>Riemann 流形的基本定理</td>
<td>50, 134</td>
</tr>
<tr>
<td>Riemann 联络</td>
<td>48</td>
</tr>
<tr>
<td>Riemann 截曲率</td>
<td>63</td>
</tr>
<tr>
<td>Riemann-Christofel 曲率 张量</td>
<td>60</td>
</tr>
<tr>
<td>((r,s)) 型张量</td>
<td>8</td>
</tr>
<tr>
<td>((r,s)) 型 (C^a) 张量丛</td>
<td>9</td>
</tr>
<tr>
<td>((r,s)) 型 (C^a) 张量场</td>
<td>9</td>
</tr>
<tr>
<td>(s) 阶反称协变张量</td>
<td>11</td>
</tr>
<tr>
<td>(s) 阶外形式</td>
<td>11</td>
</tr>
<tr>
<td>(s) 阶 (C^a) 外微分形式</td>
<td>11</td>
</tr>
<tr>
<td>(s) 阶 (C^a) 外形式丛</td>
<td>11</td>
</tr>
<tr>
<td>(s) 次调和形式</td>
<td>347</td>
</tr>
<tr>
<td>(s) 次 (C^\infty) 闭形式</td>
<td>358</td>
</tr>
<tr>
<td>(s) 次 (C^\infty) 闭形式的同调类</td>
<td>359</td>
</tr>
<tr>
<td>(s) 次 (C^\infty) 恰当形式</td>
<td>358</td>
</tr>
</tbody>
</table>
Schoen-Yau 定理 327
Schur 定理 65, 145
Simons 型常数 240
Synge 定理 397, 425
Takahashi 定理 173, 174
Toponogov 比较定理（三角形比较定理） 423, 428
Toponogov 最大直径定理 424
Veronese 曲面 182
Weingarten 映射 113

Wirtinger 不等式 198
γ ∈ Ω 处的切空间 288
Δ 的特征形式 372
Δ 的特征空间 372
Δ 的特征值 372
δ-挤的 421
λ 的特征空间 372
0 截面 4
1 Levi-Civita联络和Riemann截曲率
1.1 向量丛上的线性联络
1.2 切丛上的线性联络、向量场的平移和测地线
1.3 Levi-Civita联络和Riemann流形基本定理
1.4 Riemann截曲率、Ricci曲率、数量曲率和常截曲率流形
1.5 Laplace算子△
1.6 C~∞浸入子流形的Riemann联络
1.7 活动标架

2 子流形几何
2.1 全测地、极小和全脐子流形
2.2 Euclid空间和Euclid球面中的极小子流形
2.3 Kahler流形
2.4 Kahler流形的例子
2.5 单位球面上紧致极小子流形的刚性

3 Jacobi场、变分和极小子流形
3.1 测地线、指数映射和流形的完备性
3.2 Jacobi场、共轭点和割迹
3.3 长度的第1和第2变分公式
3.4 体积的第1、第2变分公式和极小子流形
3.5 Morse指数定理

4 Hodge分解定理和Laplace算子△的特征值
4.1 星算子*、上微分算子δ和微分形式的Laplace算子△
4.2 Hodge分解定理
4.3 不可定向紧致C~∞Riemann流形的Hodge分解定理
4.4 Laplace算子△的特征值

5 曲率和拓扑
5.1 覆叠空间和Synge定理
5.2 等距变换和空间形式
5.3 Rauch比较定理和拓扑球面定理

参考文献
索引